• Aucun résultat trouvé

ROTON SECOND SOUND AND THE ROTON-ROTON INTERACTION POTENTIAL

N/A
N/A
Protected

Academic year: 2021

Partager "ROTON SECOND SOUND AND THE ROTON-ROTON INTERACTION POTENTIAL"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00218377

https://hal.archives-ouvertes.fr/jpa-00218377

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ROTON SECOND SOUND AND THE

ROTON-ROTON INTERACTION POTENTIAL

B. Castaing, A. Libchaber

To cite this version:

B. Castaing, A. Libchaber.

ROTON SECOND SOUND AND THE ROTON-ROTON

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplement au n" 8, Tome 39, aout 1978, page C6-219

ROTON SECOND SOUND AND THE R0TON-R0TON INTERACTION POTENTIAL

B. Castaing and A. Libchaber

Groupe de Physique des Sol-ides de I'Ecole Normale SupSrieure, 24 rue Lhomond, 7S2S1 Paris OS,France

+ Address for correspondence : Institut Laue-Langevin, 1S6X, 38042 Grenoble Cedex, France.

Résumé.-Nous avons mesuré la vitesse et 1' absorption du second son de rotons dans sa région d'existence à haute pression (25/bars) et basse température (autour de 0, 5 K).Les mesures

d'absorption nous donnent la fréquence de collision roton-roton. Cette fréquence de collision est en bon accord avec celle obtenue par d'autres mesures à plus haute température, compte tenu de la modification du nombre de rotons. Afin d'expliquer la grande valeur obtenue, qui n'était pas bien

comprise, nous proposons un nouveau potentiel d'interaction entre rotons, qui prend en compte l'échange de rotons virtuels entre eux. Nous obtenons alors un très bon accord avec l'expérience sans l'aide d'aucun paramètre ajustable.

A b s t r a c t . - We have measured the roton second sound v e l o c i t y and absorption a t high pressure and low

temperature. The absorption measurements give a roton-roton c o l l i s i o n frequency i n good agreement

with the previous measurements a t higher temperature. In order to explain i t s v a l u e , we have b u i l t

a new i n t e r a c t i o n p o t e n t i a l between r o t o n s , taking into account the exchange of v i r t u a l rotons

between them. We then obtain a very good agreement with the experiment without any adjustable

parameter.

1. INTRODUCTION.- The experimental discovery / l / of

the roton second sound predicted by Khalatnikov and

Chernikova / 2 / has raised many i n t e r e s t i n g problems

/ 3 - 6 / .

In a recent paper 111, we r e p o r t roton second

sound v e l o c i t y and roton-roton c o l l i s i o n time

mea-surements by heat pulses experiment. We will

con-c e n t r a t e here on the roton-roton con-c o l l i s i o n time

measurements. Indeed the shape of the i n t e r a c t i o n

p o t e n t i a l between rotons i s , in our view an

import a n import quesimportion. Laudau and Khalaimportnikov / 8 / had p r o

-posed a 5 - l i k e i n t e r a c t i o n , in order to explain the

v i s c o s i t y measurements, but J . Yan and M.J. Stephen

191 have shown t h a t t h i s type of p o t e n t i a l gives a

maximum effective cross section too small to i n t e r

-pret the experimental r e s u l t s . In f a c t , the long

range i n t e r a c t i o n must be dipole-dipole l i k e 19/,

but a t small d i s t a n c e s (< 3 A) t h i s p o t e n t i a l i s

probably inadequate. With a reasonable cut-off (5A)

19/, the cross section becomes too small. Yan and

Stephen / 8 / then introduce an a r b i t r a r y short

range potential

-

.

2. EXPERIMENTAL RESULTS.- The experimental set-up

has been described elsewhere / 3 / . We thus w i l l only

describe the measurements p r i n c i p l e s . On figure 1,

we see the typical shape of the roton second

sound s i g n a l .

1 t(ms)

Fig. 1 : Typical line shapes of roton second sound pulse, for a propagation length of 6 mm :

a) P = 2 5 bars, T = 0.51 K. b) P = 15 bars, T=0.57 K The points correspond to the arrival time.

In order to have a good precision for the velocity v of this mode, following /3/, we assimilate this

shape to the sum of a gaussian and its derivative. The c'entre of this shape gives the propagation ti-me t = — where L is the propagation length. If the maximum and the minimum are well marked, the time interval between them is, with a good approximation

?u2L TJ-T-V/Z

equal to 2 3— where T is the roton-rotoi

*•

v

J k B

T rr

collision frequency, u = and y the roton effec-tive mass. It is our way of measuring Tr r. t Laboratoire associe au C.N.R.S.

(3)

As t h e most probable c o l l i s i o n p r o c e s s e s a r e of t h e type : 2R + 2R where R s t a n d s f o r a r o t o n , t h e c o l l i s i o n frequency i s expected t o be l i k e :

-

1 = B nr where nr i s t h e r o t o n number d e n s i t y rr

and B slowly dependson t h e temperarure. We have measured B a t two p r e s s u r e s : P = 25 b a r s and P = 20 b a r s . The r e s u l t s a t T = 0.5K a r e : -16 3 P = 25 b a r s B = ( 1 - 7 ' 0 . 2 ) 10 m / s P = 20 b a r s B =

+

0 . 2 ) 10- 16 m 3 / S These r e s u l t s a r e i n f a i r agreement w i t h t h e v i s c o s i t y /10/ and r o t o n l i f e t i m e /11/ measurements a t h i g h e r temperature which g i v e a v a l u e o f B c l o s e t o 2x10 -16 m 3 / s

3. ROTON-ROTON INTERACTION POTENTIAL.- I n t h i s s e c t i o n we propose a new form f o r t h e p o t e n t i a l between r o t o n s , s t a r t i n g from t h e i d e a t h a t a r o t o n

i s s t r i c t l y e q u i v a l e n t t o a d i p o l e , t h a t i s t o a c l o s e s o u r c e and w e l l o f %e. We t h u s s e a r c h f o r t h e i n t e r a c t i o n p o t e n t i a l between such d i p o l e s .

Let u s assume f i r s t t h a t t h e o n l y elementary e x c i t a t i o n s i n l i q u i d % e ( t h a t i s t h e only f r e e o s c i l l a t i o n s of t h e v e l o c i t y f i e l d ) a r e t h e phonons, t h e d i s p e r s i o n r e l a t i o n of which i s q2

-

w2 = 0.

7

C

An e x a c t p a r a l l e l can b e made t h e n between t h e e l e c - t r i c f i e l d i n t h e vacuum and t h e v e l o c i t y f i e l d i n %e. T o r example, i n t h e presence of a s o u r c e of %e, t h e F o u r i e r t r a n s f o r m V (q,u) of t h e v e l o c i t y p o t e n t i a l ' w o u l d be g i v e n by :

( $ - a ~ ( q , w ) = c o n s t .

2

I n a s t a t i c problem (without tempdral dependence) : V(q) =

m.

I n t h e presence of a d i p o l e

P:

2

a

=

a

61;;)

and t h e i n t e r a c t i o n p o t e n t i a l b e t - q2

ween two d i p o l e s P and P i s :

+ +

+ - t

2 V(q) = pl ( p l q ) (XJ2q)

q2

The r o t o n s , because of t h e i r d i p o l a r backflow

+

and t h e form of t h e i n t e r a c t i o n energy : $.vS,

T h i s p o t e n t i a l corresponds t o t h e exchange of " v i r t u a l phonons" between two r o t o n s / g / . But r o t o n s a r e a l s o elementary e x c i t a t i o n s of 4 ~ e . The phonon-roton d i s p e r s i o n r e l a t i o n can b e approximated by t h e formula :

(k i s t h e wave v e c t o r a t t h e r o t o n minimum, p t h e e f f e c t i v e mass and Athe gap of t h e r o t o n s ,

K =-- ('U)

'l2

.

We t h u s assume t h a t t h e v e l o c i t y

M

p o t e n t i a l i n t h e presence of a source of 4 ~ e i s g i v e n by : 2 2 ( K ~

+

(q-ko) )

-

u2 V(q,w) = c o n s t .

l

and t h e i n t e r a c t i o n p o t e n t i a l between two r o t o n s

becomes :

+ +

3

+

fi2k: (klq) (k2q) V(k k ,q) =

-

1 2 P q2 ( ~ ; + ( q - k ~ )

n e g l e c t i n g t h e temporal dependence which y i e l d s r e - t a r d e d p o t e n t i a l s . For small q ( o r t h e l o n g r a n g e c a s e i n t h e d i r e c t space) we r e c o v e r t h e preceding formula. The d i f f e r e n c e between t h i s p o t e n t i a l and t h e preceding one i s a k i n g of Yukawa p o t e n t i a l , of

1 r a n g e

-

o s c i l l a t i n g w i t h t h e s p a t i a l frequency k o .

KO'

It corresponds t o t h e exchange of " v i r t u a l r o t o n s " between t h e two r o t o n s . I n o r d e r t o e s t i m a t e t h e t - m a t r i x f o r roton-roton d i f f u s i o n and t h u s t h e roton-roton c o l l i s i o n frequency, we have used t h e Lippmann-Schwinger 1121 v a r i a t i o n a l method. The f o r - mula o b t a i n e d f o r ;:'c i s :

I1

VC' E, i s a n energy cut-off of t h e o r d e r of

-

2

.

The v a l u e s o b t a i n e d f o r B a t T = 0 . 5 K a r e :

P = 25 b a r s : B = 1 . 6 ~ 10-16m3/s P = 20 b a r s :

B

= 1.44 x 10-16m3/s

(4)

References

/l/ Khalatnikw,

I.M.

and Chernikova, D.M., Zh. Ekps. Teor. Fiz.

50

(1965) 411

/2/ Dynes, R.C., Nara~anamurti,

V. and Andres, K., Phys. Rev. sett.

30

(1973) 1129

I31 Castaing, B., Phys. Rev.

B13

(1976) 3854

/4/ Maris, H.J., Phys. Rev. Lett.

36

(1976) 907

/S/ Weiss, K., Phys. Rev.

B15

(1977) 4227

161

Khalatnikov,

I.M.,

Phys. Lett.

(1977) 205

/7/ Castaing, B. and Libchaber, A.,

3.

Low. Temp. Phys.

31

(1978) 887

/8/ Landau, L.D. and Khalatnikov, I.M., Zh. Eksp. Teor. Fiz.

19

(1949) 637

/g/ Yan,

J.

and Stephen, M.J., Phys. Rev. Lett.

2

(1971) 482

/10/ Brewer, D.F. and Edwards, D.O., in Proc. Of 8th Int. Conf. on Low. Temp. Physics,

(1962) ed. Davies R.O. (Butterworths, London) 1963 p. 96

/l11 Greytak, T.J. and Yan,

J., in Proc. of 12th Int. Conf. on Low Temp. Physics,

Kyoto (Academy of Japan, Tokyo) 1971

Références

Documents relatifs

if assumed to exist between the rotons, would enhance.. In Stephen's theory [5] of Raman scattering from liquid helium the light can couple only to the D wave portion of

Specific heat (total, phonon, and roton contribu- tions) and total molar entropy at the saturated vapor pressure, as a function of temperature, calculated numerically using the

Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two dis- tinct types of excitations, gapless phonons and gapped rotons or fermionic

- une fiche descriptive du sujet destinée à l’examinateur : Page 2/5 - une fiche descriptive du matériel destinée à l’examinateur : Page 3/5 - une grille

(W defines the angle of the wave vector with respect to f the normal of the layers figure 1). The main difficulty with traditional techniques such as Brillouin scattering

Trapped dipolar Bose gases can exhibit a quasiparticle spectrum with a roton minimum [21, 22].. This occurs because the dipolar interaction cannot be described only by a short-

While the losing order parameter disappears in the mean field ground state, it should manifest itself as a soft mode in the excitation spectrum.. Think for instance of a

On suppose désormais que la corde est faite de deux parties de même longueur, mais de caractéristique différentes.. Pour la commodité, on prend une nouvelle origine au centre de