• Aucun résultat trouvé

Transport along stochatic flows in fluid dynamics

N/A
N/A
Protected

Academic year: 2021

Partager "Transport along stochatic flows in fluid dynamics"

Copied!
53
0
0

Texte intégral

(1)

HAL Id: hal-01377723

https://hal.inria.fr/hal-01377723

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Transport along stochatic flows in fluid dynamics

Valentin Resseguier, Etienne Mémin, Bertrand Chapron

To cite this version:

Valentin Resseguier, Etienne Mémin, Bertrand Chapron. Transport along stochatic flows in fluid dynamics. Workshop - Statistical methods for dynamical stochastic models - DYNSTOCH 2016, Jun 2016, Rennes, France. �hal-01377723�

(2)

Transport along stochastic flows in fluid dynamics

Valentin Resseguier, Etienne Mémin, Bertrand Chapron

(3)

Fluids are very complex

with small vortices interacting with large vortices and

currents

Gula, Jonathan, M. Jeroen Molemaker, and James C.

McWilliams

"Gulf Stream dynamics along the southeastern US seaboard.”

Journal of Physical Oceanography 45.3 (2015): 690-715.

(4)

Fluids are very complex

with small vortices interacting with large vortices and

currents

Gula, Jonathan, M. Jeroen Molemaker, and James C.

McWilliams

"Gulf Stream dynamics along the southeastern US seaboard.”

Journal of Physical Oceanography 45.3 (2015): 690-715.

(5)

Why a random fluid dynamics?

Take into account unresolved processes (small scales)

Physical justification of empirical models

Predicting possible distinct scenarios, extreme-events, …

Quantification of modeling errors for data assimilation:

ensemble forecasts

(6)

Randomized dynamics

Simulation of the SQG under Moderate Uncertainty

Stochastic reduced order model

Contents

(7)

Randomized

dynamics

(8)

Stochastic flow:

Advection of tracer Θ

dXt = w(Xt, t)dt + (Xt, t)dBt

(9)

Stochastic flow:

Advection of tracer Θ

dXt = w(Xt, t)dt + (Xt, t)dBt

(, t)dBt =4 Z

dz ˘ (, z, t)dBt(z) with infinite-dimensional Brownian motion

(10)

Stochastic flow:

Advection of tracer Θ

dXt = w(Xt, t)dt + (Xt, t)dBt

(, t)dBt =4 Z

dz ˘ (, z, t)dBt(z) with infinite-dimensional Brownian motion

A tracer is a function conserved along the flow:

D

t

⇥(t, X

t

) = d [⇥(t,

4

X

t

)] = 0

(11)

Ito-Wentzel formula

(Kunita 1997)

If both and are semimartingales (w.r.t. time) and is twice differentiable w.r.t. space

Then

d [⇥(t, X(t, y))] = dt⇥ + (r⇥)T dX + 1

2 tr(Hd < X, XT >) + dt < (r⇥)T , X >

Θ

Θ

X

(12)

Advection of tracer Θ

D t ⇥ = 0

(13)

Advection of tracer Θ

(14)

Advection of tracer Θ

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

(15)

Advection

Advection of tracer Θ

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

(16)

Advection

Diffusion

Advection of tracer Θ

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

(17)

Advection

Diffusion

Advection of tracer Θ

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

a = T w = w 1

2 (r · a)T

(18)

Advection

Diffusion

Advection of tracer Θ

Drift

correction

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

a = T w = w 1

2 (r · a)T

(19)

Advection

Diffusion

Advection of tracer Θ

Drift

correction

Multiplicative random forcing

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

a = T w = w 1

2 (r · a)T

(20)

Advection

Diffusion

Advection of tracer Θ

Drift

correction

Multiplicative random forcing

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

a = T w = w 1

2 (r · a)T

(21)

Advection

Diffusion

Advection of tracer Θ

Drift

correction

Multiplicative random forcing

Balanced energy exchanges

d

t

⇥ + w

?

· r ⇥dt + dB

t

· r ⇥ = r ·

✓ 1

2 a r ⇥

dt

a = T w = w 1

2 (r · a)T

(22)

(, t)dBt =4 Z

dz ˘ (, z, t)dBt(z)

=?

Parametric or non-parametric estimation

Observations can be:

Small-scale eulerian velocity

Small-scale Lagrangian velocity Tracer (solution of the SPDE)

In the following simulations, very simple model (without estimations)

(xi, tj)dBtj ij

(Xtj (xi), tj)dBtj ij (⇥(xi, tj))ij

dBt = Z

dz r? ˘( z)dBt(z) = r? ˘ dBt b˘(k) = A 1{ <kkk< }kkk

(23)

Simulation of the

SQG under Moderate Uncertainty

SQG MU

Code available online

(24)

SQG model:

Reference flow:

deterministic SQG 512 x 512

Dt = 4⇥dt

w = r?( ) 12

(25)

SQG model:

Reference flow:

deterministic SQG 512 x 512

Dt = 4⇥dt

w = r?( ) 12

(26)

One realization

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(27)

One realization

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

(28)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

Ensemble

(29)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

Ensemble

(30)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

Ensemble

(31)

x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s x ( m)

y(m)

t= 17 d ay s

0 2 4 6 8 10

x 105 0

2 4 6 8

x 105

10−5 10−4

10−6 10−4 10−2

|ˆb(κ)|2

κ! r a d . m−1"

t= 17 d ay s

Ensemble

(32)

Random reduced order model from stochastic Navier-Stokes

equation

(33)

Why a reduced order model?

Physical model (PDE) simplified using observations

Very fast simulation of very complex system (e.g. for industrial application)

What is a reduced order

model?

(34)

PCA on data to reduce the state-space dimension

v (x, t) = v(x) +

X

n

i=0

b

i

(t)

i

(x) +

X

N

i=n+1

b

i

(t)

i

(x)

(35)

PCA on data to reduce the state-space dimension

v (x, t) = v(x) +

X

n

i=0

b

i

(t)

i

(x) +

X

N

i=n+1

b

i

(t)

i

(x)

v = w + B ˙

Resolved modes

(36)

PCA on data to reduce the state-space dimension

v (x, t) = v(x) +

X

n

i=0

b

i

(t)

i

(x) +

X

N

i=n+1

b

i

(t)

i

(x)

v = w + B ˙

Resolved modes Unresolved modes

⇡ 1

t dB

t

(37)

PCA on data to reduce the state-space dimension

v (x, t) = v(x) +

X

n

i=0

b

i

(t)

i

(x) +

X

N

i=n+1

b

i

(t)

i

(x)

v = w + B ˙

Resolved modes Unresolved modes

⇡ 1

t dB

t

Initial space Reduced subspace Solution

coordinates

Dimension d = 2 or 3

x M ~107 n~10

(bi(t))i

(wq(xi, t))qi

(38)

Assumptions of finite variations for and

Galerkin projection gives ODEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

v = w + B ˙

db

i

= F

i

(b)dt

(39)

Assumptions of finite variations for and

Galerkin projection gives ODEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

v = w + B ˙

db

i

= F

i

(b)dt

2nd order polynomial:

coefficients given by physics,

j j and a(x, x, t) = 1

t < ( (x, t)B)obs , ( (x, t)B)Tobs >t

(40)

Assumptions of finite variations for and

Galerkin projection gives ODEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

v = w + B ˙

db

i

= F

i

(b)dt

2nd order polynomial:

coefficients given by physics,

j j and a(x, x, t) = 1

t < ( (x, t)B)obs , ( (x, t)B)Tobs >t

Model and estimation

(inspired by Genon-Catalot, Laredo, Picard 1992 )

a(x, x, t) = z0(x) +

Xn

i=0

bi(t)zi(x)

zi(x) = 1 t

Z t 0

bi(t)d < (x, t)B, (x, t)B >

(41)

Galerkin projection gives SDEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

db

i

= F

i

(b)dt + (↵

i

dB

t

)

T

b + (✓

i

dB

t

)

(42)

Galerkin projection gives SDEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

n x M M x 1 n x 1 1 x M M x 1

db

i

= F

i

(b)dt + (↵

i

dB

t

)

T

b + (✓

i

dB

t

)

(43)

Galerkin projection gives SDEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

additive noise multiplicative noise

n x M M x 1 n x 1 1 x M M x 1

db

i

= F

i

(b)dt + (↵

i

dB

t

)

T

b + (✓

i

dB

t

)

(44)

Galerkin projection gives SDEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

additive noise multiplicative noise

2nd order polynomial:

coefficients given by physics,

j j and a(x, x) = 1

t < ( (x)B)obs , ( (x)B)Tobs >t

n x M M x 1 n x 1 1 x M M x 1

db

i

= F

i

(b)dt + (↵

i

dB

t

)

T

b + (✓

i

dB

t

)

(45)

Galerkin projection gives SDEs for resolved modes:

(stochastic Navier-Stokes)

Z

i

·

additive noise multiplicative noise

Correlations to estimate

2nd order polynomial:

coefficients given by physics,

j j and a(x, x) = 1

t < ( (x)B)obs , ( (x)B)Tobs >t

n x M M x 1 n x 1 1 x M M x 1

db

i

= F

i

(b)dt + (↵

i

dB

t

)

T

b + (✓

i

dB

t

)

(46)

Classical estimate SDE

Estimate of the correlation

multiplicative noise

Problem:

(↵pidBt)obs = Z

Gpi [( dBt)obs]

pi

T

qj

Known but complex linear operator

Too complex to be computed for each time step

1 x M M x 1 d x M

(as a function of space)

dbi = Fi(b)dt + (↵idBt)Tb + (✓idBt)

piTqj = 1

t hpiB, qjBit

(47)

Classical estimate SDE

Estimate of the correlation

multiplicative noise

Problem:

(↵pidBt)obs = Z

Gpi [( dBt)obs]

pi

T

qj

Known but complex linear operator

Too complex to be computed for each time step

1 x M M x 1 d x M

(as a function of space)

a(x, y) = 1

t < ( (x)B)obs , ( (y)B)Tobs >t Cannot be even

memorized

d x d x M x M

dbi = Fi(b)dt + (↵idBt)Tb + (✓idBt)

piTqj = 1

t hpiB, qjBit

(48)

SDE

Estimate of the correlation

multiplicative noise

Solution:

pi

T

qj

dbi = Fi(b)dt + (↵idBt)T b + (✓idBt)

(from the PCA)

1 t

bi,

Z t 0

bp (↵qjdBt)

t

= X

k

kiTqj 1 t

Z t 0

bkbp

| {z }

= p kp

+✓iTqj 1 t

Z t 0

bp

| {z }

=0

= ppiTqj

(49)

SDE

Estimate of the correlation

multiplicative noise

Solution:

pi

T

qj

dbi = Fi(b)dt + (↵idBt)T b + (✓idBt)

(from the PCA)

1

t

bi,

Z t 0

bp (↵qjdBt0)

t

= Z

Gqj

1 t

(bi)obs,

Z t 0

(bp dBt0)obs

t

1 t

bi,

Z t 0

bp (↵qjdBt)

t

= X

k

kiTqj 1 t

Z t 0

bkbp

| {z }

= p kp

+✓iTqj 1 t

Z t 0

bp

| {z }

=0

= ppiTqj

(50)

SDE

Estimate of the correlation

multiplicative noise

Solution:

pi

T

qj

dbi = Fi(b)dt + (↵idBt)T b + (✓idBt)

(from the PCA)

1

t

bi,

Z t 0

bp (↵qjdBt0)

t

= Z

Gqj

1 t

(bi)obs,

Z t 0

(bp dBt0)obs

t

1 t

bi,

Z t 0

bp (↵qjdBt)

t

= X

k

kiTqj 1 t

Z t 0

bkbp

| {z }

= p kp

+✓iTqj 1 t

Z t 0

bp

| {z }

=0

= ppiTqj

d x M

(51)

Conclusion

(52)

Conclusion

Random transport applicable to any fluid dynamics models

Better small scales

Estimate position and amplitude of errors, extreme events, likely scenarios

Possible applications for your previous and future estimation methods (e.g. MLE with )(⇥(xi, tj))ij

(53)

Code SQG MU:

link from Fluminance website - V. Resseguier

Thank you for your attention

Références

Documents relatifs

analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The results are coherent with the ones found in the literature, but a different model is proposed where the Timoshenko beam model is used and the main forces that influence the

L'ajout d'un rangement annexé à la maison vient modifier la volumétrie

Among different techniques described in [2], in this study the proper-orthogonal decomposition method (POD) is used to define the basis that span the sub-space manifold.

it is possible, assuming uniformity of the pressure stresses applied to the internal wall surface at every instant of the cardiac cycle, to calculate the overall distribution of

The chiral angle fluctuations can change the mean field experienced by the quarks and can produce excitations with properties of a pion and sigma field.. In the zeroth approximation

(2015) with particle filter, we investigate with a variational data assimilation method the combined use of Kinect depth ob- servations with a shallow water dynamical model