• Aucun résultat trouvé

GRS processor: Glint removal for Sentinel-2 scheme and application to Sentinel -2 and Landsat-5, 7, 8

N/A
N/A
Protected

Academic year: 2021

Partager "GRS processor: Glint removal for Sentinel-2 scheme and application to Sentinel -2 and Landsat-5, 7, 8"

Copied!
28
0
0

Texte intégral

(1)

HAL Id: hal-02993080

https://hal.inrae.fr/hal-02993080

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GRS processor: Glint removal for Sentinel-2 scheme and application to Sentinel -2 and Landsat-5, 7, 8

Tristan Harmel, Jean-Michel Martinez, Nathalie Reynaud, Thierry Tormos

To cite this version:

Tristan Harmel, Jean-Michel Martinez, Nathalie Reynaud, Thierry Tormos. GRS processor: Glint removal for Sentinel-2 scheme and application to Sentinel -2 and Landsat-5, 7, 8. CEOS-WGCV ACIX II - CMIX: Atmospheric Correction Inter-comparison Exercise, Oct 2018, Adelphi, United States. �hal-02993080�

(2)

Tristan Harmel (GET, GéoAzur) Jean-Michel Martinez (GET, IRD) Nathalie Reynaud (IRSTEA)

Thierry Tormos (AFB)

GRS PROCESSOR:

GLINT REMOVAL FOR SENTINEL-2

SCHEME AND APPLICATION TO SENTINEL -2 AND LANDSAT-5, 7, 8

tristan.harmel@ntymail.com

(3)

Content

GRS birth

Theoretical principles Technical algorithm Current limitation Perspectives

GRS PROCESSOR:

GLINT REMOVAL FOR SENTINEL-2

(4)

OBJECTIVES

Observe

Small to great lakes (French reservoirs, ponds, alpine lakes…)

Main rivers and estuaries on watershed scale (Amazonia, Nile, Mekong)

Characterize

Dissolved and particulate matter

Biological activity, micro-algae (e.g., cyanobacteria) Water quality

Sedimentary mass

Understand and forecast

Coupling observation data with ecological and thermo-dynamic models Assess anthropological local and global impacts

Sedimentary fluxes

(5)

OBJECTIVES

Observe

Characterize

Understand and forecast

Pre-requisite decametric satellite observation:

Sentinel-2 and Landsat-8 best suited to achieve these goals.

But, we encountered big issues with atmospheric correction and the

“stochastic” presence of sunglint.

Birth of the GRS-algorithm

(6)

Sun

S i m p l i f i e d p i c t u r e o f t h e T OA s i g n a l o v e r a q u a t i c s c e n e

Lw ( s o u g h t - a f t e r i n f o r m a t i o n ) : scattering

Diffuse light: skylight, reflected skylight and water-leaving radiance Direct light: sunglint

PRINCIPLES

: Fresnel reflection

(7)

SUNGLINT EXAMPLES

…from a ship

(c)

~20 cm 100 km

(image Sentinel-3/OLCI, May 10, 2016)

…from a satellite

(standard digital camera)

(8)

L a n d s a t / S e n t i n e l - 2 : n e a r - n a d i r v i e w

I n c r e a s e p r o b a b i l i t y / i n t e n s i t y o f s u n g l i n t

PRINCIPLES

(9)

L a n d s a t / S e n t i n e l - 2 : S W I R b a n d s a t ~ 1 6 0 0

a n d ~ 2 2 0 0 n m

PRINCIPLES

SWIR:

Water virtually totally absorbing

Diffuse light: skylight, reflected skylight Direct light: sunglint

(10)

SUNGLINT IN S2 AND LANDSAT IMAGERY

Image Sentinel-2, SWIR-band (~2200nm)

Patterns:

Eddy with surfactant

Wave packet (internals) Ship wake

10 km

PRINCIPLES

(11)

I f a e r o s o l k n o w n +

d e d i c a t e d r a d i a t i v e t r a n s f e r c o d e

=

R a d i a n c e f o r s k y l i g h t a n d s k y l i g h t r e f l e c t i o n

PRINCIPLES

SWIR:

Water virtually totally absorbing

SWIR  sunglint (direct light)  BRDF of water surface

(12)

PRINCIPLES

sunglint (direct light) radiance

, ,       , ,

T O A

g s v u v d s s u n s s u r f s v

L   T T L B R D F  

Sun radiance Known 

Unknown  Upward/downward direct transmittances

Bidirectional reflectance distribution function

θs : Sun zenith angle

θv : Viewing zenith angle

Δφ: Relative azimuth (view-Sun)

τ : optical thickness

(molecules / aerosols)

𝑇 𝜃 = exp − 𝜏𝑚𝑜𝑙 + 𝜏𝑎 cos𝜃

(13)

PRINCIPLES

SWIR  sunglint (direct light)  BRDF of water surface

  4 , ,

4 c o s c o s

s u r f f x y

v N

B R D F R q h

Geometrical consideration

Wave slopes statistics and shadowing

Fresnel coefficient Independent of wavelength 

dependent on refractive index

of water, n(λ) Wavelength dependent

(14)

PRINCIPLES

Spectral dependence of refractive index, n, over visible-SWIR region

Geometrical consideration

Wave slopes statistics and shadowing

Spectral variation of a few percent

(15)

PRINCIPLES

n(λ)  spectral variation of BRDF of water surface

Spectral variation of more than 30% from SWIR to blue

must be accounted for to extrapolate BRDF retrieved in the SWIR

(16)

GRS ALGORITHM

(GLINT REMOVAL FOR SENTINEL-2-LIKE DATA)

[Harmel et al., 2018]

ECMWF L1C image (LTOA)

Gaseous absorption correction SMAC algorithm

Ancillary data

Aerosol CAMS dataset Correction for diffuse atmospheric

radiance

Sunglint Removal from SWIR bands:

- compute surface BRDF(SWIR) - compute of sunglint radiance for all bands

Normalized water-leaving radiance (Lwn) Vis-NIR bands SWIR bands

LTOA

Lwn

Sentinel-2 image of 5 Aug. 2018, [2°W, 47°N]

10 km GRS: coded in python and fortran, main lib: snappy (ESA)

Can process: Sentinel-2 A & B, Landsat 5, 7 & 8

(17)

Resampling to SWIR band resolution

Amount of absorbing gas: O3, N2O, H2O, CO2

L1C/L1TP image

Gaseous absorption correction SMAC algorithm

Ancillary data

GRS ALGORITHM

Compute transmittances from 6S pre-computations for:

A given atmospheric profile

absorbing gas concentrations

satellite bands characteristics

ECMWF

(0.125°x0.125°)

(18)

Ancillary data

Aerosol optical thickness

Correction for diffuse atmospheric radiance

GRS ALGORITHM

  0 1   2  2

l o g l o g l o g

a a a a

      

_ f i n e_ 1 c o a r s e_

a s i m a s i m a s i m

   

Ancillary (CAMS)

LUT

, f i n e ,  1 c o a r s e ,

s k y a s k y a s k y a

L   L   L  

Optimal fit to obtain γ and compute the sky + reflected sky radiance:

Interpolated within LUT

(19)

Ancillary data

Aerosol optical thickness

Correction for diffuse atmospheric radiance

GRS ALGORITHM

, f i n e ,  1 c o a r s e ,

s k y a s k y a s k y a

L   L   L  

Interpolated within LUT

LUT: simulations from OSOAA code [Chami et al., 2015]

Atmosphere/rough interface/water coupled system.

Polarization accounted for.

Aerosol models (size lognormal, Mie calculations):

rg(µm) σ reff(µm) nr ni

fine 0.10 0.60 0.25 1.40 0.002

coarse 0.80 0.60 1.98 1.35 0.001

(20)

Ancillary data

Sea surface pressure, target altitude

Correction for diffuse atmospheric radiance

GRS ALGORITHM

Effect of atmosphere thickness (e.g., elevated target):

   

5 . 2 5 5

0 . 0 0 6 5

0 1

2 8 8 . 1 5 h

P h P

Target altitude (m) Sea level pressure

(ECMWF)

Rayleigh optical thickness and radiance from LUT recalibrated on P(h)

(21)

Compute BRDF(SWIR)

BRDF()=()/(SWIR) BRDF(SWIR)

Computation of sunglint radiance at all wavelengths

Vis-NIR bands SWIR bands (Lw=0)

GRS ALGORITHM

Lw + Lsunglint At Top-Of-Atmosphere

Computation of direct transmittances (geometry, aerosols, pressure…)

ε: spectral variation Bands 1600, 2200 nm

Lsunglint()

(22)

Correction for sunglint radiance

Normalized water-leaving radiance LWN

GRS ALGORITHM

Lw At Top-Of-Atmosphere

 

2

0

, ,

,

c o s

T O A

w s v

W N v

d s s

R L L

R t

 

 

Upwelling diffuse + direct transmittance Correction for Sun-Earth distance

No bidirectional correction for LWN

(23)

GRS ALGORITHM IMPLEMENTED FOR S2 AND LANDSAT SERIES

All parameters calculated for the RSR of the sensors (Landsat-5, 7, 8 and Seninel-2 A/B)

Time range limited by CAMS data availability (2003-present)

(24)

VALIDATION WITH AERONET-OC DATA

150 satellite images (S2)

16 AERONET-OC (14 coastal, 2 lake sites)

AC only AC + glint removal

[Harmel et al., 2018]

(25)

Not coupled yet with masking procedure: “water”, “clouds”, “cloud shadow”,

“cliff shadow”…

Need of exogenous data for aerosols (e.g., spectral optical thickness)

Differences in viewing angles between spectral bands are not accounted for at the pixel level

CURRENT LIMITATIONS

B2 (490nm) B12 (2190nm)

Scattering angle (deg)

(26)

Example of RGB S2A image where glinted pixels appear red, green and blue due to potential mis-coregitration, time lag between band acquisition or changes in viewing angles between bands.

CURRENT LIMITATIONS

(27)

PERSPECTIVES

Coupling with detection chain for “water” and “mixed” pixels

Exploitation of directional information from each spectral band and “multi-view”

pixels (need of L1B data)

Development of a coupled estimation of sunglint and aerosol (retrieval from direct and diffuse light)

Coupling with SWOT data ( sedimentary fluxes over 150 pre-defined sites)

Evaluation of performances from public and our Cal/Val in situ data

(28)

THANK YOU

Contact: tristan.harmel@ntymail.fr

Références

Documents relatifs

The seasonal restitution of the areas of inundated rice and other irrigated crops from multi-temporal high resolution satellite remote sensing is thus a promising method for

In the context of mapping irrigated areas, we propose an innovative approach to map irrigated areas using Sentinel-1 (S1) SAR (Synthetic Aperture Radar) and

fc t Minimum clear pixels fraction (snow and no snow) in an elevation band used to define z s 0.100 f t Minimum snow fraction in the image to activate the pass 2 snow test 0.001 r

From the sensitivity analysis, the reflectance indicators derived from optical band data (B11 and B12) are found to be more sensitive to soil clay content than the optical

For the time being, we applied the MTCD method to the high resolution satellites that can produce time series with constant viewing angles (LANDSAT and FORMOSAT-2), but

δσ NDVI max = g ( NDVI ) = b NDVI + δσ bare max (9) where δσ bare max is the maximum radar signal difference between two consecutive measurements over bare soil, associated with

This study proposes a method for detecting irrigated and rainfed plots in a temperate area (southwestern France) jointly using optical (Sentinel-2), radar (Sentinel-1)

Séminaire Theia session Couleur des eaux continentales, Oct 2018, Montpellier, France... Couleur des