• Aucun résultat trouvé

Smoke problem in building fires

N/A
N/A
Protected

Academic year: 2021

Partager "Smoke problem in building fires"

Copied!
24
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1964-03-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=79cb93f6-0ce2-4e86-9c9f-3c1a6657de69 https://publications-cnrc.canada.ca/fra/voir/objet/?id=79cb93f6-0ce2-4e86-9c9f-3c1a6657de69

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338039

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Smoke problem in building fires

(2)

NATIONAL R E S E A R C H COUNCIL

CANADA

DIVISION O F BUILDING RESEARCH

THE SMOKE P R O B L E M IN BUILDING F E E S

b y J. H. M c G u i r e

ANALYZED

I n t e r n a l R e p o r t No. 287 of t h e D i v i s i o n of Building R e s e a r c h OTTAWA M a r c h

1 9 6 4

(3)

PREFACE

Smoke i s one of the s e r i o u s a s p e c t s of building f i r e s . It often h a m p e r 6 the e s c a p e or r e s c u e of occupants a s well a s the subsequent efforts t o fight t h e f i r e . Consequently, it becomes an important topic f o r study and r e s e a r c h and a p r e l i m i n a r y study of it i s now reported.

The author i s a r e s e a r c h officer with the F i r e Section of the Division having i n t e r e s t s in the d e v e l o ~ m e n t and s p r e a d of f i r e .

Ottawa March

1964

N.

B.

Hutcheon, Assistant Director.

(4)

T H E SMOKE P R O B L E M IN BUILDING

FIRES

J. H. M c G u i r e S u m m a r y T h e s i g n i f i c a n c e of t h e n e u t r a l p r e s s u r e p l a n e i n a f i r e a r e a i s outlined a n d s o m e i l l u s t r a t i v e e x p e r i m e n t s a r e d e s c r i b e d .

A

t e c h n i q u e i s s u g g e s t e d w h e r e b y t h e s m o k e g e n e r a t e d i n a t y p i c a l building f i r e could b e confined t o t h e i m m e d i a t e f i r e a r e a . It h a s b e e n a p p r e c i a t e d f o r m a n y y e a r s t h a t t h e smoke:* g e n e r

-

a t e d b y f i r e s i n b u i l d i n g s f r e q u e n t l y c r e a t e s p r o b l e m s both f o r o c c u p a n t s a t t e m p t i n g t o e s c a p e and f o r f i r e f i g h t e r s a t t e m p t i n g t o c o m b a t t h e f i r e s . T h e planned m o v e m e n t of o c c u p a n t s t o w a r d a n exit, e v e n i n f a m i l i a r a r e a s , c a n r a p i d l y b e c o m e i m p o s s i b l e a s s m o k e l e v e l s build up, b e c a u s e of t h e r e d u c t i o n i n v i s i b i l i t y a n d i r r i t a t i o n of t h e e y e a n d b r e a t h i n g p a s s a g e s . T h e e n s u i n g d e l a y i n e s c a p i n g m a y b e f a t a l , d e a t h r e s u l t i n g , f o r e x a m p l e , f r o m t h e t o x i c c o m p o n e n t s of t h e p r o d u c t s of c o m b u s t i o n . T h e f i r e f i g h t e r c a n e l i m i n a t e t h e t o x i c g a s a n d i r r i t a t i o n p r o b l e m s b y w e a r i n g b r e a t h i n g a p p a r a t u s but h i s e f f i c i e n c y i s s o m e t i m e s i m p a i r e d by h i s i n a b i l i t y t o l o c a t e t h e o r i g i n of t h e f i r e . T h i s p r o b l e m , h o w e v e r , i s f a r l e s s i m p o r t a n t t h a n t h e h a z a r d s t h a t s m o k e c r e a t e s f o r t h e o c c u p a n t s of buildings. In o r d e r t o a s s e s s t h e m a g n i t u d e of t h i s l a t t e r p r o b l e m t h e r e l e v a n t e x p e r i m e n t a l w o r k a t t h e N a t i o n a l R e s e a r c h Council w i l l be r e v i e w e d . T y p i c a l S m o k e L e v e l s : E x p e r i m e n t a l W o r k D u r i n g t h e w i n t e r of 1957 -58, t h e D i v i s i o n of Building R e s e a r c h of t h e N a t i o n a l R e s e a r c h Council, a s p a r t of a n e x p e r i m e n t a l i n v e s t i g a t i o n known a s t h e St. L a w r e n c e B u r n s

(I),

b u r n e d s i x h o u s e s t o gain knowledge about t h e d e v e l o p m e n t of f i r e .

T h r e e of t h e h o u s e s h a d h i g h l y f l a m m a b l e i n t e r i o r l i n i n g s s u c h a s unfinished f i b r e b o a r d and p r e s s e d p a p e r ; t h e o t h e r t h r e e had m u c h l e s s f l a m m a b l e linings s u c h a s p l a s t e r b o a r d o r p l a s t e r , which w e r e c o l l e c t i v e l y d e s c r i b e d a s n o n - c o m b u s t i b l e linings. In e a c h h o u s e t h e f i r e w a s s t a r t e d in wooden c r i b s , l o c a t e d i n t h e l i v i n g r o o m , but t h e r e w a s no o t h e r

T h r o u g h o u t t h i s r e p o r t t h e t e r m " s m o k e " i s a p p l i e d t o a l l g a s e o u s p r o d - u c t s of c o m b u s t i o n w h e t h e r v i s i b l e o r not.

(5)

e x t r a n e o u s f u e l ( s u c h as f u r n i t u r e ) i n a n y p a r t of t h e h o u s e . One down- s t a i r s window o r door w a s left p a r t l y open.

T a b l e I l i s t s t h e m o s t i m p o r t a n t r e s u l t s t h a t a r e r e l e v a n t t o t h i s r e p o r t . Of t h e five c r i t e r i a t h a t a r e involved i n T a b l e I, four a r e

c o n c e r n e d with conditions u n d e r which a h u m a n being m i g h t not s u r v i v e . T h e fifth c r i t e r i o n , v i s i b i l i t y , i s r e l a t e d t o likelihood of e s c a p e , F r o m t h e point of view of t h i s r e p o r t t h e i m p o r t a n t o b s e r v a t i o n t h a t c a n b e m a d e f r o m T a b l e I i s t h a t t h e m i g r a t i o n of s m o k e u n d e r t h e c o n d i t i o n s c o n s i d e r e d c o n s t i t u t e s a m o s t s e r i o u s h a z a r d even t o t h e o c c u p a n t s of a b e d r o o m , t h e door of which i s c l o s e d . T h e r e s u l t s i n T a b l e I a r e r e l a t e d t o s m o k e conditions i n t h e u p p e r s t o r e y of a dwelling when a f i r e i s i n p r o g r e s s on t h e l o w e r s t o r e y . Another s e t of c i r c u m s t a n c e s of i n t e r e s t t o f i r e a n d building o f f i c i a l s i s t h e d e n s i t y of s m o k e t o b e e x p e c t e d i n t h e c o r r i d o r of a building when a f i r e d e v e l o p s in a r o o m opening f r o m t h e c o r r i d o r , t h e door t o t h e r o o m b e i n g shut. Two t e s t s i l l u s t r a t i n g t h e s e conditions w e r e t h e r e f o r e c a r r i e d out i n a c o r r i d o r - r o o m t e s t a s s e m b l y which w a s c o n s t r u c t e d f o r a n e x p e r i m e n t a l p r o g r a m t o i n v e s t i g a t e t h e s p r e a d of f i r e in s u c h c o n s t r u c t i o n s T h e c o r r i d o r w a s

60

ft long, 8 ft wide, and 8 ft high and t h e r o o m w a s 12 f t long by 8 ft wide. T h e w a l l s of t h e s t r u c t u r e w e r e of c o n c r e t e b l o c k s , and t h e c e i l i n g lining m a t e r i a l w a s a s b e s t o s s h e e t i n g on which l a y s e v e r a l i n c h e s of exfoliated v e r m i c u l i t e insulation. Between t h e c o r r i d o r and t h e r o o m a 1/4-in. a s b e s t o s s h e e t door w a s i n s t a l l e d a n d a 1

-

t o 2-in. c r a c k w a s l e f t between t h e top of t h e door and t h e bottom of t h e lintel. During t h e f i r s t t e s t a n opening of about 2 s q ft w a s left a t a low l e v e l b e t w e e n t h e r o o m and t h e e x t e r i o r . D u r i n g t h e second t e s t t h e a r e a of t h i s opening w a s r e d u c e d t o about 1 s q ft and a n a d d i t i o n a l opening of about 1 . 8 s q ft w a s l e f t a t

a

high level.

In e a c h c a s e the f u e l c o n s i s t e d of five 4- by 8-ft s h e e t s of u n t r e a t e d f i b r e b o a r d s t a c k e d p a r a l l e l t o e a c h o t h e r and s e p a r a t e d b y about

1 ft. T h e f i r e w a s s t a r t e d with about half a pint of gasoline.

T h e r e s u l t s of t h e two t e s t s w e r e t h a t t h e c o r r i d o r b e c a m e smoke-logged i n about

6

and 12 m i n , r e s p e c t i v e l y . A s m o k e m e t e r w a s u s e d t o d e t e r m i n e t h e o p t i c a l t r a n s m i s s i v i t y of t h e s m o k e and w a s l o c a t e d a t t h e c e n t r e of t h e c o r r i d o r . F u r t h e r d e s c r i p t i o n of t h e a p p a r a t u s a n d a n y p r e c i s e definition of t h e t e r m "smoke-logged" i s h a r d l y n e c e s s a r y , h o w e v e r , f o r t h e t r a n s m i s s i o n o v e r t h e 1. 73 -ft path l e n g t h of t h e s m o k e m e t e r d e c r e a s e d f r o m 8 0 p e r c e n t t o l e s s t h a n 8 p e r c e n t between t h e 5th and 7th m i n in t h e f i r s t t e s t and between t h e 1 l t h and 13th mi11 in t h e s e c o n d t e s t . In addition, o b s e r v a t i o n s i n d i c a t e d t h a t v e r y l i t t l e t i m e e l a p s e d

(6)

A r e a s o n a b l y adequate s u m m a r y of the r e s u l t s would be t h a t untenable conditions developed i n t h e c o r r i d o r soon a f t e r t h e c o m m e n c e

-

m e n t of t h e f i r e i n t h e r o o m .

E f f e c t of F u e l

P r a c t i c a l e x p e r i e n c e s u g g e s t s t h a t s m o k e l e v e l s c o m p a r a b l e t o t h o s e quoted above w i l l p r o b a b l y p r e v a i l i n m a n y buildings r e g a r d l e s s

of t h e n a t u r e of the fuel involved, F o r t h i s r e a s o n , t h e r e f o r e , t h e p r i n c i p a l r e c o m m e n d a t i o n given i n t h i s r e p o r t i s not c o n c e r n e d with

p o s s i b l e r e s t r i c t i o n s on t h e m a t e r i a l s t o be i n c o r p o r a t e d in buildings e i t h e r a s c o n t e n t s o r a s p a r t of t h e c o n s t r u c t i o n . N e v e r t h e l e s s , t h e p r o p e r t i e s of t h e m a t e r i a l s l i k e l y t o c o n s t i t u t e fuel c a n have a s u b s t a n t i a l influence on t h e s m o k e conditions t o b e expected. P r o b a b l y t h e m o s t i m p o r t a n t r e l e v a n t p r o p e r t y i s t h e f l a m e s p r e a d index, a s t h i s w i l l i n f l u e n c e t h e likelihood of t h e development of a f i r e . T h i s question, h o w e v e r , c o m e s within the g e n e r a l field of f i r e p r e v e n t i o n and w i l l not be d i s c u s s e d in t h i s r e p o r t , t h e s u b j e c t m a t t e r of which i s confined t o m e a s u r e s s p e c i f i - c a l l y a i m e d a t combatting s m o k e .

During t h e e a r l y s t a g e s of combustion, s o m e m a t e r i a l s

g e n e r a t e s m o k e a t a m u c h g r e a t e r r a t e t h a n o t h e r s and t e s t s e x i s t w h e r e b y t h i s p r o p e r t y of a m a t e r i a l m a y be q u a n t i t a t i v e l y a s s e s s e d i n t e r m s of a

"smoke index. " Although t h e g e n e r a t i o n of smoke, when a m a t e r i a l b u r n s ,

is highly dependent on the c o m p l e t e n e s s of combustion, s o m e d e g r e e of i n c o m p l e t e c o m b u s t i o n i s a l w a y s t o b e found i n building f i r e s , a t one s t a g e o r a n o t h e r , and h e n c e t h e s m o k e i n d i c e s of t h e m a t e r i a l s involved c a n be expected t o i n f l u e n c e t h e t o t a l volume of s m o k e g e n e r a t e d . F o r t h i s r e a s o n , s o m e r e s t r i c t i o n on t h e u s e of m a t e r i a l s , by r e g u l a t i o n of p e r m i s s i b l e

s m o k e i n d i c e s , is a u s e f u l s t e p i n combatting s m o k e p r o b l e m s .

Unfortunately, t h e p r e s e n t l e v e l of knowledge on t h e s u b j e c t d o e s not allow t h e f o r m u l a t i o n of t r u l y sound r e c o m m e n d a t i o n s . One i n t e r e s t i n g s u g g e s t i o n i s t h a t t h e s m o k e index of a n y m a t e r i a l t o be used in a c o m p a r t m e n t should not be a n y h i g h e r t h a n t h e h i g h e s t i n d e x of m a t e r i a l s whose u s e i s unavoidable. In m a n y c a s e s t h e i n d e x t h a t w i l l r e s u l t f r o m s u c h a c o n s i d e r a t i o n will be t h a t of s o m e s p e c i e s of wood. T h e o r e t i c a l A n a l y s i s of P r o b l e m S m o k e m o v e m e n t f r o m a burning a r e a t o a n a d j a c e n t one r e s u l t s m a i n l y f r o m t w o p h e n o m e n a : ( 1 ) the t h e r m a l expansion of the g a s e s in t h e f i r e a r e a , a s t h e i r t e m p e r a t u r e r i s e s , and ( 2 ) the continuous d i s c h a r g e of g a s e s , a t a high l e v e l , f r o m t h e f i r e a r e a and t h e i r r e p l a c e m e n t by

a i r e n t e r i n g a t a low level. T h e s e c o n d phenolmenon will be d i s c u s s e d

f i r s t , p a r t l y b e c a u s e i t is t h e m o r e i m p o r t a n t and p a r t l y b e c a u s e the m e a n s t h a t will be s u g g e s t e d f o r combatting i t w i l l l a r g e l y solve the p r o b l e m

(7)

T h e m e c h a n i s m r e s p o n s i b l e f o r t h e continuous m o v e m e n t of g a s e s i n t o and out of a f i r e a r e a i s i l l u s t r a t e d i n F i g u r e 1 which a l s o

i l l u s t r a t e s t h e conditions t h a t w i l l g o v e r n t h e flow of g a s t o a d j a c e n t a r e a s . A d e t a i l e d a n a l y s i s of t h e m e c h a n i s m i s given i n Appendix A. T h e s a l i e n t f e a t u r e i s t h a t a t low l e v e l s t h e p r e s s u r e within t h e f i r e a r e a w i l l be l o w e r t h a n t h a t o u t s i d e , s o t h a t a i r w i l l flow in t h r o u g h a n y l o w - l e v e l openings, while a t high l e v e l s t h e p r e s s u r e w i l l be g r e a t e r , and t h e r e f o r e g a s e s w i l l flow out of h i g h - l e v e l openings. In t h e i d e a l i z e d c a s e a n e u t r a l p r e s s u r e p l a n e will e x i s t a t which t h e p r e s s u r e within t h e f i r e a r e a e q u a l s t h a t o u t -

s i d e .

Whether s m o k e w i l l flow f r o m a f i r e a r e a t o an a d j a c e n t a r e a , s a y , a c o r r i d o r , depends on t h e r e l a t i v e h e i g h t s of t h e connecting openings and t h e n e u t r a l p r e s s u r e p l a n e . If, a s shown i n F i g u r e l b , t h e c o n n e c t i n g openings a r e below t h e l e v e l of t h e n e u t r a l p l a n e , t h e n t h e s e openings w i l l c o n s t i t u t e i n l e t s t o t h e f i r e a r e a and t h e " c o r r i d o r " or o t h e r a d j a c e n t a r e a will r e m a i n s m o k e f r e e . One o t h e r f e a t u r e h a s , i n f a c t , b e e n i n t r o d u c e d in F i g u r e l b , v i z . , t h e s m a l l opening t o t h e e x t e r i o r i l l u s t r a t e d a t t h e b o t t o m r i g h t - h a n d c o r n e r of t h e d i a g r a m . T h i s opening i s n e c e s s a r y t o e n s u r e t h a t t h e p r e s s u r e s a t a l l l e v e l s i n t h e s m o k e - f r e e a r e a a r e t h e s a m e a s t h o s e out

-

s i d e , s o t h a t t h e l e v e l of t h e one n e u t r a l p r e s s u r e p l a n e , a s d r a w n , w i l l g o v e r n t h e g a s flow f r o m t h e f i r e a r e a t o both t h e e x t e r i o r and t h e s m o k e

-

f r e e a r e a . F a i l u r e t o include t h i s s m a l l opening would give m o r e c o m p l i - c a t e d conditions t h a t would c e r t a i n l y l e a d t o a flow of s m o k e i n t o t h e

" c o r r i d o r . I ' A n a l y s i s would show t h e e x i s t e n c e of two n e u t r a l p l a n e s , one

r e l a t e d t o t h e flow t o t h e e x t e r i o r and t h e o t h e r t o t h e flow t o t h e " c o r r i d o r . I '

T h u s , t o m a i n t a i n a n a r e a s m o k e f r e e , t h e e s s e n t i a l r e q u i r e m e n t i s t h a t openings c o m m u n i c a t i n g with t h e f i r e a r e a should be a t a l o w e r l e v e l t h a n t h e n e u t r a l p r e s s u r e plane. In g e n e r a l t h e l e v e l of t h e s e openings w i l l be s e t b y c o n s i d e r a t i o n s o t h e r t h a n f i r e and it i s t h e r e f o r e d e s i r a b l e t h a t t h e l e v e l of t h e n e u t r a l p l a n e should b e a c o n t r o l l a b l e v a r i a b l e .

Appendix A shows t h a t t h e l e v e l of t h e n e u t r a l p l a n e i s given by t h e e x p r e s s i o n

( T h e s y m b o l s i n t h i s e x p r e s s i o n a r e defined by F i g u r e 2. ) The two t e m p e r

-

a t u r e s involved c a n h a r d l y b e d e s c r i b e d a s c o n t r o l l a b l e v a r i a b l e s and i t i s p o s s i b l e t h a t t h e r e i s a n i r r e d u c i b l e m i n i m u m f o r t h e value of A l l t h e i n l e t a r e a . T h e o u t l e t a r e a A2, h o w e v e r , i s c o n t r o l l a b l e and i n c r e a s i n g i t r a i s e s t h e n e u t r a l p l a n e , which i s i n v a r i a b l y t h e a c t i o n t h a t i s r e q u i r e d , i f any. At t h e beginning of t h i s s e c t i o n i t w a s s t a t e d t h a t s m o k e m i g r a t i o n a l s o r e s u l t s f r o m t h e t h e r m a l e x p a n s i o n of t h e g a s e s in t h e f i r e a r e a , a s t h e i r t e m p e r a t u r e r i s e s . T h e m a x i m u m t e m p e r a t u r e t o be e x p e c t e d in a

(8)

f i r e , on a n a b s o l u t e s c a l e , will g e n e r a l l y not e x c e e d five t i m e s t h e

a m b i e n t t e m p e r a t u r e s o t h a t t h e volume of t h e g a s e s t o be d i s p l a c e d w i l l e q u a l about four t i m e s t h e o r i g i n a l volume of t h e f i r e region. T h e d i s - p l a c e d g a s e s will cool s o t h a t t h e i r volume will a p p r o x i m a t e t o t h e v o l u m e of t h e f i r e r e g i o n . T h e a c t i o n r e c o m m e n d e d t o c o m b a t t h e " s t e a d y - s t a t e "

m i g r a t i o n , h o w e v e r , w i l l l a r g e l y s o l v e t h e t r a n s i e n t p r o b l e m f o r i t involves t h e p r o v i s i o n of high-level openings t o t h e e x t e r i o r . Neglecting t h e effect of winds, t h e s m o k e flow t o o t h e r p a r t s of t h e building w i l l be r e d u c e d a t l e a s t by t h e r a t i o of t h e a r e a of t h e c o m m u n i c a t i n g openings t o t h e t o t a l openings ( t h e s u m of t h e c o m m u n i c a t i n g openings and t h o s e t o t h e e x t e r i o r ) .

In f a c t , the two phenomena w i l l be o c c u r r i n g c o n c u r r e n t l y and a d e t a i l e d a n a l y s i s of t h e p r o b l e m would show t h a t t h e n e t effect of t h e t r a n s i e n t condition i s a l o w e r i n g of t h e n e u t r a l p l a n e . A s l i g h t l y m o r e

l i b e r a l p r o v i s i o n of high-level openings w i l l t h e r e f o r e c o m p l e t e l y e l i m i n a t e t h e flow of s m o k e t o a d j a c e n t a r e a s , A helpful f e a t u r e i s t h a t t h e t r a n s i e n t phenomenon w i l l o c c u r p r i o r t o t h e development of m a x i m u m t e m p e r a t u r e s and t h i s i s t h e v e r y t i m e when t h e l e v e l of t h e n e u t r a l p l a n e a s c a l c u l a t e d i n Appendix A w i l l b e high. T h e additional effect of t e m p e r a t u r e r i s e m i g h t only be, t h e r e f o r e , t o d r o p t h e l e v e l of t h e n e u t r a l p l a n e t o t h e final value i t w i l l a s s u m e i n t h e s t e a d y s t a t e when t h e t e m p e r a t u r e i s a t a m a x i m u m .

Appendix B d i s c u s s e s t h e c o m p o s i t e p r o b l e m and s h o w s t h a t t h e s i z e of opening t o t h e e x t e r i o r , needed t o e l i m i n a t e g a s flow t o a d j a c e n t a r e a s a s a r e s u l t of t h e r m a l expansion, will u s u a l l y be of t h e o r d e r 2 s q ft p e r 1 0 , 0 0 0 cu ft volume of t h e f i r e c o m p a r t m e n t .

T h e U s e of F a n s

T h e t h e o r e t i c a l a n a l y s i s of t h e p r o b l e m h a s c l a r i f i e d t h e m e c h a n i s m s involved i n s m o k e m o v e m e n t and h a s s u g g e s t e d a m e a n s of combatting it. A f u r t h e r technique i s a l s o w o r t h i n v e s t i g a t i n g : t h e u s e of f a n s t o p r e s s u r i z e t h e a r e a which i s t o be m a i n t a i n e d s m o k e f r e e , T h i s s u b j e c t i s e x a m i n e d in Ap2endix

G

w h e r e it i s shown t h a t , if no o t h e r m e a s u r e s w e r e t a k e n , i t might be n e c e s s a r y t o e s t a b l i s h p r e s s u r e s of up t o 0 . 1 in. of w a t e r . T o a c h i e v e t h i s would u s u a l l y involve high c a p a c i t y

f a n s a s l e a k a g e t o o t h e r a d j a c e n t a r e a s would c o n s t i t u t e a s u b s t a n t i a l

p r o b l e m . T h u s , a s i s s t a t e d in Appendix C, t h e throughput beneath a t y p i c a l door might be a s high a s 200 cu ft/min.

E x p e r i m e n t a l C o n f i r m a t i o n of R e c o m m e n d a t i o n

The r e c o m m e n d a t i o n , a s f o r m u l a t e d s o f a r , h a s been b a s e d on t h e a s s u m p t i o n t h a t t h e g a s e s within t h e f i r e a r e a a r e s t a g n a n t , T h e o v e r -

a l l upward v e l o c i t y of t h e g a s e s m a y c e r t a i n l y be neglected i n c o m p a r i s o n with t h e i n l e t and outlet v e l o c i t i e s , but t h e v e l o c i t i e s a s s o c i a t e d with

(9)

check on t h e validity of t h e r e s u l t given in Appendix A i s t h e r e f o r e d e s i r

-

able.

The following t e s t w a s c a r r i e d out in t h e c o r r i d o r - r o o m a s s e m b l y d e s c r i b e d e a r l i e r in t h i s r e p o r t . At a low l e v e l in one wall of t h e r o o m t h e r e w a s an opening t o t h e e x t e r i o r of a r e a 70 s q in. con-

stituting an i n l e t ; 8 4 in. above t h i s t h e r e w a s an outlet t o the e x t e r i o r of a r e a 256 s q in. T h e p r i n c i p a l opening communicating with the c o r r i d o r w a s a 1 -in. c r a c k a t t h e top of t h e door, which w a s 24 in. below t h e m e a n height of the outlet. T h e s e conditions c o r r e s p o n d qualitatively t o t h o s e of the second of the two c o r r i d o r t e s t s p r e v i o u s l y d e s c r i b e d . In t h e e a r l i e r t e s t , however, t h e r a t i o of t h e outlet t o inlet a r e a s was such t h a t t h e

n e u t r a l plane w a s a p p r e c i a b l y lower than t h e top of t h e door linking t h e r o o m and the c o r r i d o r . The fuel was the s a m e a s for t h e t e s t s previously

d e s c r i b e d : five s h e e t s of 4 - by 8-ft f i b r e b o a r d stacked with the s h o r t e r dimension v e r t i c a l , t h e f i r e being initiated with about half a pint of gasoline. T o o b s e r v e the e f f e c t i v e n e s s of f a n s , two f a n s with a t o t a l r a t e d c a p a c i t y of 500 cu ft p e r min w e r e i n s t a l l e d in t h e c o r r i d o r .

At frequent i n t e r v a l s during the t e s t an o b s e r v e r stood behind the a s b e s t o s door in t h e c o r r i d o r and noted t h e movement of s m o k e f r o m the f i r e a r e a into t h e c o r r i d o r . The l e v e l of the n e u t r a l plane could be

d e t e r m i n e d t o an a c c u r a c y of about

*

4 in. by watching t h e behaviour of t h e s m o k e at a s m a l l v e r t i c a l c r a c k adjacent t o the door.

During the whole c o u r s e of t h e t e s t , with t h e p o s s i b l e exception of t h e f i r s t 3 m i n u t e s , t h e n e u t r a l plane r a n g e d between points 1 o r 2 in. below and

6

in. above the top of the door. T h i s v a r i a t i o n w a s not obviously

r e l a t e d t o t i m e .

P e r i o d i c a l l y t h e f a n s w e r e switched on f o r s h o r t p e r i o d s , but it w a s found t h a t t h e y had l i t t l e influence on t h e l e v e l of the n e u t r a l plane. A m a n o m e t e r i n s t a l l e d between t h e c o r r i d o r and t h e e x t e r i o r indicated t h a t t h e p r e s s u r e differential c r e a t e d by t h e f a n s w a s l e s s than 0. 01 in. of w a t e r . T h e r e w e r e n u m e r o u s c r a c k s in t h e walls and e n d s of t h e c o r r i d o r and the m a r k e d effect t h e s e can have on p r e s s u r e differential i s shown in Appendix

C . T h u s , a fan c a p a c i t y of up t o 200 cfm should be provided for t h e s m a l l gap t o be found beneath a s i n g l e . d o o r . Unless v e r y high-capacity fans o r r e l a t i v e l y well s e a l e d e n c l o s u r e s a r e involved t h e p r e s s u r i z i n g of a r e a s i s not l i k e l y t o be p r a c t i c a l .

T h e f a n s p e r f o r m e d another v e r y useful function, h o w e v e r , and t h a t w a s t h e r a p i d c l e a r i n g of any s m o k e that w a s allowed t o e n t e r the

c o r r i d o r . The throughput of the fans constituted a volume change e v e r y

8 m i n s o that t h i s r e s u l t i s not s u r p r i s i n g .

T h e l i m i t e d m i g r a t i o n of s m o k e t o the c o r r i d o r r e s u l t e d a l m o s t e n t i r e l y f r o m t h e s t e a d y - s t a t e phenomenon t h a t w a s d e s c r i b e d in t h e p r e v i o u s

(10)

s e c t i o n s i n c e t h e r e l a t i o n s h i p b e t w e e n t h e o u t l e t a r e a and v o l u m e of t h e r o o m m a d e t h e t r a n s i e n t , t h e r m a l e x p a n s i o n p h e n o m e n o n i n s i g n i f i c a n t . It is t h e r e f o r e i n t e r e s t i n g t o c o m p a r e t h e l e v e l of t h e n e u t r a l p l a n e with t h e c o n d i t i o n s given b y t h e e x p r e s s i o n d e r i v e d i n Appendix B :

( T h e s y m b o l s u s e d i n t h i s e x p r e s s i o n a r e defined by F i g u r e 2,)

T h e only v a r i a b l e i n t h e above e x p r e s s i o n which w a s not m e a s u r e d d u r i n g t h e t e s t w a s

T ,

and s u b s t i t u t i n g t h e v a l u e s of t h e o t h e r p a r a m e t e r s g i v e s T

=

1190°C. T h i s v a l u e i s p r o b a b l y h i g h e r t h a n t h e m e a n g a s t e m p e r a t u r e i n t h e r o o m , but i t i s of t h e r i g h t o r d e r , i n d i c a t i n g t h a t t h e s i m p l e t h e o r y depending on t h e a s s u m p t i o n of s t a g n a n t g a s e s within t h e e n c l o s u r e i s a r e a s o n a b l y c l o s e a p p r o x i m a t i o n t o t h e t r u t h . Any m o r e a c c u r a t e d e t e r m i n a t i o n of t h e a p p r o p r i a t e t e m p e r a t u r e s t o u s e i n t h e e x p r e s s i o n , for t h e v a r i o u s c o n d i t i o n s l i k e l y t o b e e n c o u n t e r e d i n p r a c t i c e , would involve a s u b s t a n t i a l p r o g r a m of w o r k which could not b e c o n t e m p l a t e d a t t h e t i m e of w r i t i n g of t h i s r e p o r t . It i s a l s o doubtful w h e t h e r m o r e

a c c u r a t e i n f o r m a t i o n would find m u c h p r a c t i c a l application.

C o m ~ l i c a t i n e F a c t o r s

In applying t h e s i m p l e c r i t e r i a quoted i n t h i s r e p o r t t h e fir s t c o m p l i c a t i n g f e a t u r e t h a t m u s t b e r e c o g n i z e d , although i t i s v i r t u a l l y s e l f - a p p a r e n t , i s of s u c h i m p o r t a n c e t h a t i t i s w o r t h e m p h a s i z i n g . T h e a r e a s A l , A2 and A3 r e f e r t o openings a s t h e y w i l l e x i s t a t s o m e t i m e d u r i n g t h e c o u r s e of a f i r e . T h u s , i f a r e g i o n i n c l u d e s a s u b s t a n t i a l a r e a of s i m p l e glazing, a c c o u n t m u s t b e t a k e n of t h e f a c t t h a t i t w i l l p r o b a b l y f a l l out d u r i n g t h e c o u r s e of a f i r e . A c o n s e r v a t i v e c a l c u l a t i o n would a s s u m e t h a t h i g h - l e v e l g l a z i n g would r e m a i n i n t a c t w h e r e a s low - l e v e l g l a z i n g would f a i l out.

T h e d e s i g n c r i t e r i o n t h a t follows f r o m t h e argurrlents given i n t h i s r e p o r t i s t h a t s i m p l e windows i n e x t e r i o r w a l l s , a t a l e v e l h i g h e r t h a n t h e door l i n t e l , a r e a c c e p t a b l e . Windows a t a l o w e r l e v e l m u s t b e c o n s i d e r e d a s u n d e s i r a b l e openings u n l e s s s p e c i a l p r e c a u t i o n s h a v e b e e n t a k e n t o k e e p t h e m i n p l a c e . W i r e d g l a s s , f o r e x a m p l e , m i g h t r e m a i n i n t a c t f o r up t o a n h o u r . T o e n s u r e t h a t t h e a p p r o p r i a t e d o o r s c l o s e i n t h e e v e n t of a f i r e and t h a t t h e a p p r o p r i a t e h i g h - l e v e l openings a r e e s t a b l i s h e d , i n t e r

-

c o n n e c t i o n with a f i r e d e t e c t o r s y s t e m ( o r p o s s i b l y a s p r i n k l e r s y s t e m ) is p r o b a b l y e s s e n t i a l . T h u s t h e h i g h - l e v e l opening m i g h t b e n o r m a l l y s e a l e d b y a f l a p h e l d c l o s e d by a s i m p l e e l e c t r o - m a g n e t . When t h e p o w e r i s d i s - c o n n e c t e d a s p r i n g could t h e n f o r c e t h e f l a p open. D e v i c e s of t h i s n a t u r e intended t o h o l d opet-I d o o r s t h r o u g h which t h e r e i s h e a v y t r a f f i c , a r e a l r e a d y a p p e a r i n g on t h e N o r t h A m e r i c a n m a r k e t .

(11)

A

second f e a t u r e that i s well w o r t h c o n s i d e r i n g i s the effect of e x t e r i o r wind on t h e movement of s m o k e i n a building, f o r p r e s s u r e s of about 0. 3 in. of w a t e r c a n be developed by a 25-rnph wind. In s o m e l o c a t i o n s t h e r e i s a p r e v a i l i n g wind d i r e c t i o n and no action a t a l l is n e c e s s a r y w h e r e t h e high l e v e l vent a r e a s will open i n a l e e w a r d direction. E n c l o s u r e s on t h e windward s i d e of a building, h o w e v e r , should be a r r a n g e d t o have openings t o l e e w a r d i n t h e event of a f i r e . S o m e duct w o r k would t h e r e f o r e be n e c e s s a r y and, i f t a k e n t o t h e top of t h e building, it would s e r v e a n additional function by giving a c h i m n e y action and hence v e r y g r e a t l y r a i s i n g t h e l e v e l of t h e n e u t r a l plane. Much of t h e duct w o r k could be common t o s e v e r a l e n c l o s u r e s .

A

f e a t u r e t h a t h a s b e e n ignored in t h e t r e a t m e n t , s o f a r , i s t h a t m o s t openings have finite height and t h e effective height of s u c h an opening i s not e x a c t l y equal t o t h e m e a n height above the n e u t r a l plane. F o r a n opening of c o n s t a n t width, however, t h e c o r r e s p o n d e n c e i s

sufficiently c l o s e (between 0.88 and unity) a s t o m a k e t h e d i s c r e p a n c y not too i m p o r t a n t . Where multiple openings a r e c o n s i d e r e d , t h e a c c u r a t e e x p r e s s i o n for t h e effective height of a n u m b e r of a r e a s A1, A 2 , A3 etc. a t h e i g h t s h i , h2, h 3 etc. above the n e u t r a l plane is:

T h i s e x p r e s s i o n i s c u m b e r s o m e , however, and i n g e n e r a l a s i m p l e a v e r a g e on a n a r e a b a s i s would be sufficiently a c c u r a t e .

Conclusions

1. T h e movement of s m o k e in building f i r e s r e s u l t s p r i n c i p a l l y f r o m a s t e a d y - s t a t e phenomenon causing g a s e s t o flow out of h i g h - l e v e l o u t l e t s , t o be r e p l a c e d b y a i r e n t e r i n g at low-level i n l e t s . A n e u t r a l

p r e s s u r e plane e x i s t s below which openings will c o n s t i t u t e i n l e t s and above which openings will c o n s t i t u t e outlets. T h e l e v e l of t h e n e u t r a l plane i s given by t h e e x p r e s s i o n :

In o r d e r t o e s t i m a t e t h e value of A2 (high-level o u t l e t ) , n e c e s s a r y t o give a sufficiently high n e u t r a l plane, it i s r e a s o n a b l e t o a s c r i b e a value of 1450°K (approx, 1180°C) t o t h e absolute t e m p e r a t u r e T. In a n a r e a t o be maintained s m o k e f r e e i t m u s t a l s o be r e m e m b e r e d t h a t a s m a l l opening communicating with t h e e x t e r i o r i s e s s e n t i a l ( F i g u r e I b).

(12)

2. During t h e e a r l y s t a g e s of a f i r e , s m o k e m o v e m e n t will a l s o r e s u l t f r o m t h e r m a l expansion of the g a s e s in t h e f i r e a r e a . In g e n e r a l a high l e v e l opening of 2 s q ft p e r 10, 000 cu ft of volume will be sufficient t o e n s u r e t h a t the s m o k e does not flow t o other p a r t s of t h e building

( a s s u m i n g t h e a p p r o p r i a t e d o o r s , etc.

,

a r e closed).

3. Variation of the l e v e l of t h e n e u t r a l plane between one r e g i o n and another by t h e u s e of f a n s will u s u a l l y r e q u i r e v e r y high c a p a c i t y f a n s sufficient t o e s t a b l i s h a velocity of about 12 f t / s e c at a l l t h e v a r i o u s c r a c k s and other openings which will a l m o s t c e r t a i n l y exist. E v e n i f t h i s

objective is not achieved, however, a volume change e v e r y few m i n u t e s , in an a r e a t o be maintained a s f r e e of s m o k e a s p o s s i b l e , will r a p i d l y d i s - p e r s e s m o k e i n a d v e r t e n t l y admitted when, s a y , a door t o the f i r e a r e a i s t e m p o r a r i l y opened.

4. If t h e t o t a l quantity of s m o k e g e n e r a t e d during a f i r e is t o be l i m i t e d it would be helpful t o r e s t r i c t the f u e l s involved on t h e b a s i s of a "smoke-index" given by s o m e suitable t e s t .

R e f e r e n c e

1. S h o r t e r , G , W . ,

J.

H. McGuire, N. B. Hutcheon and R. F. Legget. The St. Lawrence B u r n s. Q u a r t e r l y of t h e NFPA, Vol. 53, No. 4, A p r i l 1960, p. 300-316. ( r e p r i n t e d a s NRC 5730).

(13)
(14)

NEUTRAL PRESSURE

PLANE

CORRIDOR

CRACKS

(eg ARO

DOORS)

CORR

l

DOR

0

/ b

1

F I R E

AREA^\

SMOKE

FILLED

I

I

SMOKE

I

DOORS)

- -

I

SMALL

OPEN

l

NG

EXTERlO

- - -

- -

D

TO

R (AT

- - -

-CRACKS

FIRE AREA

( e g AROUND

I

( A ) LOW NEUTRAL PLANE

(8)

HIGH NEUTRAL PLANE

ANY L E V E L )

FIGURE

I

THE EFFECT OF LOCATION OF N E U T R A L PRESSURE PLANE

(15)

FIGURE

2

THE LOCAT ION OF THE NEUTRAL PRESSURE P L A N E

B R 302/

-

2

AREA A2

,

GAS DENSITY

p

O

NEUTRAL PRESSURE

PLANE

Tbl

VELOCITY

v2

ABSOLUTE TEMP To

2

Po

t

" I

GAS DENSITY

p ,

- - -

P o - - -

ABSOLUTE TEMP

T

(16)

F I G U R E

3

COMPOSITE

PROBLEM

(

V A R I A B L E TEMPERATURE)

AREA Ap Z

l

/

A

R

E

A

A,

i

l

"

v2T

- - -

NEUTRAL PRESSURE

PLANE

GAS DENSITY

P

0

ABSOLUTE TEMP To

- -

Po

1

GAS DENSITY

pe

- - -

P o - - -

ABSOLUTE TEMP

T = T o + B

L

J

i'

AREA A,

VOLUME

V

(17)
(18)

A P P E N D I X

A

TKE LOCATION O F THE NEUTRAL PRESSURE PLANE

If

it is a s s u m e d t h a t t h e g a s e s within

a

f i r e e n c l o s u r e a r e s t a g n a n t , t h e n F i g u r e 2 i l l u s t r a t e s t h e conditions t h a t w i l l p r e v a i l , t h e i m p o r t a n t f e a t u r e being t h a t a n e u t r a l p r e s s u r e p l a n e e x i s t s , below which all openings will constitute i n l e t s and above which all openings w i l l

c o n s t i t u t e o u t l e t s .

T h e l e v e l of t h e n e u t r a l p l a n e is a function of t h e p a r a m e t e r s defined i n F i g u r e 2 and m a y be d e t e r m i n e d b y a n a p p l i c a t i o n of B e r n o u l l i ' s e x p r e s s i o n t o t h e g a s v e l o c i t i e s v l and v2 a t t h e i n l e t and outlet

r e s p e c t i v e l y . B e r n o u l l i s t a t e s t h a t t h e v e l o c i t y (v) t h r o u g h a n o r i f i c e , f o r n o n - v i s c o u s flow, i s r e l a t e d t o t h e p r e s s u r e d i f f e r e n c e e i t h e r s i d e of t h e o r i f i c e by t h e e x p r e s s i o n :

P r e s s u r e d i f f e r e n c e

=

pvL/2

w h e r e p is the density of t h e g a s e s and v t h e i r velocity.

Applying Bernoulli's e x p r e s s i o n t o t h e two openings,

and H e n c e The p a r a m e t e r s d e n s i t y and v e l o c i t y m a y b e e l i m i n a t e d f r o m t h e f a c t t h a t : and f r o m m a s s c o n s e r v a t i o n c o n s i d e r a t i o n s , t h a t : In d i s c u s s i n g p r a c t i c a l conditions r e l a t i n g t o m a s s flow a n o r i f i c e f a c t o r

would need t o be included t o c a t e r f o r f r i c t i o n a l l o s s e s . In g e n e r a l , h o w e v e r , t h e f a c t o r s r e l a t i n g t o t h e two openings as i l l u s t r a t e d i n F i g u r e 1 w i l l h a v e t h e s a m e value ( 0 .

6)

and will not t h e n a p p e a r i n t h e solution f o r t h e l e v e l of the n e u t r a l plane. Substituting t h e s e e x p r e s s i o n s in equation ( 1 ) g i v e s

(19)

Equation ( 2 ) i s of the u t m o s t i m p o r t a n c e for i t shows that t h e location of the n e u t r a l plane m a y be r e a d i l y r a i s e d b y i n c r e a s i n g t h e r a t i o of the high level openings t o the low l e v e l openings.

(20)

APPENDIX

B

COMPOSITE

P R O B I S M (VARYING TEMPERATURE)

Where t h e t e m p e r a t u r e i s v a r y i n g i n a f i r e e n c l o s u r e , t h e conditions i l l u s t r a t e d in F i g u r e 3 can r e a d i l y be e s t a b l i s h e d . By

r e s t r i c t i n g t h e t o t a l a r e a (A1

+

A2

+

Ag) it is a l s o p o s s i b l e t h e o r e t i c a l l y , and p r o b a b l y in p r a c t i c e , t o e n s u r e t h a t

all

t h e s e a r e a s c o n s t i t u t e o u t l e t s and t h a t t h e concept of a n e u t r a l plane i s invalid. T h i s situation i s t o be1 avoided, however, and will t h e r e f o r e not be d i s c u s s e d h e r e .

With t h e conditions i l l u s t r a t e d in F i g u r e 3, t h e vena c o n t r a c t a v e l o c i t i e s v l and v2 will again be governed b y Bernoulli's e x p r e s s i o n , s o t h a t p r e c i s e l y t h e s a m e e x p r e s s i o n s will r e s u l t a s in Append'ix A, viz:

Again, t h e d e n s i t y p a r a m e t e r s m a y b e e l i m i n a t e d b y t h e r e l a t i o n s h i p po

/

pe

=

T / T o . T h i s r e l a t i o n s h i p a l s o g i v e s t h e r e s u l t t h a t (P,

-

pe)

/

po

=

B / T s o t h a t equations ( 1 ) and ( 2 ) b e c o m e

and 2 h2gf3/T

=

v

2

0 2 ( 4)

T h e m a s s c o n s e r v a t i o n equation, which m u s t now be invoked, d i f f e r s f r o m t h a t given in Appendix A, f o r i t m u s t include a t e r m c o v e r i n g the expansion i n t h e f i r e volume. It i s

w h e r e n i s a n o r i f i c e f a c t o r a s s o c i a t e d with t h e vena c o n t r a c t a and will in g e n e r a l have t h e value 0.

6 .

E l i m i n a t i n g p and p

(21)

Equations ( 3 ) , ( 4 ) and

( 6 )

a r e sufficient in n u m b e r , t h e o - r e t i c a l l y , t o allow t h e elimination of v l and v2. Unfortunately a n

a t t e m p t at a solution gives a v e r y c u m b e r s o m e q u a d r a t i c equation. The s i m p l i c i t y of t h e solution for the s p e c i a l c a s e d i s c u s s e d in Appendix A s u g g e s t s , however, t h e following technique. Consider t h e outlet a r e a t o b e divided into two p a r t s (A2 and A3) a s i l l u s t r a t e d in F i g u r e 3, the a r e a A2 being a s s o c i a t e d with t h e s t e a d y - s t a t e p r o c e s s and t h e a r e a A3 with t h e t h e r m a l expansion.

Equation

( 6 )

then divides into two p a r t s , a s follows:

and

Equations ( 3 ) , ( 4 ) and ( 7 ) then give the s a m e r e s u l t

as

i n Appendix A,

i.

e .

Equations (4) and (8) give the r e s u l t

w r i t i n g n = 0.

6.

The f o r m of equations ( 9 ) and (11) i s v e r y i n t e r e s t i n g for t h e y a r e , t o a c o n s i d e r a b l e extent, c o m p l e m e n t a r y . At t h e e a r l i e s t s t a g e s of a f i r e when T

3

T o , A2 need not b e a s l a r g e a s l a t e r on when T h a s a t t a i n e d i t s m a x i m u m . On the other hand, s i n c e both a T and a

8

l / 2 a p p e a r i n t h e denominator of equation ( 1 1) A3 will need t o be l a r g e in t h e e a r l y s t a g e s . A s an equilibrium t e m p e r a t u r e is attained (and hence d ~ / d t

=

0). A3 m a y tend t o z e r o . In p r a c t i c e A3 will n e v e r be a d e q a a t e l y l a r g e i n t h e e a r l y

(22)

Figure 4

is a g r a p h of A 3 a g a i n s t

0

f o r T o = 300" K

( 2 7 "

C ) ,

V

=

10,000 c u f t , h 2

=

2 ft, and d ~ / d t

=

1 ' ~ / s e c o r lZOO°C r i s e i n

(23)

APPENDIX C

FLOWS AND PRESSURES

The possible effect which a fan might have in preventing t h e flow of s m o k e f r o m one a r e a t o another m a y be quite r e a d i l y e s t i m a t e d t h e o r e t i c a l l y .

F r o m Appendix A the p r e s s u r e difference causing s m o k e t o flow f r o m one a r e a t o another a t a high l e v e l i s

Writing % / p e = '/To and

0

= T - T

0 gives

Where a single s t o r e y c o m p a r t m e n t i s being c o n s i d e r e d t h e m a x i m u m value which 6p i s l i k e l y t o a s s u m e i s 0. 1 in. of w a t e r , which would r e s u l t w h e r e , s a y , t h e r e i s a n opening 8 ft

6

in. above t h e n e u t r a l plane and a t e m p e r a t u r e r i s e of 1200°C i s involved.

If a fan i s t o be expected t o e s t a b l i s h a c o m p a r a b l e p r e s s u r e i n an a r e a t o be maintained f r e e of s m o k e , i t will g e n e r a l l y need t o be of high c a p a c i t y b e c a u s e of t h e v a r i o u s c r a c k s and s m a l l openings t h a t w i l l be found in t h e s u r f a c e s bounding t h e a r e a .

The a i r velocity t o be expected a t c r a c k s , e t c . can again be e s t i m a t e d f r o m an application of Bernoulli's e x p r e s s i o n which gives

where

h

= water head ( f t )

W

-

Pw = density of water

and Po = density of a i r ( s a m e units a s p )

W

The f a c t o r 0. 6 h a s been introduced a s a n o r i f i c e f a c t o r , It i s probably

m o r e fittingly applied a s an a r e a c o r r e c t i o n , but applying i t t o the p a r a m e t e r velocity gives t h e s a m e end r e s u l t s o f a r a s m a s s flow i s concerned.

(24)

3

Hence v

=

( 1 . 6

x 10

H

) 0. 5 w h e r e

H

=

w a t e r h e a d (in. )

W W 7

T h u s w h e r e

H

=

0. 1 in. w a t e r , v

=

1 2 . 7 f t / s e c . W

Such a velocity i s quite s u b s t a n t i a l and t h u s a volume t h r o u g h - put of o v e r 200 c u f t / m i n would r e s u l t beneath a t y p i c a l door ( 3 f t 3 in.

wide) with a gap of one inch between i t and t h e f l o o r . Such gaps a r e common, r a t h e r than t h e exception, often being left t o allow f o r t h e laying of c a r p e t s .

Figure

FIGURE  I  THE  EFFECT  OF  LOCATION  OF  N E U T R A L   PRESSURE  PLANE

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé "plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ