• Aucun résultat trouvé

Chirality in gold(III) homodimeric complexes

N/A
N/A
Protected

Academic year: 2021

Partager "Chirality in gold(III) homodimeric complexes"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-02957773

https://hal.archives-ouvertes.fr/hal-02957773

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chirality in gold(III) homodimeric complexes

Huy-Dinh Vu, Jacques Renault, Thierry Roisnel, Philippe Uriac

To cite this version:

Huy-Dinh Vu, Jacques Renault, Thierry Roisnel, Philippe Uriac. Chirality in gold(III) homodimeric complexes. Tetrahedron Letters, Elsevier, 2020, 61 (39), pp.152323. �10.1016/j.tetlet.2020.152323�.

�hal-02957773�

(2)
(3)

2

Chirality in gold(III) homodimeric complexes

Huy-Dinh Vu

a,b

, Jacques Renault

a

, Thierry Roisnel

c

, and Philippe Uriac

a,*

———

*

Corresponding author. Fax: +33 2 23234425. E-mail: philippe.uriac@univ-rennes1.fr

aUniv Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France

bDepartment of Chemistry, Vietnam National University of Forestry, Hanoi, Vietnam

cUniv Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, ScanMat - UMS 2001, F-35000 Rennes, France

Numerous stable and reactive gold(III) complexes have been described;

1

however, most of them do not present efficient chirality because of their square-planar structure. Recently, the successful introduction of chirality (Fig. 1) has been achieved by two main strategies: the use of chiral BINOL

2

or

O,O’-chelated

cyclometalated gold(III) complexes

3

(Wong) and the use NHC ligands

4

(Toste). Other complexes, based on bisoxazoline (BOX) and 2-pyridyl-(–) menthol ligands

5

(Fiksdahl) or isothioureas

6

have also been reported. The conception of these chiral gold(III) complexes has allowed catalytic developments.

7

Figure 1. Selected chiral gold(III) complexes.

In a previous paper,

8

we have reported the synthesis of aurocycles which are able to dimerize. Interestingly, these dimeric gold(III) complexes presented a chirality axis. In this paper we report how this chirality axis could be used to prepare chiral homodimeric complexes. Their catalytic activity was

illustrated by their ability to promote the cyclization of a representative N-Boc amino-ynone.

According to the literature procedure,

9

di-protected (S)-4- hydroxymethylpyrrolidin-2-one 1 was reacted with lithium phenyl acetylide to give

N-Boc amino-ynone

2, which was cyclized into ligand 3 in the presence of 5 equivalents of a 1M ZnCl

2

solution in ether (Scheme 1).

Scheme 1. Synthesis of ligand 3.

In the presence of 1 equivalent of AuCl

3

the vinylgold complex 4 was obtained in 30% yield (estimated purity = 90%) whereas the use of NaAuCl

4

led to 4’. As previously reported

9

HCl was generated

in situ. If

4 was treated with 1 equivalent of AuCl

3

in CDCl

3

the formation of aurocycle 5 was observed. In this case the HCl formed during the cyclisation process induced A B S T R A C T

Vinylgold complex 4 and aurocycle 5 were successively prepared from the protected (S)-2-hydroxymethyl-5-alkynyl-3,4-dihydro-2H-pyrrole using AuCl3. The dimerization of 5 in the presence of K2CO3 gave the chiral homodimers 6a(S,aR) + 6b(S,aS) which exhibited catalytic activity with AgSbF6. Using the X-ray data obtained for 5 and 6a, a transition state explaining the diastereoselectivity (de = 50 at –50 °C) was proposed.

Keywords:

Aurocycle Catalyst

Chiral cyclic imine

Chiral gold(III) homodimeric complexes

(4)

Scheme 2. Synthesis of aurocycle 5.

The NMR data of 5 were in accordance with the proposed structures as well as the HRMS data ([M-H]

; C

13

H

12

NO

35

Cl

3

Au : 469.9658). In the

13

C NMR spectra the loss of one aromatic CH as well as the

1J value (168 Hz versus 163

Hz) of the carbon in the

ortho position of the gold atom attested

to the cyclisation. Finally, crystals of 5, suitable for X-ray study, were obtained by slow evaporation of the NMR solvent (CD

3

COCD

3

). In the crystal structure (Fig. 2a), as previously observed,

6

aurocycle 5 was almost planar because of the ionic interactions between the protonated nitrogen atom and the metallic center (distances: 2.953, 2.973 Å). Non-covalent interactions between two molecules of 5 could also be envisaged (Fig. 2b) involving π-stacking, electrostatic interactions (NH

+

- Au

distances: 4.139 and 3.986 Å) and hydrogen bonding (OH- Cl distances: 2.558-2.763 Å).

Figure 2a. Molecular structure of 5.

Figure 2b. Ionic interactions in the crystal of 5.

Finally, the dimerization of 5 leading to a mixture of the homodimeric complexes 6a (major) + 6b (minor) was quantitatively performed using the procedure previously reported (addition of K

2

CO

3

to a suspension of 5 in CDCl

3

at room temperature) (Scheme 3). The diastereoisomeric excess determined by

1

H NMR spectroscopy was low: de = 20 (Fig. 4).

When the reaction was performed on a solution of 5 in

The dimeric structure was determined by HRMS: [M-Cl]

: C

26

H

24

N

2

O

235

Cl

3

Au : 964.9619 and by NMR spectroscopy. For example, in the

1

H NMR spectra duplication of the signals of the heterocyclic CH

2

was observed. The number of carbon signals observed clearly indicated that only homodimers have been synthesized. Analysis of the crystals obtained by slow evaporation of the solvent in the NMR tube allowed us to determine the configuration of the chirality axis (Fig. 3) of the major diastereomer 6a: aR. In 6a the hydroxymethyl substituents were in exo-positions.

Figure 3. Molecular structure of 6a.

Figure 4.

1

H NMR determination of the de.

This stereoselectivity could be explained by a concerted HCl

elimination involving deprotonation of the iminium by K

2

CO

3

(5)

followed by ligand exchange (nitrogen in place of Cl

) on the 3

gold atom. Two transition states I and II (Fig. 5) were possible depending on the rotation along the chirality axis. The interactions of the chlorine atoms with the hydroxymethyl substituent could stabilize I

10

and assist the Cl

elimination to give homodimer 6a as the major product.

Figure 5. Transition states I (aR) and II (aS).

Finally, the catalytic activity of the mixture 6a + 6b (60/40) was examined using

N-Boc protected amino-ynone 7 which was

previously synthetized in our laboratory.

11

The conversion into fluorescent pyrrolidinone 8 was complete after 12 h (Scheme 4) using 5% 6 in the presence of AgSbF

6

(1 eq.).

Scheme 4. Catalytic activity of 6a-b.

Conclusion

This preliminary result prompted us to design and prepare other complexes involving pyrrolidine or piperidine rings

8

with various substituents on the chiral C-2 in order to control the diastereoselectivity and obtain enantiopure chiral homodimeric gold(III) complexes. Such complexes will be tested on the model reactions proposed in the literature.

2-7, 12

Acknowledgments

The authors are deeply grateful to P. Jéhan for MS spectrometry (CRMPO, Scanmat, University of Rennes1) and to A. Bondon for NMR spectroscopy (PRISM, University of Rennes1).

References and notes

1. Kumar R. and Nevado C., Angew. Chem. Int. Ed. 2017, 56, 1994- 2015.

2. Cui J.-F., Ko H.-M., Shing K.-P., Deng J.-R., Lai N.C.-H., and M.-K. Wong, Angew. Chem. Int. Ed. 2017, 56, 3074-3079.

3. Jiang J.-J., Cui J.-F., Yang B., Ning Y., Lai N.C.-H. and, Wong M.-K., Org. Lett. 2019, 21, 6289-6294.

4. (a) Bohan P. T., Toste F. D., J. Am. Chem. Soc. 2017, 139, 11016- 11019. (b) C.-Y. Wu, T. Horibe, C. B. Jacobsen, and F. D. Toste, Nature 2015, 517, 449-454. (c) Zhukhovitskiy A. V., Kobylianskii I. J., Wu C.-Y., and Toste F. D., J. Am. Chem. Soc. 2018, 140, 466-474. (d) Reid J. P., Hu M., Ito S., Huang B., Hong C. M., Xiang H., Sigman M. S. and Toste F. D., Chem. Sci. 2020, 11, 6450-6456

5. Reiersølmoen A. C., Østrem E., and Fiksdahl A., Eur. J. Org.

Chem. 2018, 3317–3325

6. Gasperini D., Greenhalgh M. D., Imad R., Siddiqui S., Malik A., Arshad F., Choudhary M. I., Al-Majid A. M., Cordes D. B., Slawin A. M. Z., Nolan S. P., and Smith A. D., Chem. Eur. J.

2019, 25, 1064 – 1075.

7. Rodriguez J., Bourissou D., Angew. Chem. Int. Ed. 2018, 57, 386- 388.

8. Vu H.-D., Bouvry C., Renault J., Bondon A., Lambert F., Roisnel T. and Uriac P., J. Organomet. Chem. 2019, 897, 228-235.

9. Vu H.-D., Renault J., Roisnel T., Robert C., Jéhan P., Gouault N., and Uriac P., Eur. J. Org. Chem. 2015, 4868-4875 .

10. Aullón G., Bellamy D., Brammer L., Bruton E. A., and Orpen A.

G. Chem. Commun. 1998, 653-654.

11. (a) Nguyen K. H., Tomasi S., Le Roch M., Toupet L., Renault J., Uriac P., and Gouault N., J. Org. Chem. 2013, 78, 7809−7815. (b) Gouault N., Le Roch M., Cheignon A., Uriac P., and David M., Org. Lett. 2011, 13(16), 4371-4373.

12. Serra J., Sosa Carrizo E. D., Mallet-Ladeira S., Massou S., Parella T., Miqueu K., Amgoune A., Ribas X., and Bourissou D. Chem.

Sci., 2018, 9, 3932-3940.

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at http….

CCDC 1996822-1976823 contain the supplementary crystallographic data for 5 and 6a. This data can be obtained free of charge

via www.ccdc.cam.ac.uk/data_request/cif, or by

emailing

data_request@ccdc.cam.ac.uk, or by contacting The

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Highlights

(6)

homodimeric complexes

Graphical Abstract

Références

Documents relatifs

Chaque candidat et candidate respecte, dès le dépôt de son dossier de candidature et tout au long de la procédure d’admission, les modalités de candidature

Cette année, la capacité des candidats à tenir une conversation dans le cadre de cette dernière phase de l’épreuve n’a pas été réellement

Liste des médecins agréés ARS consultable sur le site de l’ARS Bretagne : cliquer sur « santé et prévention », « prendre soin de ma santé », « où me soigner en ville et

2 Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France.. 3

66 % des locaux commerciaux actifs sont concentrés dans le Cœur de Métropole où plus de la moitié des habitants du Pays de Rennes résident.. Le Cœur de Métropole a aussi

The analysis carried out by the third author on the specific asymptotic model of quantum wells in a semiclassical island was developed in order to elucidate the role

8 International Labour Organization (2002), A guide to the Tripartite Declaration of Principles concerning Multinationals Enterprises and Social Policy, Genève,

Arrêté du 26 juin 2013 modifiant l’arrêté du 12 décembre 2012 relatif aux critères d’évaluation de l’état de conservation des matériaux et produits de