• Aucun résultat trouvé

Bursting bubbles

N/A
N/A
Protected

Academic year: 2021

Partager "Bursting bubbles"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-00426717

https://hal.archives-ouvertes.fr/hal-00426717

Submitted on 31 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bursting bubbles

Henri Lhuissier, Emmanuel Villermaux

To cite this version:

Henri Lhuissier, Emmanuel Villermaux. Bursting bubbles. Physics of Fluids, American Institute of

Physics, 2009, 21 (9), pp.091111. �10.1063/1.3200933�. �hal-00426717�

(2)

Bursting bubbles

Henri Lhuissier

1

and Emmanuel Villermaux

1,2

1

IRPHE, Aix-Marseille Université, 13384 Marseille Cedex 13, France

2

Institut Universitaire de France, France

Received 28 May 2009; published online 11 September 2009 兲

doi:10.1063/1.3200933

A young bubble is a piece of bare spherical liquid shell of radius R, with uniform thickness h, formed from an air volume rising underneath a water pool. It bursts by nucleat- ing a hole, opening at the constant tangential velocity V= 冑 2 ␴ / ␳ h balancing inertia with surface tension forces, and collecting liquid in its rim. The centripetal acceleration

␥ = V

2

/ R exerted on the rim perpendicular to the shell surface induces its Rayleigh–Taylor destabilization whose wave- length ␭

⬃ 冑 / ␳␥ scales as the geometrical mean of the only two lengthscales characterizing the bubble,

⬃ 冑 Rh. 共1兲

Examples shown here include: 关 Fig. 1 共 a 兲兴 a snapshot of the rim instability and ligaments expulsion from the full

bursting sequence 关 Fig. 1 共 b 兲兴 of a R= 10 mm radius bubble.

⌬t = 2 ms between frames. Two water bubbles with distinct thicknesses h lead to different wavelengths ␭

: 关Fig. 1共c兲兴 R = 14 mm, ⌬t= 5 ms between frames and ␭

= 2 mm; and 关Fig. 1共d兲兴 R = 11.5 mm, ⌬t = 1.33 ms between frames and

= 0.8 mm.

Ligaments emerge from the rim unstable crests and are stretched by centrifugation. They ultimately break by a cap- illary instability setting the resulting drop size distribution in the spray, as seen in Fig. 1共e兲. The distribution width is fixed by the relative ligament radius corrugations.

1

The drops thus formed are called “film drops.”

2

They originate in nature from bubbles entrained below breaking waves,

3

and are be- lieved to contribute significantly to the net water evaporation from the sea.

4

1E. Villermaux, “Fragmentation,”Annu. Rev. Fluid Mech. 39, 419共2007兲.

2D. C. Blanchard and L. D. Sysdek, “Film drop production as a function of bubble size,”J. Geophys. Res. 93, 3649, DOI:10.1029/JC093iC04p03649 共1988兲.

3G. B. Deane and D. Stokes, “Scale dependence of bubble creation mecha- nisms in breaking waves,”Nature共London兲 418, 839共2002兲.

4E. L. Andreas, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D.

Smith, “The spray contribution to net evaporation from the sea: A review of recent progress,”Boundary-Layer Meteorol. 72, 3共1995兲.

(b) (a)

(d)

(e)

(c) λ ⊥

λ ⊥

FIG. 1.

PHYSICS OF FLUIDS 21, 091111

2009

1070-6631/2009/21共9兲/091111/1/$25.00 21, 091111-1 © 2009 American Institute of Physics

Downloaded 09 Dec 2009 to 147.94.59.24. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

Références

Documents relatifs

As reflected in the vertical velocity component (b), the total velocity (a) for a given bubble is smaller for the polymer solution (open circles), in spite of the fact that

While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field H, walls in the two layers are bound and move at a common

Biophysical methods to characterize cardiovascular tissues Valérie Samouillan 1 *, Jany Dandurand 1 , Colette Lacabanne 1 , Michel Spina 2 , Aleyda B Amaro 3 and

Elles ont donc un rôle essentiel dans la communication bidirectionnelle entre l’intérieur et l’extérieur de la cellule puisque même si elles ne sont pas

This realization, along with interviews, case studies, and analysis led to the hypothesis that processes and tools enable VRM success, but information, organization,

Using these two original algorithms, together with meth- ods for computing exact squared Euclidean distance transform and exact Eu- clidean medial axis, we proposed a

Along with it comes the advent of electronic applications for chronic management, particularly diabetes mellitus.. As a medical student with type 1 diabetes, I provide here a