• Aucun résultat trouvé

Ion channels and properties of large neuronal networks: a computational study of re.nal waves during development

N/A
N/A
Protected

Academic year: 2021

Partager "Ion channels and properties of large neuronal networks: a computational study of re.nal waves during development"

Copied!
45
0
0

Texte intégral

(1)

HAL Id: hal-01925829

https://hal.archives-ouvertes.fr/hal-01925829

Submitted on 17 Nov 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ion channels and properties of large neuronal networks: a computational study of re.nal waves during

development

Bruno Cessac, D Karvouniari, Lionel Gil, Olivier Marre, Serge Picaud

To cite this version:

Bruno Cessac, D Karvouniari, Lionel Gil, Olivier Marre, Serge Picaud. Ion channels and properties of large neuronal networks: a computational study of re.nal waves during development. Symposium on Ion channels and Channelopathies - IPMC, Nov 2018, Sophia Antipolis, France. �hal-01925829�

(2)

Ion channels and proper.es of large

neuronal networks: a computa.onal study

of re.nal waves during development.

D. Karvouniari, Biovision team, INRIA and LJAD, UCA

L. Gil, INLN, Sophia Antipolis

O. Marre, Institut de la Vision, Paris

S. Picaud, Institut de la Vision, Paris

B. Cessac, Biovision team, INRIA, Sophia Antipolis

(3)

Ion channels and proper.es of large

neuronal networks: a computa.onal study

of re.nal waves during development.

D. Karvouniari, Biovision team, INRIA and LJAD, UCA

L. Gil, INLN, Sophia Antipolis

O. Marre, Institut de la Vision, Paris

S. Picaud, Institut de la Vision, Paris

B. Cessac, Biovision team, INRIA, Sophia Antipolis

(4)

3

The structure of the adult retina

Light

photoreceptors

ganglion cellsbipolar cells

amacrine cells horizontal cells

(5)

4

The structure of the retina during

development

Light

X

Retina’s layered structure is shaped during development

(6)

5

Retinal waves

Recordings from the retina

Multi-electrode array

(MEA)

(Maccione et al. 2014) ΜΕΑ recording of the voltage from a P11 mouse retina in the presence of 10 μM bicuculline.

Spontaneous spatio-temporal waves during development

Disappear short after birth when vision is

(7)

6

Stages of Retinal Waves During

Development

Stage I Stage II Stage III •  Formation of retina circuitry •  Chemical synapses not formed yet •  Gap juction-mediated •  Retinotopic mapping •  Nicotinic Acetylcholine Receptors (nAChR) •  Disappear when vision is functional •  Glutamate – AMPA receptors

(8)

7

Stages of Retinal Waves During

Development

Stage I Stage II Stage III •  Formation of retina circuitry •  Chemical synapses not formed yet •  Gap juction-mediated •  Retinotopic mapping •  Nicotinic Acetylcholine Receptors (nAChR) •  Disappear when vision is functional •  Glutamate – AMPA receptors

(9)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

(10)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development

(11)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development iii) Pharmacology

P4

P8

Time (sec) 50 0

(12)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

P4

P8

Time (sec) 50 0

iv) Spatial Variability

Zheng et al. 2004

ii) Development

(13)

12 12

Experiments for the emergence of retinal waves

Experiment for isolated neurons, Zheng et al., 2006, Nature

Retinal waves require three components:

i)  Spontaneous bursting activity

(14)

13 13 Experiment for isolated neurons, Zheng et al., 2006, Nature

Retinal waves require three components:

i)  Spontaneous bursting activity

ii)  Refractory mechanism (

slow After HyperPolarisation- sAHP

)

(15)

14 14 Experiment for coupled and isolated neurons, Zheng et al., 2006, Nature

Retinal waves require three components:

i)  Spontaneous bursting activity

ii)  Refractory mechanism (

slow After HyperPolarisation- sAHP

)

iii) Coupling (through Acetylcholine neurotransmitter)

Coupled neurons

synchronize Coupled neurons synchronize

(16)

15 15 Experiment for coupled and isolated neurons, Zheng et al., 2006, Nature

Retinal waves require three components:

i)  Spontaneous bursting activity

ii)  Refractory mechanism (

slow After HyperPolarisation- sAHP

)

iii) Coupling (through Acetylcholine neurotransmitter)

Coupled neurons

synchronize Isolated Neurons burst independently Coupled neurons synchronize

(17)

Why study retinal waves?

16

Strategy:

To propose a model (i) suf1iciently close from biophysics to explain and propose experiments and (ii) suf1iciently well posed mathematically to analyse its dynamics upon varying biophysical parameters (development - pharmacology). •  Modelling one cell bursting •  Modeling cells coupling •  Modelling waves generation, propagation and termination.

(18)

Why study retinal waves?

17

Strategy:

To propose a model (i) suf1iciently close from biophysics to explain and propose experiments and (ii) suf1iciently well posed mathematically to analyse its dynamics upon varying biophysical parameters (development - pharmacology). •  Modelling one cell bursting •  Modeling cells coupling •  Modelling waves generation, propagation and termination.

Mul.scale modelling

From ionic channel to neuron to re.na scale

Non linear dynamics, dynamical systems theory,

sta.s.cal physics.

(19)

Main assumption

There are a few physiological parameters controlling

re.nal waves dynamics, evolu.on and variability.

Find these parameters from a

mathema.cal analysis

Bifurca.on theory

(20)

19

(21)

20

Membrane potential dynamics

Cm ∂V ∂t = −gL M L

(

V −VL

)

− gCa

( )

V

(

V −VCa

)

− gKN V −V

(

K

)

A network model for stage II retinal waves

Morris-Lecar & Fast K+ channels

(22)

21 Cm ∂Vi ∂t = −gL M L

(

Vi −VL

)

− gCa

( )

Vi

(

Vi −VCa

)

− gKNi

(

Vi −VK

)

− gsAHPRi 4 Vi −VK

(

)

gj,Ach

( )

Aj j

(

Vi −VAch

)

sAHP current Refractory mechanism

A network model for stage II retinal waves

Morris-Lecar & Fast K+ channels

Membrane potential dynamics

(23)

Set of equations for sAHP current

R

R

R

R

Activated

Ca-gated K+ channel

Ca

4 Calcium ions bound to each saturated Calmodulin complex S

Saturated Calmodulin molecule (CaM) bind to each channel subunit

All 4 subunits R of the channel are bound to activate the channel

Gating mechanism

CaM

Ca CaCa CaCa CaCa CaCa CaCa CaCa CaCa

CaM CaM CaM

S

C

(24)

23

SACs Network

SACs realistic connections SACs on a lattice SACs become points on a lattice

Model synaptic interactions

(25)

24 Cm ∂Vi ∂t = −gL M L

(

Vi −VL

)

− gCa

( )

Vi

(

Vi −VCa

)

− gKNi

(

Vi −VK

)

− gsAHPRi 4 Vi −VK

(

)

gj,Ach

( )

Aj j

(

Vi −VAch

)

sAHP current Refractory mechanism Ach current Network effect

A network model for stage II retinal waves

Morris-Lecar & Fast K+ channels

Membrane potential dynamics

(26)

-80 -60 -40 -20 0 20 -14 -12 -10 -8 -6 -4 -2 ISN1 IHc V (mV) Iext (pA)

(27)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

(28)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

Interburst intervals

(29)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

Interburst intervals

(30)

Variability within retinal waves

iii) Pharmacology

P4

P8

Time (sec) 50 0

(31)
(32)

Predict the role of Kv3 channels in the loss

of SACs excitability

A

B

(33)
(34)

X Time (min) Coupled neurons synchronize Coupled neurons synchronize Isolated neurons burst independently

Cellular mechanisms of stage II retinal waves

Zheng et al. 2006 C. Synchrony through Acetylcholine

Mutual excitatory

connections between SACs through Acetylcholine

(35)

3 4

Waves speed

• 

gA

c •  Waves speed Propaga8on threshold

(36)

Variability within retinal waves

Zheng et al. 2004

ii) Development

iv) Spatial Variability

Zheng et al. 2004

(37)

Isolated Neurons gach=0.126 nS

gach=0.168 nS gach=0.21 nS

36

Network of SACs : Simulated Voltage

(38)

37

Network of SACs : Simulated Calcium Concentra.on

gach=0.168 nS gach=0.21 nS gach=0.126 nS gach=0.102 nS

(39)

38

Network of SACs : Simulated Calcium Concentra.on

gach=0.168 nS gach=0.21 nS gach=0.126 nS gach=0.102 nS

(40)

Waves size distribution lin-log log-log A B C E

(41)

N-neuron model

• 

There is a compe88on between 2 mechanisms:

– 

Period variability

which tends

to desynchronise

– 

Acetylcholine

which tends

to synchronise

• 

There is an intermediate regime of coupling, where

variability is maximum

• 

Therefore there is a wide repertoire of paQerns

– 

Weak coupling leads to small localised ac8vity

– 

Moderate coupling leads to propaga8ng pa?erns

– 

Strong coupling leads to complete synchrony of neurons

40

(42)

Model Experiment

Experimentally varying Ach conductance

(Data D. Karvouniari + Ins8tut de la Vision)

(43)

Model Experiment

Experimentally varying Ach conductance

(Data D. Karvouniari + Ins8tut de la Vision)

(44)

Variability within retinal waves

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007 Zheng et al. 2004 ii) Development

i)  Across species

0! 150! 300! 450! 600! Speed (μm/s)! 0! 37,5!75! 112,5!150! 187,5! Period (s)! Rabbit Mo u s e Chick T u rtl e Godfrey et al. 2007

P4

P8

Time (sec) 50 0

iv) Spatial Variability

Zheng et al. 2004

ii) Development

(45)

Conclusion

• 

Biophysical model of stage II re8nal waves relevant at:

• 

The cells scale (burs.ng, experimental match and predic.ons)

• 

The network scale (waves propaga.on)

• 

The developmental level (evolu.on of ionic channels and synapses).

• 

Theore8cal descrip8on via bifurca8on theory

• 

Burs.ng

• 

Interburst variability

• 

Waves paQerns

• 

Next step: reac8va8ng waves in adults.

Références

Documents relatifs

The two extended kinematic models introduced in the previous section propose a relevant alternative to complete dynamic ones, since they can accurately describe actual mo- bile

Karl Birnbaum (see Lewis, 1972), in his Aufbau der Psychose [1923], suggested that psychogenic illnesses are disorders of functions whose specific character may be attributed to

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The matching the product wave frequency had to be beam density depended on the beam current and voltage identified and in a separate experiment under the same and could be

Design Prospective cohort study with risk factors (health behaviours (smoking, alcohol consumption, diet, and physical activity), body mass index, and biological risk markers

All of these mechanisms result in signi ficant fault weakening during seismic slip (Di Toro et al., 2011), through a process that is largely controlled by temperature evolution on

Dans un monde idéal et compte tenu du contexte du domaine de la santé (c.-à-d. pénurie de ressources, priori- té accordée aux soins directs aux patients, évolution ra- pide

0 (zéro). Remarque: Un classeur contenant un ou plusieurs tableaux Excel ne peut pas avoir le paramètre Autoriser les modifications par plusieurs utilisateurs .... Chapitre 14: