• Aucun résultat trouvé

Expressiveness of Updatable Timed Automata

N/A
N/A
Protected

Academic year: 2021

Partager "Expressiveness of Updatable Timed Automata"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-00350490

https://hal.archives-ouvertes.fr/hal-00350490

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Expressiveness of Updatable Timed Automata

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit

To cite this version:

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit. Expressiveness of Updatable Timed Automata. 25th International Symposium of Mathematical Foundation of Computer Science (MFCS’2000), 2000, Bratislava, Slovakia. pp.232-242, �10.1007/3-540-44612-5_19�. �hal-00350490�

(2)

http://www.lsv.ens−cachan.fr/Publis/

In Proc. 25th Int. Symp. Math. Found. Comp. Sci. (MFCS’2000), Bratislava, Slovakia, Aug. 2000.

volume 1893 of Lecture Notes in Computer Science, pages 232−242. Springer, 2000.

Expressiveness of Updatable Timed Automata

P.Bouyer,C.Dufourd, E.Fleury, A.Petit

LSV,UMR8643,CNRS&ENSdeCahan,

61Av.duPrésidentWilson,94235Cahanedex,Frane

{bouyer, dufourd, fleury, petit}lsv.ens-ahan .fr

Abstrat. SinetheirintrodutionbyAlurandDill,timedautomata

havebeenoneofthemostwidelystudiedmodelsforreal-timesystems.

The syntatiextension of so-alled updatable timed automata allows

more powerful updatesof loks than the resetoperation proposed in

theoriginalmodel.

Weprove that any languageaepted by anupdatable timed automa-

ton (from lasses where emptiness is deidable) is also aepted by a

lassial timed automaton. We propose even more preiseresults on

bisimilaritybetweenupdatableandlassialtimedautomata.

1 Introdution

Sine their introdution by Alur and Dill [2,3℄, timed automata have been

oneofthemoststudiedmodelsforreal-timesystems(see [4,1,16,8,12,17,13℄).

Inpartiularnumerousworksproposedextensionsoftimedautomata[7,10,11℄.

This paper fouses on one of this extension, the so-alledupdatable timed

automata,introduedinorderto modeltheATMprotoolABR[9℄.Updatable

timedautomata areonstrutedwithupdatesofthefollowingforms:

x:jx:y+ wherex;yareloks;2Q

+

and 2f<;;=;6=;;>g

In [5℄, the (un)deidability of emptiness of updatable timed automata has

beenharaterizedina preiseway(seeSetion 2 fordetailedresults).Wead-

dress here the open question of the expressive power of updatable timed au-

tomata(from deidable lasses).We solveompletely this problem by proving

that anylanguage aeptedbyanupdatabletimedautomatonisalsoaepted

by a lassial timed automaton with "-transitions. In fat, we propose even

morepreiseresultsbyshowingthatanyupdatabletimedautomatonusingonly

deterministi updates is stronglybisimilar to a lassialtimedautomaton and

thatanyupdatabletimedautomatonusingarbitraryupdatesisweaklybisimilar

(butnotstronglybisimilar)toa lassialtimedautomaton.

Thepaperisorganized asfollows.InSetion 2,wepresentupdatable timed

automata, generalizing lassial denitions of Alur and Dill. Several natu-

ralequivalenesofupdatable timedautomata areintroduedinSetion3.The

bisimulationalgorithmsarepresentedinSetion4.

For lakof spae,thispaperontainsonlysomeskeths ofproofs.Theyare

(3)

TimedWordsand Cloks

If Z is any set, let Z

(respetively Z

!

) be the set of nite (resp. innite)

sequenesofelementsinZ andletZ 1

=Z

[Z

!

.Weonsiderastimedomain

T the set of non-negative rational Q

+

and as nite set of ations. A time

sequeneoverT isa niteorinnitenondereasingsequene =(t

i )

i1 2T

1

.

Atimedword !=(a

i

;t

i )

i1

isanelementof(T) 1

.

We onsider an at most ountable set X of variables, alled loks. A lok

valuationoverX isamappingv:X !T thatassignstoeahlokatimevalue.

Lett2T, thevaluation v+tisdenedby(v+t)(x)=v(x)+t,8x2X.

ClokConstraints

Givena subsetofloksX X,weintroduetwosetsoflokonstraintsover

X.Themostgeneralone,denotedbyC(X),isdenedbythefollowinggrammar:

'::=xjx yj'^'j:'jtrue;withx;y2X;2Q

+

;2f<;;=;6=;;>g

ThepropersubsetC

df

(X)ofdiagonal-freeonstraintsinwhihtheomparison

betweentwoloksisnotallowed,isdenedbythegrammar:

'::=xj'^'j:'jtrue; withx2X; 2Q

+

and 2f<;;=;6=;;>g

Wewritevj='whenthelokvaluationv satisesthelokonstraint'.

Updates

Anupdateisafuntionwhihassignstoeahvaluationasetofvaluations.Here,

werestritourselvestoloalupdates whih aredened inthefollowingway. A

simple update overalokz isofoneofthetwofollowingforms:

up::=z:jz:y+d; where;d2Q

+

;y2X and 2f<;;=;6=;;>g

Whentheoperatoristheequality(=),theupdateissaidtobedeterministi,

non deterministi otherwise. Let v be a valuation and up be a simple update

over z. A valuation v 0

is in up(v) if v 0

(y) = v(y) for any lok y 6= z and if

v 0

(z) (v 0

(z)v(y)+dresp.)ifup=z:(up=z:y+dresp.)

Thesetlu(U)ofloalupdatesgeneratedbyasetofsimpleupdatesU isdened

asfollows.Aolletionup=(up

i )

1ik

isinlu(U)if,foreahi,up

i

isasimple

update of U over some lok x

i

2 X (notethat it ouldhappen that x

i

=x

j

for some i 6= j). Let v; v 0

2 T n

be two lok valuations. We have v 0

2 up(v)

if andonly if,for any i, thelok valuation v 00

dened byv 00

(x

i )=v

0

(x

i ) and

v 00

(y)=v(y)foranyy6=x

i

veriesv 00

2up

i (v).

Note that up(v) may be empty. For instane, theloal update (x:<1;x:>1)

leadstoanemptyset.Butifwetaketheloalupdate(x:>y;x:<7),thevalue

v 0

(x)hastosatisfy:v 0

(x)>v(y)^v 0

(x)<7.

ForanysubsetX ofX,U(X)istheset ofloalupdateswhihareolletionsof

simpleupdatesoverloksofX.Inthefollowing,U

0

(X)denotesthesetofreset

updates. Areset updateis anupdate upsuh that forevery lokvaluationv,

v 0

withv 0

2up(v)andanylokx2X, eitherv 0

(x)=v(x) orv 0

(x) =0.It is

(4)

AnupdatabletimedautomatonoverT isatupleA=(;Q;X;T;I;F;R ),where

is a nite alphabetof ations,Q a niteset of states,X X a nite set of

loks,T Q[C(X)[f"gU(X)℄Qanite setoftransitions,IQ

(F Q,RQresp.)thesubsetofinitial(nal,repeatedresp.)states.

Let C C(X) be a subset of lok onstraints and U U(X) be a subset of

updates,thelassAut

"

(C;U)isthesetofalltimedautomatawhosetransitions

only use lok onstraints of C and updates of U. The usual lass of timed

automata,denedin[2℄,isthefamilyAut

"

(C

df (X);U

0 (X)).

Apath inAisanite oraninnitesequeneofonseutivetransitions:

P =q

0

'1;a1;up1

!q

1

'2;a2;up2

!q

2

:::; where(q

i 1

;'

i

;a

i

;up

i

;q

i

)2T; 8i>0

Thepathissaidaepting ifq

0

2Iandeither itisniteanditendsinannal

state,or itisinniteandpassesinnitelyoftenthrougharepeatedstate.Arun

oftheautomatonthrough thepathP isa sequeneoftheform:

hq

0

;v

0 i

'

1

;a

1

;up

1

!

t

1 hq

1

;v

1 i

'

2

;a

2

;up

2

!

t

2 hq

2

;v

2 i:::

where =(t

i )

i1

isa timesequeneand (v

i )

i0

arelokvaluations suh that

8x2X;v

0

(x)=0and8i1;v

i 1 + (t

i t

i 1 )j='

i andv

i 2up

i (v

i 1 + (t

i t

i 1 ).

Remarkthat anysetup

i (v

i 1 +(t

i t

i 1

))ofarun isnonempty.

Thelabeloftherunis thesequene(a

1

;t

1 )(a

2

;t

2

)2(([f"g)T) 1

.The

timed word assoiated with this sequene is w = (a

i1

;t

i1 )(a

i2

;t

i2

)::: where

a

i1 a

i2

::: is thesequeneofationswhiharein (i.e.distintfrom ").Ifthe

pathP isaeptingthenthetimedwordwisaeptedbythetimedautomaton.

About Deidability of Updatable TimedAutomata

Forveriationpurposes,afundamentalquestionistoknowiftheemptinessof

(thelanguage aeptedby)anupdatable timedautomatonis deidableornot.

The paper[5℄ proposes a preise haraterization whih is summarized in the

piturebelow.Notethatdeidabilityandependonthesetoflokonstraints

that are used diagonal-free or not whih makes an important dierene

withlassial timedautomataforwhihitiswellknown thatthesetwokinds

of onstraints areequivalent.The tehniqueproposed in[5℄ showsthat allthe

deidabilityasesarePspae-omplete.

diagonal-freelokonstraints generallokonstraints

Deterministi updates

x:=;x:=y Deidable Deidable

x:=y+,2Q +

Deidable Undeidable

x:=y+,2Q Undeidable Undeidable

deterministi updates

x:<,2Q +

Deidable Deidable

x:>,2Q +

Deidable Undeidable

x:<y+,2Q +

Deidable Undeidable

x:>y+,2Q +

Deidable Undeidable

(5)

of the deidable lasses.To solvethis problem, we rst introduenatural and

lassialequivalenesbetweenupdatabletimedautomata.

3 Some Equivalenes of Updatable Timed Automata

Language Equivalene

Twoupdatabletimedautomataarelanguage-equivalent iftheyaeptthesame

timedlanguage.Byextension,two familiesAut

1

andAut

2

aresaidtobeequiv-

alent if any automaton of one of the families is equivalent to one automaton

of the other. Wewrite

`

inbothases.For instane, Aut

"

(C

df (X);U

0 (X))

`

Aut

"

(C(X);U

0

(X)), (seee.g.[7℄).

Bisimilarity

Bisimilarity[15,14℄ is stronger thanlanguage equivalene.It denes a stepby

steporrespondenebetweentwotransitionsystems.Twolabelledtransitionsys-

temsT =(S;S

0

;E;( e

!)

e2E

)and T 0

=(S 0

;S 0

0

;E;( e

!)

e2E

)are bisimilarwhen-

everthereexistsa relationRSS 0

whihmeetsthefollowingonditions:

initialization:

8s

0 2S

0 , 9s

0

0 2S

0

0

suhthat s

0 Rs

0

0

8s 0

0 2S

0

0 , 9s

0 2S

0

suhthat s

0 Rs

0

0

propagation: 8

>

>

>

<

>

>

>

: ifs

1 Rs

0

1 ands

1 e

!s

2

thenthereexists s 0

2 2S

0

suh thats 0

1 e

!s 0

2 ands

2 Rs

0

2

ifs

1 Rs

0

1 ands

0

1 e

!s 0

2

thenthereexists s

2 2S

suh thats

1 e

!s

2 ands

2 Rs

0

2

Strong and Weak Bisimilarity

Timed transition systems - Eah updatable timed automaton A =

(;Q;X;T;I;F;R )inAut

"

(C(X);U(X))denesatimedtransitionsystemT

A

=

(S;S

0

;E;( e

!)

e2E

)as follows:

S=QT X

,S

0

=fhq;vijq2I and8x2X;v(x)=0g,E=[f"g[Q

+

8a2[f"g,hq;vi a

!hq 0

;v 0

ii9(q;';a;up;q 0

)2T s.t.vj='andv 0

2up(v)

8d2Q

+ , hq;vi

d

!hq 0

;v 0

iiq=q 0

andv 0

=v+d

When"isonsideredasaninvisibleation,eahupdatabletimedautomatonA

inAut

"

(C(X);U(X))denesanothertransitionsystemT 0

A

=(S;S

0

;E 0

;( e

))

e2E )

asfollows:

S=QT X

,S

0

=fhq;vijq2I and8x2X;v(x)=0g,E 0

=[Q

+

8a2, hq;vi a

)hq 0

;v 0

iihq;vi

"

!

a

!

"

!

hq 0

;v 0

i

8d2Q

+ ,hq;vi

d

)hq 0

;v 0

iihq;vi

"

!

d

1

!

"

!

::: d

k

!

"

!

hq 0

;v 0

iandd= P

k

i=1 d

i

Two bisimilaritiesfortimedautomata- Twoupdatabletimedautomata Aand

B arestronglybisimilar,denoted A

s B,ifT

A andT

B

arebisimilar.Theyare

weaklybisimilar,denotedA

w B,ifT

0

and T 0

arebisimilar.

(6)

ilar. If the bisimulation R preserves the nal and repeated states, weakly or

stronglybisimilarupdatable timedautomatareognizethesamelanguage.

Let A a timedautomaton and be a onstant. We denote by A the timed

automatoninwhihalltheonstantswhihappeararemultipliedbytheonstant

. The proof of the following lemma is immediate and similar to the one of

Lemma4.1in[3℄.Thislemmaallowsustotreatonlyupdatabletimedautomata

where allonstants appearing in the lok onstraints and in the updates are

integer (andnotarbitraryrationals).

Lemma 1. Let A and B be two timed automata and 2 Q +

be a onstant.

ThenA

w

B () A

w

BandA

s

B () A

s B

4 Expressive Power of Deterministi Updates

Werstdealwithupdatabletimedautomatawhereonlydeterministiupdates

areused.Thefollowingtheoremisoftenonsideredas afolklore result.

Theorem 1. LetC C(X) be aset of lokonstraints andlet U lu(fx:=

djx 2 X andd 2 Q +

g[fx := yjx;y 2 Xg). Let A be in Aut

"

(C;U). Then

thereexistsB inAut

"

(C(X);U

0

(X))suhthatA

s B.

Thenexttheoremislosetothepreviousone.Noteneverthelessthatthistheo-

rembeomesfalseifweonsiderarbitrarylokonstraints,sineaswerealled

insetion2,theorrespondinglassisundeidable.

Theorem 2. Let C C

df

(X) be a set of diagonal-free lok onstraints. Let

U lu(fx := djx 2 X andd 2 Q +

g[fx:= y+djx;y 2X andd 2Q +

g).

Let A bein Aut

"

(C;U). Then there exists B in Aut

"

(C

df (X);U

0

(X)) suh that

A

s B.

5 Expressive Power of Non Deterministi Updates

In the ase of non deterministi updates, we rst show that it is hopeless to

obtainstrong bisimulationwith lassialtimedautomata.To this purpose, let

us onsider theautomaton C of Figure 1.It hasbeenproved in [7℄that there

is nolassialtimedautomatonwithout" transitionsthat reognizethesame

languagethanC.

Now, itisnotdiultto provethat theautomatonC reognizesthesame lan-

guagethantheautomatonBandthatBreognizesitselfthesamelanguagethan

A.IfAwasstronglybisimilartosomeautomatonDofAut

"

(C(X);U

0

(X)),this

automatonDwouldnotontainany" transition(sineAdoesnotontainsuh

transition). HeneL(D) would beequalto L(A)=L(C), inontradition with

theresultof[7℄realledabove.SineAbelongstothelassAut

"

(C(X);U

1 (X))

(whereU

1

(X)denotesthesetofupdatesorrespondingtotheellslabelledde-

idable inthe generallok onstraints olumn intabular of Setion 2), we

(7)

A

x=1^x=y 1;

a;x:=0

y=1^y=x 1;

a;y:=0

1<y<0;b;x:<0 0<x<1^x=y 1;b;y:<0

0<y<1^y=x 1;b;x:<0 x=1;

a;

x:=0

y=1;

a;

y:=0

B C

x=1;

a;

x:=0

0<x<1;

b;

x:=x 1

x=1;

a;

x:=0

0<x<1;b

x=1;";x:=0

Fig.1.TimedautomataA,B andC

Proposition 1. Aut

"

(C(X);U

1 (X))6

s Aut

"

(C(X);U

0 (X))

We now fous on weak bisimilarity. As it will appear, the onstrution of

an automaton of Aut(C(X);U

0

(X)) weakly bisimilar to a given automaton of

Aut(C(X);U

1

(X))is rathertehnial.AswerealledinSetion2,thedeidable

lassesofupdatabletimedautomatadependonthesetoflokonstraintsthat

areused.Weonsiderrsttheaseofdiagonal-freelokonstraints.

We rst propose a normal form for diagonal-free updatable automata. Let

(

x )

x2X

beafamilyofonstantsofN.Inwhatfollowswewillrestritourselves

tothelokonstraintsxwhere

x

.Wedene:I

x

=f℄d;d+1[j0d<

x

g[f[d℄j0d

x g[f℄

x

;1[g

A lokonstraint'issaidto betotalif'isa onjuntion V

x2X I

x

wherefor

eahlokx,I

x

isanelementofI

x

.Anydiagonalfreelokonstraintbounded

bytheonstants(

x )

x2X

isequivalenttoadisjuntionoftotallokonstraints.

WedeneI 0

x

=f℄d;d+1[j0d<

x g[f℄

x

;1[g.Anupdateup

x

iselementary

ifitisofoneofthetwofollowingforms:

- x:= orx2I 0

x withI

0

x 2I

0

x ,

- V

y2H

x:y+^x2I 0

x

with2f=;<;>g,I 0

x 2I

0

x

and8y2H,

x

y +.

Anelementaryupdate ((

V

y2H

x:y+)^x2I 0

x

)is ompatiblewith a total

guard V

x2X I

x

if, for any y 2 H, I

y

+ I 0

x

. By applying lassial rules

of propositionalalulus and splitting the transitions, weobtain the following

normalformfordiagonal-freeupdatable timedautomata.

Proposition 2. Any diagonal-free updatable timed automaton from

Aut

"

(C

df

(X);U(X)) is strongly bisimilar to a diagonal-free updatable timed

automaton from Aut

"

(C

df

(X);U(X))in whih forany transition (p;';a;up;q)

itholds:

'isatotalguard

up = V

x2X up

x

with for any x, up

x

is an elementary update ompatible

with'

Références

Documents relatifs

For given 5-counter machine with insertion errors M g we will construct an alternating one-clock timed automaton A that accepts some infinite word iff M g has a successful run...

À l’aide des données du Système canadien de surveillance des maladies chroniques (SCSMC, encadré 1), l’Agence de la santé publique du Canada (ASPC) peut effectuer une

&amp; Butz D., Mobilities, Mobility Justice and Social Justice , London - New York Routledge, 270 p.. L’accessibilité au cœur de l’analyse des

Joint 12th IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS) / 30th IFIP WG 6.1 International Conference on Formal Techniques

Our approach to scheduling consists in transforming the problem into a pro- duct of timed automata such that the runs of the global automaton correspond to feasible schedules, and

We use markings to represent sets of configurations; in order to compute O d , we need to represent the evolution of markings over time. For this, we intro- duce timed markings.. As

We generated AAV2-7m8 vectors encoding GFP under the control of mouse cone arrestin (mCAR), PR2.1 and PR1.7 promoters (synthetic promoters based on the human red opsin gene

It turns out that, when considering the expressiveness as the untimed language, most subclasses of PTAs with integer parameters (including PTAs with bounded parameters, and