• Aucun résultat trouvé

Finite element approximation of Maxwell's equations with unfitted meshes for borehole simulations

N/A
N/A
Protected

Academic year: 2021

Partager "Finite element approximation of Maxwell's equations with unfitted meshes for borehole simulations"

Copied!
53
0
0

Texte intégral

(1)

HAL Id: hal-02321135

https://hal.inria.fr/hal-02321135

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Finite element approximation of Maxwell’s equations

with unfitted meshes for borehole simulations

Théophile Chaumont-Frelet, Serge Nicaise, David Pardo

To cite this version:

Théophile Chaumont-Frelet, Serge Nicaise, David Pardo. Finite element approximation of Maxwell’s

equations with unfitted meshes for borehole simulations. ICIAM 2019 - International Congress on

Industrial and Applied Mathematics, Jul 2019, Valencia, Spain. �hal-02321135�

(2)

Finite element approximation of Maxwell’s equations with

unfitted meshes for borehole simulations

T. Chaumont-Frelet1 S. Nicaise2 D. Pardo3

1Inria project-team Nachos

2Univ. Valenciennes, LAMAV

3UPV/EHU, BCAM and Ikerbasque

ICIAM - July 17, 2019

Novel computational methods for electromagnetic problems in complex nonlinear materials

(3)

Finite element approximation of Maxwell’s equations with

unfitted meshes for borehole simulations

T. Chaumont-Frelet1 S. Nicaise2 D. Pardo3

1Inria project-team Nachos

2Univ. Valenciennes, LAMAV

3UPV/EHU, BCAM and Ikerbasque

ICIAM - July 17, 2019

Novel computational methods for electromagnetic problems in complex

(4)

Finite element approximation of Maxwell’s equations with

unfitted meshes for borehole simulations

T. Chaumont-Frelet1 S. Nicaise2 D. Pardo3

1Inria project-team Nachos

2Univ. Valenciennes, LAMAV

3UPV/EHU, BCAM and Ikerbasque

ICIAM - July 17, 2019

Novel computational methods for electromagnetic problems in

(5)

Finite element approximation of Maxwell’s equations with

unfitted meshes for borehole simulations

T. Chaumont-Frelet1 S. Nicaise2 D. Pardo3

1Inria project-team Nachos

2Univ. Valenciennes, LAMAV

3UPV/EHU, BCAM and Ikerbasque

ICIAM - July 17, 2019

Novel computational methods for electromagnetic problems

in

(6)

Geosteering

Guide the drilling trajectory using “real-time” magnetic measurements

(7)

Geosteering

Reproduce the measurements using finite element discretizations

(8)

Non-fitting meshes (aka unfitted meshes)

Finite element discretizations are build on a mesh of the domain.

A mesh is fitting if the physical interfaces are aligned with faces. The physical coefficients are constant (or smooth) inside each element.

A non-fitting mesh is generated independently of the physical coefficients.

(9)

Fitting mesh vs non-fitting mesh

Fitting mesh

Fitting mesh

Non-fitting mesh

Non-fitting mesh

4/41

(10)

Non-fitting mesh for geosteering

(a) Sliding mesh (b) Zoom around the logging tool

(c) Conductivity model and well trajectory

(d) Position 1 (e) Position 2 (f) Position 3

(11)

Pros and cons of non-fitting meshes

Main advantages of non-fitting meshes:

simplified mesh generation (Cartesian grids) minimize remeshing

larger elements

Possible drawbacks of non-fitting meshes:

quadrature schemes to integrate the linear system coefficients possible accuracy loss

(12)

Pros and cons of non-fitting meshes

Main advantages of non-fitting meshes:

simplified mesh generation (Cartesian grids) minimize remeshing

larger elements

Possible drawbacks of non-fitting meshes:

quadrature schemes to integrate the linear system coefficients possible accuracy loss

(13)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(14)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(15)

Maxwell’s equations

FindE,H: Ω → C3 such that  ∇ ×E − i ωµ0H = M, ∇ ×H + σE = J, where

M, J are given load terms (electric and/or magnetic dipoles), ω is the operating frequency,

µ0= 4π × 10−7 NA−2 is the vacuum permeability, σ : Ω → R is the conductivity model.

The medium is strongly dissipative (i ω + σ ' σ). The conductivity σ is piecewise constant.

The permeability µ0is constant.

We are mostly interested in magnetic measurements.

(16)

Regularity of the solution

In the following, we focus on the case where: Ω is convex,

the medium is layered (σ ' σ(z)).

Magnetic field regularity

H ∈H1(Ω) 3

Electric field regularity

E|Ωl ∈  H1(Ωl) 3 E ∈H1/2−ε(Ω)3 8/41

(17)

Approximation by polynomials (quick analysis)

Approximation of H

kH− πhHk0,Ω' h

Approximation of E with fitting meshes

kE− πhEk0,Ω' h

Approximation of E with non-fitting meshes

kE− πhEk0,Ω' h1/2−ε

(18)

The key question

Standard approximation theory (C´ea’s Lemma) yields:

Fitting meshes

kE−Ehk0,Ω+ kH−Hhk0,Ω' h

Non-fitting meshes

kE−Ehk0,Ω+ kH−Hhk0,Ω' h1/2

Given thatH is globally regular, is the convergence rate ofHhsharp?

(19)

Remark on the general case

In general, the regularity ofE depends on σ

Regularity of E E ∈Hτ (σ)(Ω)3 where 0 < τ (σ) < 1/2. Interpolation errors kH− πhHk0,Ω' h kE− πhEk0,Ω' hτ (σ) Interpolation errors kE− πhEk0,Ω+ kH− πhHk0,Ω' hτ (σ) 11/41

(20)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(21)

The magnetic formulation

We recast Maxwell’s equation into a second-order system:  −i ωµ0H+ ∇ × σ−1∇ ×H  = M in Ω, σ−1∇ ×H × n = 0 on ∂Ω. We obtainE' ∇ ×H by post-processing. Variational formulation

FindH∈ H(curl, Ω) such that

b(H, v ) = (M, v ) for all v ∈ H(curl, Ω).

b(H, v ) = −i ωµ0(H, v ) + (σ −1

∇ ×H, ∇ × v )

(22)

Finite element discretization

We consider first-order N´ed´elec elements on a mesh Th= {K }: Vh=

n

vh∈ H(curl, Ω) | vh|K= a × x + b, a, b ∈ C3 o

.

Discrete variational formulation

FindHh∈ Vh such that

b(Hh, vh) = (M, vh) for all vh∈ Vh.

(23)

Error estimates

Assuming that M ∈ H(div, Ω):

Regularity

H ∈H1(Ω)3 ∇ ×H∈H1/2−ε(Ω)3

Interpolation error

kH− πhHk0,Ω. hkMkdiv,Ω k∇ × (H− πhH)k0,Ω. h1/2−εkMk0,Ω

Error estimate (C´ea’s Lemma)

kH−Hhk0,Ω+ k∇ × (H−Hh)k0,Ω. h1/2−εkMkdiv,Ω

(24)

Error estimates

We have Interpolation error kH− πhHk0,Ω. hkMkdiv,Ω but only Error estimate kH−Hhk0,Ω. h1/2−εkMkdiv,Ω

Can we improve this error estimate? Yes!

(25)

The Poisson equation

Consider the simpler problem 

u− ∆u = f in Ω, ∇u· n = 0 on ∂Ω, where f ∈ L2(Ω).

Using Lagrange elements, we are in the similar situation where:

Interpolation error

ku− πhuk0,Ω. h2kf k0,Ω

Error estimate (C´ea’s lemma)

ku−uhk0,Ω. hkf k0,Ω

(26)

Duality technique: the “Aubin-Nitsche trick”

Introduceξas the unique solution to

a(w ,ξ) = (w ,u−uh), ∀w ∈ H1(Ω). Then, selecting w =u−uh

ku−uhk20,Ω= a(u−uh,ξ) = a(u−uh,ξ− πhξ) . ku−uhk1,Ωkξ− πhξk1,Ω. We observe thatξis solution to

 ξ− ∆ξ = u−uh in Ω, ∇ξ· n = 0 on ∂Ω, andξ∈ H2 (Ω) with |ξ|2,Ω. ku−uhk0,Ω sinceu−uh∈ L2(Ω). 17/41

(27)

Duality technique: the “Aubin-Nitsche trick”

Hence, ku−uhk20,Ω . ku−uhk1,Ωkξ− πhξk1,Ω . hku−uhk1,Ω|ξ|2,Ω . hku−uhk1,Ωku−uhk0,Ω. Error estimate ku−uhk0,Ω. hku−uhk1,Ω. h2kf k0,Ω. 18/41

(28)

Application to Maxwell’s equations

Direct application fails. Indeed, if we letξsolve

b(w ,ξ) = (w ,H−Hh), ∀w ∈ H(curl, Ω), thenξ∈ H/ 1

(Ω)3

becauseH−Hh∈ H(div, Ω)./

The key idea is to introduce the Helmhotlz-Hodge decomposition

H−Hh= φ + ∇p. with ∇ · φ = 0.

We employ the “Aubin-Nitsche trick” to estimate kφk0,Ω.

Additional “orthogonality” arguments are used to estimate k∇pk0,Ω.

(29)

Details of the proof

T. Chaumont-Frelet, S. Nicaise and D. Pardo SIAM J. Numerical Analysis 2018

For regular solution τ (σ) > 1/2:

L. Zhong, S. Shu, G. Wittum and J. Xu J. Computational Mathematics 2009

General case (done in the same time): A. Ern and J.L. Guermond

Computer & Mathematics with Applications 2018

(30)

Error estimate

Error estimate

kH−Hhk0,Ω. h1−2εkMkdiv,Ω

We can remove the “−2ε” if we employ “non-Sobolev” interpolation spaces.

The convergence rate is linear, as in the case of fitting meshes.

(31)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(32)

The electric formulation

Another option is to consider the second-order system: 

−i ωµ0σE+ ∇ × ∇ ×E = J in Ω,

E× n = 0 on ∂Ω,

and post-processH' ∇ ×E.

Variational formulation

FindE∈ H0(curl, Ω) such that

b(E, v ) = (J, v ) for all v ∈ H0(curl, Ω).

b(E, v ) = −i ωµ0(σE, v ) + (∇ ×E, ∇ × v )

(33)

Finite element discretization

We consider first-order N´ed´elec elements on a mesh Th= {K }: Vh=

n

vh∈ H0(curl, Ω) | vh|K= a × x + b, a, b ∈ C3 o

.

Discrete variational formulation

FindEh∈ Vhsuch that

b(Eh, vh) = (J, vh) for all vh∈ Vh.

(34)

Error estimate

Assuming that J ∈ H(div, Ω)

Regularity

E ∈H1/2−ε(Ω)3 ∇ ×E ∈H1(Ω)3

Interpolation error

kE− πhEk0,Ω. h1/2−εkJkdiv,Ω k∇ × (E− πhE)k0,Ω. hkJk0,Ω

Error estimate (C´ea’s Lemma)

kE−Ehk0,Ω+ k∇ × (E−Eh)k0,Ω. h1/2−εkJkdiv,Ω

(35)

Error estimate

We have Interpolation error k∇ × (E− πhE) k0,Ω. hkJkdiv,Ω but only Error estimate k∇ × (E−Eh) k0,Ω. h1/2−εkJkdiv,Ω

Can we improve this error estimate? Yes!

(36)

A modified “Aubin-Nitsche trick” (Step 1)

Letφ∈ H0(curl, Ω) solve

b(w ,φ) = (∇ × w , ∇ × (E−Eh)), ∀w ∈ H0(curl, Ω), so that

k∇ × (E−Eh)k20,Ω= b(E−Eh,φ) = b(E−Eh,φ− πhφ).

Intermediate error estimate

k∇ × (E−Eh)k20,Ω. h 1/2−ε

(kφ− πhφk0,Ω+ k∇ × (φh− πhφ)k0,Ω) kJkdiv,Ω.

It remains to estimate the interpolation errors in the right-hand side.

(37)

A modified “Aubin-Nitsche trick” (Step 2)

Sinceφ∈ H0(curl, Ω) is solution to

b(w ,φ) = (∇ × w , ∇ × (E−Eh)), ∀w ∈ H0(curl, Ω), we can show thatφ∈H1/2−ε(Ω)

3 with

|φ|1/2−ε,Ω. k∇ × (E−Eh)k0,Ω.

First interpolation error estimate

kφ− πhφk0,Ω. h1/2−εk∇ × (E−Eh)k0,Ω

(38)

A modified “Aubin-Nitsche trick” (Step 3)

We have

k∇ ×φk0,Ω. k∇ × (E−Eh)k0,Ω, but we cannot extend this result to

|∇ ×φ|s,Ω for s > 0, because ∇ × (E−Eh) /∈ H(curl, Ω). We cannot estimate

k∇ × (φ− πhφ)k0,Ω directly.

(39)

A modified “Aubin-Nitsche trick” (Step 3)

We introduceψ=φ− (E−Eh). We see that b(v ,ψ) = b(v ,φ) − b(v ,E−Eh)

= (∇ × v , ∇ × (E−Eh)) − b(v ,E−Eh) = −i ωµ0(v , σ(E−Eh)).

We can show that ∇ ×ψ∈ (H1(Ω))3with

|∇ ×ψ|1,Ω. kE−Ehk0,Ω.

Intermediate interpolation result

k∇ × (ψ− πhψ)k0,Ω. hkE−Ehk0,Ω. h3/2−εkJkdiv,Ω.

(40)

A modified “Aubin-Nitsche trick” (Step 3)

We haveφ=E−Eh+ψ, thus φ− πhφ=E− πhE− (Eh− πhEh) | {z } =0 +ψ− πhψ, and k∇ × (φ− πhφ)k0,Ω. k∇ × (E− πhE)k0,Ω+ k∇ × (ψ− πhψ)k0,Ω.

Second interpolation error estimate

k∇ × (φ− πhφ)k0,Ω. 

h + h3/2−εkJkdiv,Ω.

(41)

A modified “Aubin-Nitsche trick” (Step 4)

We regroup the intermediate results: k∇ × (E−Eh)k0,Ω. h1/2−ε



h1/2−ε+ h + h3/2−εkJkdiv,Ω.

Error estimate

k∇ × (E−Eh)k0,Ω. h1−2εkJkdiv,Ω

We can remove the “−2ε” if we employ “non-Sobolev” interpolation spaces. The convergence rate is linear, as in the case of fitting meshes.

Surprisingly ∇ ×Ehconverges faster thanEhin L2(Ω)-norm!

(42)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(43)

2.5D Maxwell’s equations

We assume that σ(x , y , z) = σ(x , z). ˆ Hξa(x , z) = Z +∞ y =−∞

Ha(x , y , z)e−i ξydy , Hˆ ξ = ( ˆHxξ, ˆH ξ y) 2.5D formulation Find ( ˆHξy, ˆH ξ ) ∈ H1( ˆΩ) × H(curl, ˆΩ) ( (i ωµ0+ ξ2σ−1) ˆH ξ + curlσ−1curl ˆHξ− i ξσ−1 Hξy = Mξ, i ωµ0Hξy− ∇ · σ −1 ∇Hξ y + iξ∇ · σ −1 Hξ = Mξ y. Ha(x , y , z) ' N X j =1 wjHˆa(x , z)ei ξjy 32/41

(44)

Logging tool

dRX

dTX

Transmitter 1 Receiver 1 Receiver 2 Transmitter 2

Logging tool (dTX= 0.6 m, dRX= 0.1 m) Plog= 1 2Im  logH 11 zz H12 zz + logH 22 zz H21 zz  Alog= 1 2Re  logH 11 zz H12 zz + logH 22 zz H21 zz  33/41

(45)

Benchmark

θ

θ

Fitting (left) and non-fitting (right) meshes

(46)

Two layers: Apparent resistivity (P-log)

−3 −2 −1 0 1 2 3 100 101 Resistivity Fitting Non-fitting Position (m) Resistivit y (Ωm) 35/41

(47)

Two layers: Apparent resistivity (A-log)

−3 −2 −1 0 1 2 3 100 101 Resistivity Fitting Non-fitting Position (m) Resistivit y (Ωm) 36/41

(48)

Thin layer: Apparent resistivity (P-log)

−3 −2 −1 0 1 2 3 100 101 Resistivity Fitting Non-fitting Position (m) Resistivit y (Ωm) 37/41

(49)

Thin layer: Apparent resistivity (A-log)

−3 −2 −1 0 1 2 3 100 101 Resistivity Fitting Non-fitting Position (m) Resistivit y (Ωm) 38/41

(50)

Outline

1

Maxwell’s equations

2

The magnetic formulation

3

The electric formulation

4

Numerical results

(51)

Main abstract results

Assume that µ = µ0is constant.

Assume that σ represents a layered media. Assume that J and M are sufficiently smooth.

Assume that the linear system coefficients are exactly integrated.

Error estimates for fitting meshes

kE−EhkL2(Ω)= O(h) kH−HhkL2(Ω)= O(h)

Error estimates for non-fitting meshes

kE−EhkL2(Ω)= O(h1/2) kH−HhkL2(Ω)= O(h)

(52)

Main abstract results

The use of non-fitting meshes deteriorates the convergence rate ofEh. The convergence rate ofHhis preserved.

T. Chaumont-Frelet, S. Nicaise and D. Pardo SIAM J. Numerical Analysis 2018

Non-fitting meshes can simulate tools based on magnetic field measurements.

(53)

Main numerical results

We have tested different quadrature schemes.

Non-fitting meshes provide accurate results with an appropriate scheme.

T. Chaumont-Frelet, D. Pardo and A. Rodr`ıguez-Roz`as Computational Geosciences 2018

Références

Documents relatifs

The numerical results obtained with the pro- posed FEM approximation are compared with those obtained considering the Laplace-Beltrami operator (i.e., its limit when &#34; goes

Stability and optimal convergence of unfitted extended finite element methods with Lagrange multipliers for the Stokes equations.. UCL workshop :Geometrically Unifitted Finite

désigne par fissures les vides à très faible coefficient de forme et d'épaisseur négligeable. Les pores sont situés à l'intersection de quatre grains et dispersés dans la

Dans le chapitre suivant nous allons présenter les résultats de classification des régions de vertèbres par SVM en utilisant la procédure de 5 - fold pour le réglage des différents

eigenvalue enclosures, Maxwell equation, spectral pollution, finite element

In this work, we extended the local projection stabilization for the Navier-Stokes discretization with equal- order bilinear finite elements to anisotropic quadrilateral meshes..

Convergence analysis of a hp-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary...

However, our new estimate shows that the magnetic field error decreases as O (h 1−δ ); that is, the convergence rate of the magnetic field approximation is al- most linear, even