• Aucun résultat trouvé

Hecke operators Quasi-modular forms attached to elliptic curves: Journal of Number Theory

N/A
N/A
Protected

Academic year: 2022

Partager "Hecke operators Quasi-modular forms attached to elliptic curves: Journal of Number Theory"

Copied!
18
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Quasi-modular forms attached to elliptic curves:

Hecke operators

Hossein Movasati

InstitutodeMatemáticaPuraeAplicada,IMPA,EstradaDonaCastorina,110, 22460-320,RiodeJaneiro,RJ,Brazil

a r t i c l e i n f o a bs t r a c t

Article history:

Received30August2012 Receivedinrevisedform18May 2015

Accepted19May2015 Availableonline3July2015 CommunicatedbyDavidGoss

Keywords:

Quasi-modularforms Heckeoperators

InthisarticlewedescribeHeckeoperatorsonthedifferential algebraofgeometricquasi-modularforms.Asanapplication for each natural number d we construct a vector field in six dimensions which determines uniquely the polynomial relationsbetween theEisensteinseries ofweight 2,4 and 6 andtheirtransformationundermultiplicationoftheargument by d,andinparticular,it determinesuniquely themodular curveofdegreedisogeniesbetweenellipticcurves.

© 2015ElsevierInc.All rights reserved.

1. Introduction

Thetheory ofquasi-modular formswas firstintroducedbyKanekoand Zagierin[5]

duetoitsapplicationsinmathematicalphysics.Onecandescribequasi-modularformsin theframeworkofthealgebraicgeometryofellipticcurves,andinparticular,theRamanu- jandifferentialequationbetweenEisensteinseriescanbederivedfromtheGauss–Manin connection of families of elliptic curves, see for instance [7] and [9]. We call this the Gauss–Manin connection in disguise. The terminology arose from a private letter of

E-mailaddress:hossein@impa.br.

URL: http://www.impa.br/~hossein.

http://dx.doi.org/10.1016/j.jnt.2015.05.021 0022-314X/© 2015ElsevierInc.All rights reserved.

(2)

Pierre Deligne to the author, see [4]. In the present article we describe Hecke oper- ators for such quasi-modular forms, and certain differential ideals related to modular curves.In[3]theauthorsdescribeadifferentialequationinthej-invariantoftwoellip- ticcurveswhichistangenttoallmodularcurvesofdegreedisogeniesofelliptic curves.

ThisdifferentialequationcanbederivedfromtheSchwarziandifferentialequationofthe j-functionandthelattercanbecalculatedfromtheRamanujandifferentialequationbe- tweenEisensteinseries.ThissuggeststhattheremustbearelationbetweenRamanujan differential equationand modularcurves. In thisarticle we alsoestablish this relation.

Anothermotivation behindthis workisto prepare thegroundfor similartopics inthe caseofCalabi–Yauvarieties,see[8].

ConsidertheRamanujan ordinarydifferentialequation

R:

⎧⎪

⎪⎩

˙

s1= 121(s21−s2)

˙

s2= 13(s1s2−s3)

˙

s3= 12(s1s3−s22)

˙

sk =∂sk

∂τ (1)

whichissatisfiedbytheEisensteinseries:

si(τ) =aiE2i(q) :=ai

⎝1 +bi n=1

d|n

d2i1

qn

,

i= 1,2,3, q=e2πiτ, Im(τ)>0 (2) and

(b1, b2, b3) = (24,240,504), (a1, a2, a3) = (2πi,(2πi)2,(2πi)3).

ThealgebraofmodularformsforSL(2,Z) isgenerated bytheEisensteinseries E4 and E6 andallmodularforms forcongruencegroupsarealgebraic overthefieldC(E4,E6), seeforinstance[14].Inasimilar waythealgebraofquasi-modularforms forSL(2,Z) is generatedbyE2,E4 andE6,seeforinstance [6,9],andwehave:

Theorem1. Fori= 1,2,3andd∈N, thereis ahomogeneous polynomial Id,i of degree i·ψ(d),whereψ(d):=d

p(1+1p)istheDedekindψfunctionandprunsthroughprimes pdividingd,in theweightedring

Q[ti, s1, s2, s3], weight(ti) =i, weight(sj) =j, j= 1,2,3 (3) andmonicinthevariableti suchthatti(τ):=d2i·si(d·τ),s1(τ),s2(τ),s3(τ)satisfythe algebraicrelation:

Id,i(ti, s1, s2, s3) = 0.

Moreover,fori= 2,3thepolynomial Id,i doesnotdepend on s1.

(3)

ThenoveltyofTheorem 1ismainlyduetothecasei= 1.Weconsidersi,ti,i= 1,2,3 as indeterminatevariables andforsimplicity wedonotintroducenewnotationinorder to distinguish them from the Eisenstein series. We regard (t,s) = (t1,t2,t3,s1,s2,s3) as coordinates of the affine variety A6k, where k is any field of characteristic zero and not necessarily algebraically closed. Ramanujan’s ordinary differential equation (1) is consideredasavectorfieldinA3k withthecoordinates(s1,s2,s3).It canbeshownthat the curve given by Id,2 =Id,3 = 0 inthe weighted projective space P(2,3,2,3)C with the coordinates(t2,t3,s2,s3) isasingularmodelforthemodularcurve

X0(d) := Γ0(d)\(HQ), where Γ0(d) :={

a1 a2

a3 a4

SL(2,Z)|a30 (mod d)}. Computing explicit equations for X0(d) in terms of the variables j1 = 1728t3t32

2−t23 and j2= 1728s3s32

2s23 hasmanyapplications innumbertheoryand ithasbeen donebymany authors,seeforinstance [13]andthereferencestherein.

Let Rt, respectively Rs, be the Ramanujan vector field in A3k with coordinates (t1,t2,t3), respectively(s1,s2,s3). InA6k = A3k ×A3k with the coordinatessystem (t,s) we considerthevectorfield:

Rd :=Rt+Rs.

LetT:=A3k\{t32−t23= 0}andletVd betheaffinesubvarietyofT×Tgivenbytheideal Id,1,Id,2,Id,3k[s,t,t31

2−t23,s31 2−s23].

Theorem 2.Thevector fieldRd istangent totheaffinevarietyVd.

I do not know the complete classification of all Rd-invariant algebraic subvarieties of A6k.Weconsider Rd as adifferentialoperator:

k[t, s]k[t, s], f Rd(f) :=df(Rd).

From Theorem 2andthefactthatVd isirreducible(seeSection9),itfollowsthat:

Rjd(Id,i)RadicalId,1, Id,2, Id,3, i= 1,2,3, jN∪ {0}. Note that the ideal Id,1,Id,2,Id,3 k[s,t,t31

2−t23,s31

2−s23] may not be radical. We can compute Id,i’s using the q-expansion of Eisenstein series, see Section11. This method works only for small degrees d. However, for an arbitrary d we can introduce some elements intheradicaloftheidealgenerated byId,i,i= 1,2,3.Let

Jd,i= det

⎜⎜

⎜⎝

α1 α2 · · · αmd,i Rd1) Rd2) · · · Rdmd,i)

... ... · · · ... Rmdd,i−11) Rmdd,i−12) · · · Rmdd,i−1md,i)

⎟⎟

⎟⎠,

(4)

wherefori= 1,αj’sarethemonomials:

tai0sa11sa22sa33, i·ψ(d) =ia0+a1+ 2a2+ 3a3, a0, a1, a2, a3N0 (4) andfori= 2,3,αj’saretheabovemonomialswitha1= 0.Here,md,i isthenumberof monomialsαj’s.ThepolynomialJd,i isweightedhomogeneousofdegree

i·ψ(d) +i·ψ(d) + 1 +i·ψ(d) + 2 +· · ·+i·ψ(d) +md,i1

=md,i·i·ψ(d) +md,i·(md,i1)

2 .

Theorem3.Wehave

Jd,iRadicalId,1, Id,2, Id,3, i= 1,2,3, andso

Jd,i(d2i·si(d·τ), s1(τ), s2(τ), s3(τ)) = 0, i= 1,2,3.

Our proofs of Theorems 1, 2, 3 use the notion of geometric quasi-modular forms, Heckeoperatorsand thefactthattheaffinevarietyA3k\{t32−t23= 0}isafinemoduli of ellipticcurves enhancedwith elements intheirdeRham cohomologies, see Theorem 4.

It mightbe possible to modify ourproofs in order to avoidany reference to Algebraic Geometry,however,onemaylose themotivation formanyarguments whichmainlylie onthegeometryofvector fields.Moreover,geometric approachtoquasi-modular forms givesusaconvenientcontextinordertoworkoverrationalnumbersandthismightlead ustoconnectionsofarithmeticofellipticcurvesandquasi-modular forms.

Throughoutthetextwewillstateourresultsover afieldk ofcharacteristiczeroand notnecessarilyalgebraicallyclosed.Suchresultsarevalidifandonlyifthesameresults are valid over thealgebraic closure ¯k of k. ByLefschetz principle, see forinstance [11]

p. 164, it is enough to prove such results over the complex numbers. For a variety T definedoverk,T(k) denotesthesetofk-rationalpointsofT.

Thearticleisorganizedinthefollowingway.InSection2andSection3werecallthe definitionoffullquasi-modular formsintheframeworkofboth algebraicgeometry and complex analysis.In Section 4we describe somefacts relating isogenies and algebraic de Rham cohomology of elliptic curves. Using isogeny of elliptic curves we introduce geometricHeckeoperatorsinSection5andinSection6wedescribetheirtranslationinto holomorphic Hecke operators. For our discussion of modular curves we need a refined version of Hecke operators that we discuss in Section 7. Theorem 1, Theorem 2 and Theorem 3 are respectively proved in Section 8, Section9 and Section10. Finally, in Section11wegivesomeexamples.

The main idea behind the proof of Theorem 3 is due to J.V. Pereira in[10]. Here, I wouldliketothankhimforteachingmesuchanelegantandsimpleargument.Thanks goto J. Sijsling forhis useful commentsfor thefirst draft of thepresent text. Finally, I wouldlike tothanktherefereewhosecriticalcommentsimprovedthetext.

(5)

2. Geometricquasi-modularforms

In this section we recall some definitions and theorems in [6,7]. The reader is also referred to [9] for a complete account of quasi-modular forms ina geometric context.

Note thatin[9] thet parameter is infact (121t1,121212t2,81213t3). Letk be any fieldof characteristic zero and let E be an elliptic curve over k. The first algebraic de Rham cohomologyofE,namelyHdR1 (E),isak-vectorspaceofdimensiontwoandithasaone dimensional spaceF1 consisting ofelements representedby regulardifferential 1-forms onE.Letus define

T:= Spec(k[t1, t2, t3, 1 t32−t23])

Theorem 4. (See[9], §5.5.) The affine varietyT isthe finemoduli of thepairs (E,ω), whereE isanellipticcurveandω∈HdR1 (E)\F1.For(t1,t2,t3)T(k),thecorrespond- ing pair(E,ω)isgivenby

E: 3y2= (x−t1)33t2(x−t1)2t3, ω= 1 12

xdx

y . (5)

From now on an element of T(k) is denoted either by (t1,t2,t3) or (E,ω). We can regard ti as a rule which for any pair (E,ω) as above it associates an element ti = ti(E,ω)∈k. Wewill alsouseti as anindeterminate variableor anelement ink,being clear from the text whichwe mean. Form an evennumber, afull quasi-modular form f ofweightm anddifferentialordernis ahomogeneouspolynomialofdegree m2 inthe k-algebra

M :=k[t1, t2, t3], weight(ti) =i, i= 1,2,3,

with degt1f ≤n.Thesetofsuchquasi-modular formsisdenotedbyMmn.

Forapair(E,ω)∈T(k) wehavealsoauniqueelementα∈F1 satisfyingα,ω= 1, where ·,· is the intersection form in the de Rham cohomology, see for instance [9]

§2.10. For this reason we sometimes use (E,{α,ω}) instead of (E,ω). The algebraic groupsGa:= (k,+) andGm:= (k− {0},·) actfromtherightonT(k):

(E, ω)•k:= (E, kω), k Gm, (E, ω)◦k:= (E, ω+kα), k∈Ga

and so theyactfrom theleft onM.It canbe shownthatMmn is invariantunderthese actionsand thefunctionsti:Tk,i= 1,2,3 satisfy

k◦t1=t1+k, k◦ti=ti, i= 2,3 k∈Ga, (6) k•ti =k−2iti, i= 1,2,3 k∈Gm. (7)

(6)

LetRbetheRamanujanvectorfieldinT.ItistheuniquevectorfieldinTwhichsatisfies

Rα=−ω,∇Rω= 0,whereistheGauss–Maninconnectionoftheuniversalfamilyof ellipticcurvesover T,see forinstance [9]§2.Thek-algebraoffull quasi-modularforms hasadifferentialstructure whichis givenby:

Mmn →Mm+2n+1, t →R(t) :=

3 i=1

∂t

∂tiRi,

whereR=3 i=1Ri∂t

i istheRamanujanvectorfield.

3. Holomorphicquasi-modularforms

Now,letusassumethatk=C.Theperioddomain isdefinedto be P :=

x1 x2

x3 x4

|xiC, x1x4−x2x3= 1, Im(x1x3)>0

. (8)

WeletthegroupSL(2,Z) actfromtheleftonP byusualmultiplicationofmatrices.In P we considerthevectorfield

X =−x2

∂x1−x4

∂x3 (9)

which is invariant under the action of SL(2,Z) and so it induces a vector field in the complex manifold SL(2,Z)\P. For simplicity we denote it again by X. The Poincaré upperhalfplaneHisembeddedinP inthefollowing way:

τ→

τ 1

1 0

andsowe haveacanonicalmap HSL(2,Z)\P. Theorem5.(See[9]§8.4 and§8.8.) Theperiod map

pm:T(C)SL(2,Z)\P t →

1

√−2πi

δα

δω

γα

γω

is a biholomorphism, where {δ,γ} is a basis of H1(E,Z) with δ,γ =1. Under this biholomorphism theRamanujan vector fieldis mapped toX.The pull-backof ti by the composition

HSL(2,Z)\P pm−1T(C)A3C, (10) istheEisenstein seriesaiE2i(e2πiτ)in(2).

(7)

The algebra of full holomorphic quasi-modular forms is the pull-back of k[t1,t2,t3] underthecomposition(10).Wecanalsointroduceitinaclassicalwayusingfunctional equations plus growth conditions: a holomorphic function f on H is called a (holo- morphic) quasi-modular form of weightm and differentialorder n ifthe following two conditionsaresatisfied:

1. Thereareholomorphicfunctionsfi(z),i= 0,1,. . . ,nonHsuchthat (cz+d)−mf(Az) =

n i=0

n i

ci(cz+d)−ifi(z), ∀A= a b

c d

SL(2,Z). (11)

2. fi(z),i= 0,1,2,. . . ,nhavefinitegrowthswhen Im(z) tendsto+,i.e.

Im(z)→+∞lim fi(z) =ai,∞<∞, ai,∞C.

Fortheproofoftheequivalenceofbothnotionsofquasi-modularformssee[9]§8.11.We havef0=fandtheassociatedfunctionsfiareunique.Infact,fiisaquasi-modularform of weightm−2i anddifferential order n−i andwith associated functionsfij :=fi+j. It isusefultodefine

f||mA:= (detA)m−1 n i=0

n i

( −c

det(A))i(cz+d)i−mfi(Az), A=

a b c d

GL(2,R), f ∈Mmn. (12)

Inthisway, theequality(11)iswrittenintheform

f =f||mA,∀A∈SL(2,Z) (13)

and wehave

f||mA=f||m(BA), ∀A∈GL(2,R), BSL(2,Z), f ∈Mmn, (14) fk||kmA= (detA)k−1(f||mA)k, ∀A∈GL(2,R), kN. (15) It can be proved that the algebra of full quasi-modular forms is generated by the EisensteinseriesE2i,i= 1,2,3.Forfurtherdetailsonholomorphicquasi-modularforms see [6,7,9].

4. Isogenyofellipticcurves

Let (E1,01) and (E2,02) be two elliptic curves over the field k. Here, 0i Ei(k), i = 1,2 is theneutral element of the groupEi(k). We say that E1 is isogenous to E2

(8)

overkifthereisanon-constantmorphismofalgebraiccurvesoverkf :E1→E2 which sends 01 to 02. It canbe shown thatf induces amorphism of groupsE1(k) E2(k).

We also say that f is an isogeny between E1 and E2 over k. For all points p∈ E(¯k) exceptafinitenumber,#f−1(p) isafixed numberwhichwedenote itbydeg(f).Here, wehave consideredf as amap from E1(¯k) toE2(¯k).Since f is amorphism ofgroups, for apoint q f−1(p) themap x → x+q induces abijection f−1(02) =f−1(p). We concludethat for allpoints p∈ E2(¯k), theset f−1(p) has deg(f) points(and hence f hasnoramification points).

Proposition1. Letf :E1→E2 bean isogeny ofdegree d.Thenfor allω,α∈HdR1 (E2) wehave

fω, fα=d· ω, α.

Here,·,·:HdR1 (E)×HdR1 (E)kistheintersectionforminthedeRhamcohomol- ogy,see[9]§2.10.

Proof. Itisenoughtoprovethepropositionoveranalgebraicallyclosedfield.Sincethe aboveformulais k-linear inboth ω andα, itis enoughto proveitinthecase ω= dxy , α=xdxy ,wherex,yaretheWeierstrasscoordinatesofE2.Sincedxy ,xdxy = 1,wehave toprovethatf(dxy ),f(xdxy )=d.Letf−1(02)={p1,p2,. . . ,pd}.Thedifferentialform f(dxy) isagainaregulardifferentialformandf(xdxy ) haspolesofordertwoateachpi. ConsiderthecoveringU ={U0,U1}of E1,where U0=E1\f−1(02) andU1 isanyother opensetwhichcontainsf−1(02).Thedifferentialformsf(xiydx),i= 0,1 aselementsin HdR1 (E1) arerepresentedbythepairs

(d˜x

˜ y ,d˜x

˜

y ), (xd˜ x˜

˜ y ,xd˜˜ x

˜ y 1

2d(y˜

˜ x)),

wherex˜=fx,y˜=fy.Wehave y˜x˜xd˜y˜x=01}, whereω01= −12 x˜x andso f(dx

y ), f(xdx

y )=d˜x

˜ y ,˜xd˜x

˜ y =

d i=1

Residue(1 2

d˜x

˜ x, pi) =

d i=1

1 =d. 2 Proposition2.Wehave:

1. Let f : E1 E2 be an isogeny defined over k.The induced map f : HdR1 (E2) HdR1 (E1)isan isomorphism.

2. Let [d]E : E E be the multiplication by d∈ N map. We have [d]E : HdR1 (E) HdR1 (E),ω →d·ω.

Proof. Inthe complexcontext,E=C/τ,1 and[d]E isinduced byCC, z →d·z.

Moreover, abasisof theC de Rham cohomology isgiven by dz, d¯z. This proves the

(9)

second part ofthe proposition.For thefirst partwetakethe dual isogenyanduse the firstpart. 2

For E an ellipticcurve overan algebraicallyclosed fieldk ofcharacteristic zero, the numberof isogeniesf :E1 →E ofdegreedand uptocanonicalisomorphismsis equal to σ1(d):=

c|dc. Toprovethiswemayworkinthecomplexcontextandassumethat E = C/τ,1. The numberof such isogenies is the number of subgroups of order dof (Z/dZ)2,whichisknowntobe σ1(d).

5. GeometricHeckeoperators

In this section all the algebraic objects are defined over k unless it is mentioned explicitly. Let dbe apositiveinteger. The Hecke operatorTd acts on thespace of full quasi-modular formsas follows:

Td:Mmn →Mmn, Td(t)(E, ω) =1

d

f:E1→E,deg(f)=d

t(E1, fω), t∈Mmn

where the sumrunsthroughallisogenies f :E1 →E of degreeddefined over¯k.Since (E,ω) andt aredefined over k, Td(t)(E,ω) is invariantunder Gal(¯k/k) andso it is in the fieldk. This impliesthatTd(t) is definedover k. ThestatementTd k[t1,t2,t3] is not at all clear. In order to provethis, we assumethat k =C and we provethe same statementforholomorphicquasi-modular forms,see Section6.Thefunctionalequation of Tdt with respect to theaction of thealgebraic groupsGm and Ga canbe proved in thealgebraic contextasfollows:

Proposition 3.The actionof Gmcommutes with Heckeoperators, that is,

k•Td(t) =Td(k•t), t∈M , k∈Gm (16) and theactionof Ga satisfies:

k◦Td(t) =Td((d·k)◦t), t∈M , k∈Ga. Proof. Thefirstequalityistrivial:

(k•Td(t))(E, ω) =Td(t)(E, kω) = 1 d

t(E1, f(kω))

= 1 d

(k•t)(E1, f(ω)) =Td(k•t)(E, ω)

(10)

ForthesecondequalityweuseProposition 1:

(k◦Td(t))(E, ω) =Td(t)(E, ω+kα) = 1 d

t(E1, f(ω+kα))

=1 d

t(E1, f(ω) +d·kf(1

dα)) =1 d

((d·k)◦t)(E1, f(ω))

=Td(d·k◦t)(E, ω). 2

Wecanalsodefine theHecke operatorsinthefollowingway:

Td(t)(E, ω) =dm−1

g:EE1,deg(g)=d

t(E1, gω), t∈Mmn

where thesum runsthroughall isogeniesg :E →E1 ofdegree ddefinedover ¯k.Both definitionsofTd(t) areequivalent:foranisogenyf :E1→E ofdegreeddefinedover¯k wehaveauniquedualisogenyg:E→E1 suchthat

f ◦g= [d]E, g◦f = [d]E1.

ThereforebyProposition 2wehaved·gω= [d]E1(gω)=fω andso t(E1, fω) =t(E1, d·gω) =dmt(E1, gω).

It can be shown that the geometric Eisenstein modular form Gk (see [9] §6.5) is an eigenformwitheigenvalue

σk1(d) :=

c|d

ck−1

fortheHeckeoperatorTd,thatis

TdGk =σk−1(d)Gk, d∈N, k∈2N seeforinstance[6].

ThedifferentialoperatorR:M →M andtheHeckeoperatorTd commute,thatis R◦Td=TdR, ∀d∈N.

For the proof we may assume that k = C. In this way using Theorem 5 it is enough to provethesame statementfor holomorphicquasi-modular forms, seefor instance [7]

Proposition4.

(11)

6. HolomorphicHeckeoperators

In this section we want to use the biholomorphism in Theorem 5 and describe the Hecke operators on holomorphic quasi-modular forms. Let us take k = C and let Matd(2,Z) bethesetof2×2 matriceswithcoefficientsinZandwith determinantd.

Proposition 4. The d-th Hecke operator on the vector space of quasi-modular forms of weight mand differentialorder nisgivenby

Td:Mmn →Mmn, Tdf =

A

f||mA,

whereArunsthroughthesetSL(2,Z)\Matd(2,Z)and||isthedoubleslashoperator(12) forquasi-modular forms.

Proof. Letus consider two points(Ei,{αii}), i= 1,2 in the moduli spaceT. Letus also considerad-isogenyf :E1→E2with

fω2=ω1, fα2=d·α1.

Wecantakeasymplecticbasisδ1,γ1 ofH1(E1,Z) andδ2,γ2 ofH1(E2,Z) suchthat f1, γ1]tr=A[δ2, γ2]tr,

where A∈Matd(2,Z) andtrmeanstranspose ofamatrix.Fromanother sidewehave [α1, ω1]B =f2, ω2], whereB=

d 0 0 1

Therefore, if the period matrix associated to (Ei,{αii},{δiγi}), i = 1,2 is denoted respectivelybyx andxthen

xB=Ax.

Using Theorem 5,thed-thHeckeoperatoractsonthespaceofSL(2,Z)-invariantholo- morphic functionsonP by:

TdF(x) = 1 d

A

F(AxB−1), x∈ P

whereA=

a1 b1 c1 d1

runsthroughSL(2,Z)\Matd(2,Z).Letf ∈Mmn beaholomorphic quasi-modular form definedon theupperhalfplane. Bydefinitionthere isageometric modularformf˜C[t1,t2,t3] suchthatf isthepull-backoff˜bythecomposition(10).

(12)

LetFbetheholomorphicfunctiononPobtainedbythepush-forwardoff˜bytheperiod mapandthen itspull-backbyP →SL(2,Z)\P.Wehave

Tdf(τ) =TdF

τ 1

1 0

= 1 d

A

F(A

τ 1

1 0

B1)

= 1 d

A

F(

1

1 0

d1(c1τ+d1) −c1 0 (c1τ+d1)1d

)

= 1 d

A

dm(c1τ+d1)−m n i=0

n i

(−c1)i(c1τ+d1)id−ifi(A(τ))

=

A

f||mA. 2

Inthepassage fromthesecondto thirdequalitywe haveused A

τ 1

1 0

=

1

1 0

c1τ+d1 −c1

0 (detA)(c1τ+d1)−1

.

Forthepassage from thethirdto fourthequalitywe haveused thefunctional equation of f˜(and hence the SL(2,Z)-invariant function F) with respect to the actions in (6) and(7),see [7]Proposition6.Onecantaketherepresentatives

{Ai}:=

d

c b 0 c

c|d, 0≤b < c

forthequotientSL(2,Z)\Matd(2,Z) andso Tdf(τ) = 1

d

cc=d, 0b<c

cmfcτ+b c

. (17)

Inasimilarway tothecaseofmodularforms (see[1]§6)onecancheck that Tp◦Tq=

d|(p,q)

dm1Tpq

d2. Ifwewritef =

n=0fnqn thenwehave:

(Tdf)n=

c|(d,n)

cm−1fnd

c2.

In particular if we set n = 0 then the constant term of Td(f) is f0σm−1(d). If f is an eigenvector of Td and the constant term of f is non-zero then the corresponding eigenvalueisσm1(d).

(13)

7. RefinedHeckeoperators

Let Wd be the set of subgroups of dZZ × dZZ of order d and Sd be the set (up to isomorphism)ofabelianfinitegroupsoforderdandgeneratedbyatmosttwoelements.

Wehaveacanonicalsurjective mapWd→Sd. Proposition 5.Wehave bijections

SL(2,Z)\Matd(2,Z)=Wd, (18) SL(2,Z)\Matd(2,Z)/SL(2,Z)=Sd, (19) both givenby

a b c d

Z2 Z(a, b) +Z(c, d).

If dis square-freethenboth sides ofthesecond bijectionare singlepoints.

Proof. First note that the induced maps are both well-defined. The first bijection is alreadyprovedandusedinSection6.TheactionofSL(2,Z) fromtheleftonMatd(2,Z) corresponds to thebase change inthelatticeZ(a,b)+Z(c,d) in theright handsideof the bijection. The action of SL(2,Z) fromthe right on Matd(2,Z) corresponds to the isomorphismoffinite groupsintheright handsideofthebijection. 2

Any element inSd is isomorphic to thegroup dZ

2Z ×d1Zd2Z forsome d1,d2 Nwith d=d22d1.Intherighthandsideof(19)thecorresponding elementisrepresentedbythe matrix

d1d2 0 0 d2

. Inthe geometric context, this means thatany isogenyof elliptic curves E1→E2 over analgebraicallyclosed fieldcanbe decomposedinto E1 α

→E1

β

E2, whereαisthemultiplicationbyd2 andβ isadegreed1 isogenywithcyclic center.

Note that

σ1(d) =

d=d22d1

ψ(d1).

We concludethatwehaveanaturaldecompositionofboth geometricand holomorphic Hecke operators:

Tdt=

d=d22d1

d−m−22 ·Td01t, t∈Mmn (20)

where inthegeometric context

Td0:Mmn →Mmn, Td0(t)(E, ω) = 1 d

f:E1→E,deg(f)=d,ker(f) is cyclic

t(E1, fω),

(14)

andintheholomorphiccontext

Td0:Mmn →Mmn, Td0f =

A(SL(2,Z)\Matd(2,Z))0

f||mA.

Here,(SL(2,Z)\Matd(2,Z))0 isthefiberofthemap

SL(2,Z)\Matd(2,Z)SL(2,Z)\Matd(2,Z)/SL(2,Z) overthematrix

d 0 0 1

.Thefactord−m2 in(20)comesfromthefunctionalequationof t with respect to theaction of Gm and thesecond part ofProposition 2. Note thatin the geometric context using the Galois action Gal(¯k/k), we cansee that Td0 is defined overthefieldkandnotitsalgebraicclosure.WecallTd0therefinedHeckeoperator.The refinedHeckeoperatorTd0 willbeusedinthenextsections.Notethatifdissquarefree thenTd0=Td.

8. ProofofTheorem 1

Foraholomorphicquasi-modular formofweightmweassociatethepolynomial

Pf0(x) :=

A∈(SL(2,Z)\Matd(2,Z))0

(x−d·f||mA) =

ψ(d)

j=0

Pf,j0 xj.

Proposition6.Pf,j0 is afullquasi-modular formof weight (ψ(d)−j)·m.

Proof. ThecoefficientPf,j0 ofxj isahomogeneouspolynomialwithrationalcoefficients andofdegreeψ(d)−j in

Td0(fk), k= 1,2, . . . , ψ(d)−j, weight(Td0(fk)) =k,

whereTd0:M →M istherefinedd-thHeckeoperatordefinedinSection7.Here,wehave used(15).Forinstance,thecoefficientofxψ(d)−1is−d·Td0fandthecoefficientofxψ(d)−2 is d22(Td0f)2d2Td0f2. Now theassertionfollows from the factthattheHecke operator Td0sends aquasi-modular formofweightmtoaquasi-modularform ofweightm. 2

Using the fact that the algebra of quasi-modular forms over Q is isomorphic to Q[E2,E4,E6] we concludethatPf0(x) isahomogeneous polynomialof degreeψ(d)·m inthering

Q[x, E2, E4, E6], weight(E2k) =k, k= 1,2,3, weight(x) =m.

(15)

Thegeometric definitionofthepolynomialPf0(x) is:

Pf0(x)(E, ω) =

(x−f(E1, gω)), (21) where theproductistakenoveralldegreedisogeniesg:E1→Ewith cyclickernel.

ProofofTheorem1. Letusregardsi’sasholomorphicfunctionsontheupperhalfplane and ti’sas variables.Wedefine

Id,i:=Ps0i(ti), i= 1,2,3.

For i = 1,2,3, Td0ski is a homogeneous polynomial of degree ki in Q[s1,s2,s3], weight(si)=i,andhence,fromProposition 6itfollowsthatId,i(ti,s1,s2,s3) isahomo- geneouspolynomialofdegreei·ψ(d) intheweightedring(3). Wehave

si||2i

d 0 0 1

=d2i−1si(dτ)

and so Id,i(d2i·si(d·τ),s1(τ),s2(τ),s3(τ)) = 0. By definition Id,i is monic in ti for i= 1,2,3.Finally,notethatfori= 2,3,Td0ski isahomogeneouspolynomialofdegreeki inQ[s2,s3],weight(si)=i,andso,Id,i(ti,s1,s2,s3) doesnotdependons1. 2

9. ProofofTheorem 2

Sincetheperiodmappmisabiholomorphism,itisenoughtoprovethesamestatement forthepush-forwardofRandVd undertheproduct oftwoperiodmaps:

pm×pm:T×TSL(2,Z)\P ×SL(2,Z)\P.

Firstwedescribethepush-forwardofVd.UsingTheorem 4andthecomparisonofHecke operators inboth algebraicandcomplexcontext,wehave:

Vd ={((E1, ω1),(E2, ω2))T×T | ∃f :E1→E2, fω2=ω1, ker(f) is cyclic of orderd}.

Let us now consider the elliptic curves Ei,i = 1,2 as complexcurves. For ad-isogeny f :E1→E2suchthatker(f) iscyclic,wecantakeasymplecticbasisδ1,γ1ofH1(E1,Z) and δ2,γ2 ofH1(E2,Z) suchthat

fδ1=d·δ2, fγ1=γ2.

Therefore, if the period matrix associated to (Ei,{αii},{δiγi}), i = 1,2 is denoted respectivelybyxandy then

(16)

x=πd(y) :=

y1 dy2

d−1y3 y4

.

Therefore, the push-forward of Vd under pm×pm and then its pull-back to P × P is givenby:

Vd={d(y), y)|y∈ P}.

Thepush-forwardofthevector fieldRd bypm×pmandthen itspull-backinP × P is givenbythevectorfield

R=d(y2

∂y1

+y4

∂y3

)(x2

∂x1

+x4

∂x3

)

where wehaveusedthe coordinates(x,y) forP × P.Now, itcanbe easilyshownthat theabovevectorfieldR istangenttoVd.

Remark1.ThelocusVd containstheonedimensionallocus:

H˜ :={

τ −d d−1 0

,

τ 1

1 0

H}. (22) Notealsothatthepush-forwardoftheRamanujanvectorfieldRistangenttotheimage ofH→ P and restrictedto this locusit is ∂τ . Therefore, R istangentto the locusH˜ andrestrictedtothere isagain ∂τ .

10. ProofofTheorem 3

FromTheorem 1itfollowsthatId,1isalinearcombinationofthemonomials(4)and Id,i, i = 2,3 is alinear combination of thesame monomials with a1 = 0.The proof is aslightmodification ofan argumentinholomorphic foliations,see [10]. Weprove that Jd,i’srestricted toVd are identicallyzero.Weknow thatId,i is alinearcombination of αj’swithC(infactQ)coefficients:

Id,i= cjαj.

SinceRdistangenttothevarietyVd,weconcludethatRrd(

cjαj)=

cjRrdαjrestricted toVd iszero.ThisinturnimpliesthatthematrixusedinthedefinitionofJd,irestricted toVd hasnon-zerokernelandsoitsdeterminantrestrictedtoVd iszero.

11. Examplesandfinal remarks

In order to calculate Id,i’s using Theorem 3 we can proceed as follows: We use the Gröbner basis algorithm and find the irreducible components of the affine vari- ety given by the ideal Jd,1,Jd,2,Jd,3 and among them identify the variety Vd. In

(17)

practice this algorithm fails even for the simplest case d = 2. In this case we have deg(J2,1)= 42,deg(J2,2)= 40,deg(J2,3)= 69 andcalculatingtheGröbnerbasisof the ideal Jd,1,Jd,2,Jd,3 isahugeamountof computations.Weusetheq-expansionofti’s and wecalculateId,i,i= 1,2,3,d= 2,3.Wehavewrittenpowersof ti inthefirst row andthecorrespondingcoefficientsinthesecondrow.Formoreexamplesseetheauthor’s web-page.1

I2,1:

t31 t21 t1 1

1 6s1 12s213s2 8s31+ 6s1s22s3

I2,2:

t32 t22 t2 1 1 18s2 33s22 484s32500s23

I2,3:

t33 t23 t3 1

1 66s3 1323s32+ 1452s23 10 584s32s310 648s33

I3,1:

t41 t31 t21 t1 1

1 12s1 54s2124s2 108s31+ 144s1s264s3 81s41216s21s248s22+ 192s1s3

I3,2:

t42 t32 t22 t2 1

1 84s2 246s22 63 756s3264 000s23 576 081s42576 000s2s23

I3,3:

t43 t33 t23 t3 1

1 −732s3 −169 344s32+ 171 534s23 11 007 360s32s311 009 548s33 −502 020 288s62+ 939 266 496s32s23437 245 479s43

ThepolynomialsId,i,i= 2,3 haveintegralcoefficients.Thisfollowsfromtheformula(21) andthefactthatgeometricmodularformscanbedefinedoverafieldofcharacteristicp.

Our computations show thatId,1 has also integralcoefficients. However, the notionof a geometric quasi-modular form is only elaborated over a field of characteristic zero (see [9]). The proof of such a statement for Id,1 would need a reformulation of the definitionofgeometric quasi-modularforms.

One of the fascinating applications of modular curves X0(d) is formulated in the Shimura–Taniyama conjecture, nowthe modularity theorem.Itstates thatany elliptic curveoverQmustappearinthedecompositionoftheJacobianofX0(d),wheredisthe conductoroftheellipticcurve(see[12]forthecaseofsemi-stableellipticcurvesand[2]

forthecaseofallellipticcurves).Itwouldbeinterestingtoknowwhetherthedifferential equationapproachofthepresentarticletomodularcurveshassomeimplicationsinthis direction.

References

[1]TomM.Apostol,ModularFunctionsandDirichletSeriesinNumberTheory,secondedition,Grad.

TextsinMath.,vol. 41,Springer-Verlag,NewYork,1990.

1 http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2014-08- QuasiModularFormsHeckeOperators.txt.

Références

Documents relatifs

Following [2], we have three remarkable formal series E, g, h ∈ A[[u]] algebraically independent over K(u), representing respectively: the u-expansion of a Drinfeld quasi-modular

Determine differential properties of Drinfeld quasi-modular forms of given weight and depth with maximal order of vanishing at infinity (these forms will be called extremal)..

Abstract We describe algorithms to compute elliptic functions and their rela- tives (Jacobi theta functions, modular forms, elliptic integrals, and the arithmetic- geometric

The development of the theory of modular forms as holomorphic func- tions in the Poincaré upper half plane has shown that many of problems related to modular forms can be proved if

We now show how one may use results like Theorem 2 to establish the existence of infinitely many rank 0 quadratic twists of certain curves by fundamental

Note that in general, non-isomorphic algebraic varieties may give isomorphic complex manifolds, and some complex manifold may fail to have an algebraic structure.. The situation

On the space of Drinfeld modular forms of fixed weight and type, we have the linear form b n : f 7→ b n (f ) and an action of a Hecke algebra.. In the present work, we investigate

This ring contains Drinfeld modular forms as defined by Gekeler in [6], and the hyperdifferential ring obtained should be considered as a close analogue in positive characteristic