• Aucun résultat trouvé

Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations Sferic Earth Ionosphere (~60 km – 80 km) 0 + Whistler Lightning

N/A
N/A
Protected

Academic year: 2021

Partager "Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations Sferic Earth Ionosphere (~60 km – 80 km) 0 + Whistler Lightning"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: insu-01387095

https://hal-insu.archives-ouvertes.fr/insu-01387095

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License

Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations Sferic Earth Ionosphere ( 60 km – 80 km) 0 + Whistler Lightning

Andrew J. Compston, Morris B. Cohen, Nikolai G. Lehtinen, Umran S. Inam, Ryan K. Said, Ivan R. Linscott, Michel Parrot

To cite this version:

Andrew J. Compston, Morris B. Cohen, Nikolai G. Lehtinen, Umran S. Inam, Ryan K. Said, et al.. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations Sferic Earth Ionosphere ( 60 km – 80 km) 0 + Whistler Lightning. American Geophysical Union, Fall Meeting 2014, Dec 2014, San Francisco, United States. pp.abstract #AE31B-3415. �insu-01387095�

(2)

AE31B-3415: Whistler Observations on DEMETER Compared with

Full Electromagnetic Wave Simulations

Sferic Earth Ionosphere (~60 km – 80 km) 0+ Whistler Lightning

Data: DEMETER and NLDN

 DEMETER: Satellite to study ionosphere and EM spectrum  Orbit: Sun-synchronous, circular, 660 km

 Instrument: Horizontal E and B at 40 kHz (below, right).  NLDN: Lightning detection network over USA

Introduction

Goal: Compare the field strengths of lightning-induced 0+

whistlers predicted by a numerical model of trans-ionospheric VLF wave propagation with measurements made by a satellite.

Satellite (665 km)

Energy injected into the magnetosphere by whistlers from

lightning plays an important role in Earth’s inner radiation belt, so accurate models are needed

Model: Full Wave Method

0 125 250 Number of Whistlers Night 0 5 10 15 0 5 10 15 0 5 10 15 0 400 800 1200 0 5 10 15 0 75 150 Day DEMETER 0 5 10 15 FWM 0 5 10 15 DEMETER 0 5 10 15 FWM 0 400 800 1200 0 5 10 15 E Field B Field Frequency (kHz) Median Amplitude (dB µ V/m/kA/Hz) −70 −50 −30 −10 Frequency (kHz)

Distance from Magnetic Field Footprint (km)

Median Amplitude (dBpT/kA/Hz) −100 −80 −60 −40 Night −1000 0

1000 Day Night Day DEMETER

−1000 0 1000 FWM −1000 0 1000 −1000 0 1000 −1000 0 1000 −1000 0 1000 −1000 0 1000

E−Field Energy (dBµV/m/kA/Hz) −20 0 20 40

B−Field Energy (dBpT/kA/Hz) −40 −20 0 20 FWM / DEMETER (dB) −15 −10 −5 0 5 10 15

Distance in km North (+) or South (−)

Distance in km East (+) or West (−)

Median Amplitude over

Horizontal Distance

Conclusions

Andrew J. Compston1 (drewc@stanford.edu), Morris B. Cohen2, Nikolai G. Lehtinen1, Umran S. Inan1,3, Ryan K. Said4, Ivan R. Linscott1, Michel Parrot5

1 VLF Group, Department of Electrical Engineering, Stanford University, USA

2 School of Electrical and Computer Engineering, Georgia Institute of Technology, USA 3 Koç University, Istanbul, Turkey

4 Vaisala, Inc., Boulder, Colorado, USA

5 LPC2E, Centre National de la Recherché Scientifique, Orléans, France

Frequency (kHz) 0 5 10 15 20 28 30 32 34 36 38 −60 −30 0 30

NLDN Peak Current (kA)

110° W 90° W 30° N 40° N 50° N DEMETER NLDN 0 60 120 180 269 dB µ V/m/ √ Hz −10 10 30 CG IC

Seconds after 27−Jul−2009 04:02:31 UTC (21:32:29 LST)

Ionosphere is split into

horizontally stratified layers

each with different (a function of electron density Ne, collision frequency νe, and Earth’s

magnetic field, which we get from the IRI and IGRF). The

lightning stroke is modeled as a point source Bruce and Golde

current moment.

We identified >20,000 whistlers in 14 night and 7 day passes.

3 6 9 12 0 330 660 Night Day log 10(Ne) (m −3 ) Height (km) −3 0 3 6 8 Night Day log 10(νe) (Hz)

We sorted the whistlers by the distance from their parent lightning stroke to the magnetic footprint of the DEMETER satellite and

grouped them into 10 km-spaced bins. Then, we took the median field amplitude at each frequency for all the bins. The results are to the right.

The streaks going up in frequency with

increasing distance are the same as the “V-shaped” streaks observed in DEMETER survey mode data after the satellite passed over a lightning storm. They are caused by a mapping of the Earth-ionosphere waveguide interference pattern to the satellite altitude. The simulation reproduces the streaks well.

To the left, we compare the total whistler energy between 2 kHz and 20 kHz. That is:

   d



where   is either the simulated or measured electric or magnetic field

normalized by the parent lightning peak

current. The lightning stroke source is placed at the origin.

The peak in whistler energy occurs slightly south of the lightning stroke, which is in the direction of Earth’s magnetic field in this

hemisphere. 0 0.08 0.16 Electric Field 0 0.08 0.16 Night Magnetic Field −30 −150 0 15 30 0.08 0.16 −30 −150 0 15 30 0.08 0.16 Day Frequency Range (kHz) 0 − 2 2 − 4 4 − 6 6 − 8 8 − 10 10 − 12 12 − 14 14 − 16 16 − 18 18 − 20 ∫ f 1 f 2 |X sim(f)| 2df / ∫ f 1 f 2 |X meas(f)| 2 df (dB) Relative Occurence 0 0.1 0.2 Electric Field 0 0.1 0.2 Night Magnetic Field −30 −150 0 15 30 0.1 0.2 −30 −150 0 15 30 0.1 0.2 Day Horizontal Distance (km) 0 − 150 150 − 300 300 − 450 450 − 600 600 − 750 750 − 900 900 − 1050 1050 − 1200 ∫ 2 kHz 20 kHz |X sim(f)| 2df / ∫ 2 kHz 20 kHz |X meas(f)| 2 df (dB) Relative Occurence

Histograms of All

Observed Whistlers

Our simulations underestimate the field amplitudes measured by DEMETER by as much as 6 dB. Likely, the simulation is overestimating loss in the propagation through the ionosphere. The predicted field amplitude is closest to matching the satellite measurements for close lightning strokes, which could be due to modification of the ionosphere by lightning. Finally, the

electric fields predicted by the simulation show a relative increase with increasing frequency that is not present in the magnetic field, which possibly indicates conversion to quasi-electrostatic waves.

Whistler Energy over

Horizontal Displacement

Two trends in the results are worth highlighting:

1. Below, we compute the energy in various 2 kHz wide frequency rages and histogram the ratio between the simulation and measurements for all the whistlers:

2. Next, we compute the full whistler energy but group the

whistlers according to the distance from the parent lightning stroke to the satellite’s magnetic footprint:

Références

Documents relatifs

moment du croisement il parcourra donc une distance 1,5 fois plus grande que celle parcourue, durant le même intervalle de temps, par le cycliste parti de A. Pour trouver la

« 13 mètres, c’est la distance que Théo a parcouru la première fois qu’il a marché, de là qu’il a marqué son premier but, l'espace qui le séparait de Léa au

Variation of the electron density at the subsolar point during a full Martian year as a function of altitude and time, when using a constant solar flux appropriate for solar

On the other hand, the blue areas (representing larger wave intensity at the times of lower whistler occurrence rate) are typically found in frequency-latitude intervals with

As for the local time distribution of QP emissions, the near absence of the events in nighttime DEMETER data can be likely at least partly attributed to typically larger

The main features of narrow-band whistler emissions can be explained in terms of the nonlinear resonance of whistler waves: (a) the resonant frequency is determined by the value

(top to bottom) (left) Broadband VLF data and (right) narrowband VLF data from ground stations showing sferics caused by lightning strokes; spectrograms of electric field from ICE

14 octets 20 octets 20 octets trame Ethernet segment TCP.