• Aucun résultat trouvé

Reliability assessment of multi-state phased mission system with non-repairable multi-state components

N/A
N/A
Protected

Academic year: 2021

Partager "Reliability assessment of multi-state phased mission system with non-repairable multi-state components"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-01988969

https://hal.archives-ouvertes.fr/hal-01988969

Submitted on 8 Feb 2019

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reliability assessment of multi-state phased mission system with non-repairable multi-state components

Xiang-Yu Li, Hong-Zhong Huang, Yan-Feng Li, Enrico Zio

To cite this version:

Xiang-Yu Li, Hong-Zhong Huang, Yan-Feng Li, Enrico Zio. Reliability assessment of multi-state

phased mission system with non-repairable multi-state components. Applied Mathematical Modelling,

Elsevier, 2018, 61, pp.181-199. �10.1016/j.apm.2018.04.008�. �hal-01988969�

(2)

ContentslistsavailableatScienceDirect

Applied Mathematical Modelling

journalhomepage:www.elsevier.com/locate/apm

Reliability assessment of multi-state phased mission system with non-repairable multi-state components

Xiang-YuLia,b, Hong-Zhong Huanga,,Yan-Feng Lia, Enrico Ziob,c

aCenter for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China

bChair System Science and the Energy Challenge, Fondation Électricité de France (EDF), CentraleSupélec, Université Paris Saclay, 91192 Gif-sur-Yvette Cedex, France

cEnergy Department, Politecnico di Milano, Milano, Italy

a r t i c l e i n f o

Article history:

Received 17 December 2017 Revised 12 April 2018 Accepted 18 April 2018 Available online 25 April 2018 Keywords:

Reliability assessment

Multi-state multivalued decision diagram (MMDD)

Phased mission system (PMS) Multi-state system Semi-Markov process Monte Carlo simulation Attitude and Orbit Control System

a b s t r a c t

Phasedmissionsystems(PMSs)likesatellitesandspacecraftperformtheirfunctionsover non-overlappingmissionperiods,called phases. Oneofthe challengesinassessing reli- ability ofPMSscomesfrom consideringthe s-dependence among phases, and thecon- siderationonthemulti-statebehavior ofcomponentsand systemsmakesthe reliability analysiseven more difficult. Toeffectively addressthisproblem, amulti-state multival- ueddecisiondiagramalgorithmforPMSandamulti-statemulti-valueddecisiondiagram modelfor phased missionsystem(PMS-MMDD)methodis developedfor the reliability modellingofnon-repairablemulti-statecomponents.BasedontheSemi-Markovprocess,a Markovrenewalequation-basedmethodisdevelopedtodealwithnon-exponentialmulti- statecomponentsandanumericalmethod,thetrapezoidalintegrationmethod,isusedto computethecomplexintegralsinthepathprobabilityevaluation.Acasestudyofamulti- stateattitudeandorbitcontrolsysteminaspacecraftisanalyzedtoillustratetheproposed PMS-MMDDmodelandtheMarkovrenewalequation-basedevaluationmethod.Theaccu- racyandcomputationefficiencyoftheproposedmethodareverifiedbytheMonteCarlo simulationmethod.

© 2018ElsevierInc.Allrightsreserved.

ACRONYM

AOCS Attitudeandorbitcontrolsystem BDD Binarydecisiondiagram

CTMC ContinuoustimeMarkovchain

FT Faulttree

MMDD Multi-statemultivalueddecisiondiagram PDO Phasedependentoperation

PMS Phasedmissionsystem

PMS-BDD Binarydecisiondiagrammodelforphasedmissionsystem

PMS-MMDD Multi-statemulti-valueddecisiondiagrammodelforphasedmissionsystem SMP Semi-MarkovProcess

Corresponding author.

E-mail address: hzhuang@uestc.edu.cn (H.-Z. Huang).

https://doi.org/10.1016/j.apm.2018.04.008 0307-904X/© 2018 Elsevier Inc. All rights reserved.

(3)

1. Introduction

Phasedmission systems(PMSs) aretypical oftheaerospaceindustry.PMSsperforminmultiple,consecutiveandnon- overlapping mission durations, known as phases [1]. In the differentphases, system is required to accomplish different tasks by differentcomponents and system structures in different environments [2]. The degradation process of the sys- tems/componentsofthePMSscanbedescribedintermsoftransitionsamongmulti-states(fromperfectlyworkingtototally failure)based ondiscrete function performancelevels [3,4].Then,the reliabilityofmulti-state phased-mission systemsis definedastheprobabilitythatthesystemresidesinstatesabovethepredefinedfailure thresholdinallphases.Challenges inanalyzing thePMS (evenbinary) aredueto twoaspects [2]: (1)Dependenceamongphases: thecomponentsfailedin one phase will remain in the failure state in the followingphases, in non-repairable PMSs. And the componentstate at beginning of one phase should be equalto its state at theend of last phase; (2) Dynamic behavior among phases:the workingcomponents,thesystemstructures andthefailure criteriaaredifferentduetodifferentmissionrequirements.In multi-state PMS,themulti-state behaviorsrendersmore complicatedthephase dependenceandthedynamicsleadingto thestateexplosionproblem[3].

Mostofthe worksonthe PMSreliability focuson binarystate PMSs,andtheir contributions are mainlyintwo main aspects:(1)improvingcomputationalefficiency[5,6];(2)modellingthePMSwithspecialfeatures,suchasexternal/internal commoncausefailures[7],imperfectcoverage[8]orgeneralizedPMS[9].ThePMSreliabilitymodellingmethodsemployed canbedividedintotwomajorcategories:simulationapproaches[10,11]andanalyticalapproaches[12–16].Comparedtoan- alyticalmethods,thesimulationapproachescandealwithmoregeneralsystemsbutsufferfromhighcomputationalcosts.

Theanalyticalapproachescanbefurthercategorizedintothreetypes:(1)combinatorialmethods,suchasthebinarydeci- siondiagram[13,14](BDD),themultivalueddecisiondiagram (MDD)[6]andthemulti-statemultivalueddecisiondiagram (MMDD)[15]methods.ThesemethodscananalyzethePMSsveryefficiently,especiallyforlargescalesystems.However,the combinatorialmethodscanonlyhandlesystemswiths-independentcomponents.(2)State-spacebasedapproaches,suchas thecontinuoustime Markovchain (CTMC)[17,18],Semi-MarkovProcess (SMP)[19]andPetri-nets[20].State-spacebased approachesareflexible andpowerfulinmodellingthePMSswithcomplexdynamicbehaviors(e.g.,cold standby),such as cold standby,butsufferfromthe state explosionproblem. (3) Modularmethods [21],whichcombined thecombinatorial methodswithstate-spacemodel,mergingtheadvantagesofbothbutlimitedtosomespecialcases.

Inrecentyears,multi-statesystemshavebeenwidelystudied[22–31]todescribemultiplelevelsofworkingperformance orthedegradationprocess ofcomponentsandsystems.The worksonmulti-state systemscanbe categorizedby theirre- search objectives: (1) systemstate probabilities orreliability assessmentmethods, e.g., by the decisiondiagram methods [23],thestochasticprocessmethods[24–26]andtheuniversalgenerationfunctionmethod[27];(2)redundancyoptimiza- tion[28];(3)parametersestimation[29];(4)maintenanceandwarrantyresearch [30],etc.However,alloftheseworksdo notconsiderthemulti-phasedcharacteristicsofPMSs.

Theworkson theanalysisofmulti-statePMSare veryfew.Recently,the MMDDmethodhasbeenapplied toevaluate thereliabilityofmulti-statePMSs[5].TheMMDDmodelsaregeneratedfromthemulti-statefaulttreemodelofeachphase, thenthesystemMMDD modelanddisjointpathsforthesystemaregeneratedbythe generalMMDD manipulationrules.

At last, the CTMC is usedto evaluate the probabilities of thedisjoint paths fromthe system MMDD model.In [5],only repairable MS-PMSsare analyzed, butin practical, manysystems cannot be repaired, such assatellites orthe spacecraft workingintheouterspace.PartofthepathsfromtheMMDDmodelsgeneratedbythegeneralMMDDmanipulationrules may have self-conflict problemsin non-repairable systems. Forexample, one component may be in higher performance statesinlater phasesinthesame pathbecausethey can berepaired, butthesepathsare notavailable innon-repairable PMS.Toaddressthisproblem,thispaperproposesaMMDDalgorithmformulti-statePMSandPMS-MMDDmodelinwhich thedependencyamongphasescanbe fullyconsideredandaddressedinthemodelgeneration processwithoutadditional steps.Furthermore,themoregeneralnon-exponentialdistributionsofthestatetransitiontimes[31,32]areconsidered,and basedontheSemi-MarkovProcess(SMP)[33,34],aMarkovrenewalequation-basedmethodisalsoproposed.Anumerical method,thetrapezoidalintegrationmethod,isusedtoevaluatethepathprobabilities.

Thepaperisorganizedasfollows.Section2introduces asimpleMS-PMSexampleandthe basicconcepts ofPMS-BDD methodandgeneralMMDDmethod.InSection3,phasealgebraforthemulti-statePMSandthePMS-MMDDmodelarepro- posedanddescribedindetail.TheMMDDmodelanddisjointpathsgenerationprocessarealsoshownbythePMSexample inSection2.Section4proposestheMarkovrenewalequation-basedmethodforevaluationofpathprobabilities.InSection 5,apracticalexample,anattitudeandorbitcontrol system(AOCS) ofaspacecraftisusedtoillustratetheproposedPMS- MMDD method.Then,theproposed methodiscomparedto theexistingpathevaluationmethod.Moreover,the proposed methodiscomparedtotheMonteCarlo simulationmethodunderdifferentnumberofsimulationrealizationstoshow its accuracyandcomputationefficiency.Section6givestheconclusionsandfutureworks.

2. MMDDmethodfornon-repairablePMSs 2.1. DescriptionoftheexamplePMS

A simple phased-mission system consistingof three components andthree phasesis used to show the PMS-MMDD methodproposedinthispaper.ThesystemconsistsofthreecomponentsA,BandCandthestatetransitiongraphsforthe

(4)

Fig. 1. The state transition graphs for components in the example system.

Fig. 2. The multi-state FT model for the example system.

threecomponentsareshowninFig.1.Fi,j(t)representsthecumulativedistributionfunctionofthestatetransitiontimefrom stateitostatejattimet.

The example PMS consists of three consecutive missions: τ1, τ2 andτ3. Mission τ1 needs componentA in state 2 orcomponent Cin state 1; Mission τ2 needs component A above state 1 orcomponent Bin state 2; Mission τ3 needs componentBabovestate1orcomponentCinstate1.Theentiremissionissuccessfulifallthethreeconsecutivemissions arecompletedsuccessfully.ThesystemstructurefunctionforthisexamplePMSisdescribedas,

=1·2·3=

A1,(2)+C1,(1)

A2,(1)+A2,(2)+B2,(2)

B3,(1)+B3,(2)+C3,(1)

(1) InEq.(1), each element representsthat one componentinone specific phaseandstate, forexample,A1,(2) represents thatcomponent Ais instate 2inphase 1.Accordingto Eq.(1), thesystemmulti-state faulttree (FT)modelisshownin Fig.2.

2.2.BasicconceptsofBDDandMMDD

Inthis section, thebasics of the BDD modeland its extended MMDD model,aswell asthe PMS-BDD model forthe binarynon-repairablePMS,areintroducedindetails.

2.2.1. BDDmodelandPMS-BDDmethod

ABDDmodelisadirectedacyclicgraphbasedontheShannondecomposition.LetfbeaBooleanexpressionforabinary componentA, theBoolean function can be expressedas: f=AfA=1+A¯fA=0.The if-then-else (ite) format isused to expressthedecomposition andtheite format of componentAis: f= ite(A, f1, f0). The entireBDD modelis rooted with two sink nodes,0 and 1, representing the system’sfailure andsuccess, respectively. Each non-sink node is also labeled withtwoedgescalledthe0-edgeand1-edgetorepresenttheBooleanexpressionsofthecomponent’sfailureandsuccess, respectively.

TheBDDmodelisgeneratedrecursivelybytheBDDmanipulationwithallthecomponents’Booleanexpressions, gh=ite(x,G1,G2)ite(y,H1,H2)

=

⎧⎨

ite(x,G1H1,G1H1) index(x)=index(y) ite(x,G1h,G2h) index(x)<index(y) ite(y,gH1,gH2) index(x)>index(y)

(2)

gandhareBooleanexpressions forcomponentsxandy,respectively.representsthelogicexpressions(OR,AND)andthe indexdenotesthepredefinedorderofthevariables[8].

(5)

Table I

Phase algebra for the BDD model (1 ≤i < j n ).

A i,(1)A j,(1)A j,(1) A i,(1)+ A j,(1)A i,(1)

A ¯i,(1)A ¯j,(1)A ¯i,(1) A ¯i,(1)+ A ¯j,(1)A ¯j,(1) A ¯i,(1)A j,(1)0 A ¯i,(1)+ A j,(1)1

Fig. 3. MMDD models.

ThePMS-BDD methodisproposedin[8]todealwiththedependenceamongphasesinthePMS withtheBDD model.

Assume that component A isa binary components workingin nphases. In the non-repairable binaryPMS, accordingto therelationshipofthesamecomponentindifferentphases, phasealgebraforbinaryPMS isproposedin[8],asshownin TableI.

InTableI,componentAonlyhastwostates:Ai,(1)=1meanscomponentAworksnormalinphaseiandA¯i,(1)=1means thatcomponentAisinfailurestate inphasei.InThephysicalmeaningoftheelementsintheleft columnare:(1)Ai,(1)

Aj,(1)Aj,(1),ComponentAisworkinginphaseiandphasejimpliescomponentAworksinphasej.(2)A¯i,(1)A¯j,(1)A¯i,(1), componentAisfailedinphaseiandphasejimpliescomponentAisfailedinphasei.(3)A¯i,(1)Aj,(1)0,componentAis failedinphaseiandworksinphasejisnotpossible.

With this phase algebra and the backward phase dependent operation (PDO), two Boolean expressions Ei= ite(A¯i,(1),G1,G2)andEj=ite(A¯j,(1),H1,H2),representingthebehaviorsofcomponentAinphaseiandphasejrespectively, theBDDmanipulationforthenon-repairablePMScanbechangedas,

ite¯

Ai,(1),G1,G2

ite¯

Aj,(1),H1,H2

=ite¯

Aj,(1),EiH1,G2H2

(3)

Withthebackward PDOandthePMS-BDD method,thecancellationofthecommoncomponentscanbe automatically doneinthemodelgenerationprocess,whichcanmakethesystemBDDmodelsmaller.Moreinformationanddetailsabout theBDDmodelandPMS-BDDmethodcanbefoundin[15].

2.2.2. MMDDmodel

MMDD isadirected acyclicgraphextended fromBDD andbasedonShannon’s decompositionforthesymbolicrepre- sentationandmanipulationofmulti-valuedlogicfunctions[1].LiketheiteformatintheBDDoperation,thecaseformatof logicexpressionFforamulti-statecomponentAwithmstatesisdefinedas[15],

F =A1FxA=1+A2FxA=2+· · · +AmFxA=m

=case

A,FxA=1,FxA=2,...,FxA=m

=case(A,F1,F2,...,Fm) (4)

TheMMDDformatofEq.(4)andthebasiceventAi,whichmeansthecomponentisinstatei(1im),arerespectively showninFig.3(a)and(b).

WiththebasicMMDDeventforeachstateofeachcomponent,thesystemMMDDmodelcanbegeneratedbytheMMDD manipulationrules,whichisalsoextendedfromtheBDDmanipulationrules,shownas[15],

gh=case(x,G1,. . .Gm)casey(y,H1,. . .Hm)

=

case(x,G

1H1,. . .,GmHm) index(x)=index(y) case(x,G1h,...,Gmh) index(x)<index(y)

case(y,gH1,...,gHm) index(x)>index(y) (5)

wheregandhareBooleanexpressionswithmulti-valuedinputsandrepresentsthelogicoperations(OR,AND).Theindex meansthepredefinedorderofthevariables.

InthesystemMMDD model,therearetwo sinknodes‘1and‘0,representingthecomponentbeing/notbeinginone specificstate.Eachpathfromtherootnodetothesinknode‘1representsthecombinationsofcomponents’statesthatthe systemisinthisspecificstate.

Références

Documents relatifs

This value satisfies the ratio of average peak load to average transformer power output in Hegazy et al. The probability for each load interval/state is defined

The sixth assumption reflects the aging effects addressed in (Fan et al. more likely lead to extreme damages) when the component is in severe degradation states. However,

Literature [8] pro- posed a fine-grained ciphertext access control scheme supporting user attribute revocation mechanism.... Literature [9] proposed a new access structure based

The proposed approach applies the Transferable Belief Model (TBM) interpretation of the Dempster-Shafer theory to represent component state beliefs and to evaluate the MSS

Based on a Particle Filter tracker, we propose a novel approach for multi- person tracking that defines a state for each track ( potential , tracked , occluded or lost ), represented

The first definition of MPMS weighted K¯ -out-of-n systems is basic, which corresponds to the model of multi-performance multi-state strongly-increasing monotonic

17 shows an example of possible empirical distributions (at time t = 1 year, with-.. Flowchart of the three-loop MC simulation.. Estimated RPS-MSPM unreliability with 90%

Since no specific Lyapunov functions have already been proposed for interval models (6) defined by a generalized state encompassing the upper and lower bounds of the state as well