• Aucun résultat trouvé

A study of the Phase Diagram of the Micellar Binary Solution Models I: Mean Field Approach

N/A
N/A
Protected

Academic year: 2021

Partager "A study of the Phase Diagram of the Micellar Binary Solution Models I: Mean Field Approach"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00247230

https://hal.archives-ouvertes.fr/jpa-00247230

Submitted on 1 Jan 1996

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A study of the Phase Diagram of the Micellar Binary Solution Models I: Mean Field Approach

A. Benyoussef, L. Laanait, N. Masaif, N. Moussa

To cite this version:

A. Benyoussef, L. Laanait, N. Masaif, N. Moussa. A study of the Phase Diagram of the Micellar

Binary Solution Models I: Mean Field Approach. Journal de Physique I, EDP Sciences, 1996, 6 (8),

pp.1043-1058. �10.1051/jp1:1996115�. �jpa-00247230�

(2)

A Study of the Phase Diagram of the Micellar Binary Solution Models

I: Mean Field

~

Approach

À. Benyoussef (~),

L.

Laanait (~),

N.

Masaif

(~>~)

and

N. Moussa

(~)

(~)

L.M.P.H.E.,

Faculté des

Sciences,

B-P- 1014,

Rabat,

Morocco (~)

École

Normale

Supérieure,

B-P. 5118, Rabat, Morocco

(~)

Département

de

Physique LPT,

Faculté des Sciences et

Techniques,

B-P. 577,

Setta,

Morocco

(Received

22

September

1995, revised 8

February1996, accepted

19 March

1996)

PACS.75.10.-b General

theory

and models of

magnetic ordering

Abstract. Trie mean field

approximation

is used to

investigate

trie

phase diagrams

in a three-dimensional lattice of micellar binary solutions

m the presence of a chemical

potential

of

trie

amphiphiles

for different values of

coupling

interactions. New

phases

appear between trie water-ricin and

amphiphile-nch

ones. Second and first order transitions,

tricritical,

multicritical and critical

end-points

are obtained.

By

a

simple

low temperature expansion argument, we bave

confirmed the existence of states of lowest free energy ma mean field approximation.

Résumé.

L'approximation

du

champ

moyen est utilisée pour examiner les

diagrammes

de

phases

d'un modèle sur réseau à trois dimensions pour les solutions binaires micellaires en

présence

d'un

potentiel chimique

des

amphiphiles

pour différentes valeurs de

couplage

d'interac- tions.

Cependant,

des nouvelles

phases

apparaissent entre l'eau et

l'amphiphiie.

Des transitions du second et du

premier ordre,

les

points multicritiques, tricritiques

et

critiques

ont été obtenus.

Avec un argument

simple

de

développement

à basse

température

nous avons confirmé les états de basse

énergie

libre

en

champ

moyen.

1. Introduction

In recent years

great

effort has been made in

experimental

and theoretical

physics

to understand the behavior of

phase diagrams

of

amphiphilic systems. Recently,

several models of the

binary

mixtures of an

amphiphile (it

is a molecule of both

hydrophilic

and

hydrophobic parts)

and

1A<ater have been

proposed

in order to

reproduce

the

phases

observed

experimentally [1-7].

In

general,

the

amphiphile

molecules in

water-amphiphile

mixtures

try

to arrange themselves

as to

only

expose their

polar

head groups to the water molecules. In

particular,

when the

amphiphile

is

wholly

immersed in water, trie molecules

again try

to reduce the area of contact

«<ith water in order to form various kinds of

aggregates (rods, spheres, lamellar, ...). Precisely,

1A<hen a

hydrocarbon

is in contact with water, the network of

hydrogen

bonds between water molecules reconstructs itself to avoid the region

occupied by

the

hydrocarbon.

This constraint

on the local structure of water decreases the entropy near the

hydrocarbon,

and it results in

an increase in the free energy of the

system

[8].

©

Les

Éditions

de

Physique

1996

(3)

For

amphiphilic systems,

the

aggregation

of molecules of the

binary

solution induces

equilib-

rium processes controlled

by

intermolecular and

interaggregate

forces

[9].

Micellar

aggregates

appear in various

shapes

and

sizes, depending

on the

amphiphiles,

the concentration and other

thermodynamic parameters.

This

suggests

a classification of the

aggregates

into three

general categories

as follows:

1) globular aggregates

where a

spherical

micelle is a

prototype

of this

Mass; 2)

rod-like

aggregates

where a

cylindrical

micelle is the

typical example

of this

Mass;

3) bilayers

where a disk-like

aggregate

is an

example

of this Mass. The choice among all the

possible shapes

is determined

by

interactions between the

hydrophilic headgroups

and

geomet-

ric

packing

constraints on the

hydrophobic tails,

but the transition from one

shape

to another

may be obtained

by changing

either the

temperature

or the concentration or

by adding

a third

component.

With

increasing amphiphile

concentration a

variety

of

lyotropic phases

are found

(see [9-14]).

The

phase diagram

for the water and

C12E5 system (1.e. C12H25(DCH2CH2)SDH)

that

represents

such

phenomena

is

reproduced by Strey

et ai.

ils].

At low

temperatures, Gompper-Schick

[4] and Matsen-Sullivan [3] have shown the coexistence of

homogeneous

water-rich and

amphiphile-rich phases using

mean field

theory.

However at

higher temperatures,

there is a

single

disordered

phase.

The

phase diagram

established in [4]

resembles that of the

C12E5

and water

system

[9] for which

scattering experiments

have carried out

[14].

Conceming

the

microscopic approach,

Shnidman and Zia [16]

recently proposed

a

lattice-gas model,

based on

constructing

a

coarse-grained representation

of different

types

of

aggregates occurring

m micellar

binary

solutions

(MBS'S)

in terms of

Ising

variables.

Namely,

one intro-

duces on a lattice site

(1, j, k)

the

Ising

variable

satisfying

s~,j,k

" +1

(spin-up)

for a micellar

section and s~,j,k " -1

(spin-down)

for a

region

of

comparable

size but

predommantly occupied by

a solvent.

A

single up-spin completely

surrounded

by down-spms

is identified with a

globular micelle,

and a linear chain of up-spms surrounded

by down-spins corresponds

to a rod-like micelle.

Finally,

an

up-spin

at the end of a chain of

up-spins

surrounded

by down-spins

is called an end cap

(see

Ref.

[16]).

The twc-dimensional version of the model was

recently

studied

Ii?i,

at low

temperatures, using

the

Pirogov-Sinai theory

and the low

temperature phase diagrams

were

investigated

in

the

parameter

space of T

(temperatures)

and h

(chemical potential

of the

amphiphiles)

for certain values of the interactions

parameters

of the model.

Dur motivation m this work is to

provide,

within the mean-field

approximation,

a

descrip-

tion of the states of lowest free energy for the three-dimensional version of the model and to describe the

phase diagrarns

in the space of the parameters T

(temperature)

and h

(chemical potential

of

amphiphiles)

for certain values of the parameters

Ko, Ki, K2

and J

characterizing

the interactions of the model under

study (see

Sect. 2 for

definitions).

Then we check the

conjectured phase diagrams proposed by

Shnidman and Zia. This

study

led to the conclusion that the chemical

potential

of the

amphiphiles, h,

for fixed values of the

coupling interactions,

may

change

the nature of the

phase

transitions m fundamental way,

inducing

the appearance of multicritical

points.

We note that the model

describing

the

physical

case

corresponds

to

positive

values of J.

The paper is

organized

as follows: in Section

2,

we describe the Shnidman and Zia model

in terms of

Ising spin

variables. In Section

3,

we mtroduce the

ground

states of the model. In

Section

4,

we establish the

expression

of the free energy and the mean field

equations

for the

system

considered. Results and discussions are

presented

in Section 5.

Finally,

in Section

6,

we

present

our conclusions.

(4)

-K

i

K i+ Ko )/2 "§o

~

_'

+

G~ ~~- -~~ ~

+

-)+( -j+j- +j-

++- ~ ~

~)

C

b

~

8

5

~

l'il ~'~2 ~3 ~4

dÉ~ m~ tll~ m~ m~

/

b)

~

1?ig. 1.

a)

The

configuration energies

for Ri > Ko > 0.

(a)

A

sphencal

micelles.

(b) End-cap

sections m rodlike micelles.

(c) Cylindrical

sections in rodlike micelles.

b) (mi,

m2,

..,

m8)

are trie values of trie spms on trie

eight

sublattices.

2. Shnidman and Zia Model

The Hamiltonian of the

proposed

model is a sum of three terms:

H=Hk+Hj+Hh,

Where

Hk

is effective at the intramicellar

length scale, representing many-body

interactions

responsible

for self-association and

controlling

the size and

shape

distribution of

aggregates,

and

Hj

describes an effective

short-range coupling

between the

aggregates

at

larger

intermicellar

length

scales.

Finally, Hh

is the

part controlling

the concentration of

aggregates.

We assign

negative

energies

-Ko, -Ki

and

-K2, respectively,

for the formation of a

spherical micelle,

a rod-like micelle and a

layer-like

micelle

(planes

of +1

spins

surrounded

by

-1

spms).

l?or

simplicity,

we show the

configurations

of these

energies

for a two-dimensional

system [16]

in

Figure

la. For an

end-caps "spherical-rodlike", "rodlike-layer",

the averages

-(Ko

+

Ki)/2

éLnd

-(Ki

+

K2)/2

are chosen

respectively.

~ro have an idea of the

dependence

of the

energies -Ko, -Ki

and

-K2

and the characteristics of the

amphiphile molecule,

let and u

denote, respectively,

the

length

and the volume of the

molecule. Let also a be the area of the

head-group

of the molecule. Then if a >

3(u/1)

the

éimphiphiles prefers

to

organize

in

spherical

micelles [6] and then the energy

-Ko

is less than t.he other energies

(-Ki

and

-K2).

If now

2(u/1)

< a <

3(u/1)

the

spherical

micelles are unstables and the rod-like micelles are the

preferred

micellar

geometry

and then

-Ki

is less than the others energies

(-Ko

and

-K2). Finally,

if

(u/1)

< a <

2(u/1)

the

layer-like

is the

only

stable

aggregation geometry (among

the three basic

shapes considered);

so

-K2

is less

than the others energies

(-Ko

and

-Ki).

To write H

explicitly,

it is convement to use the

lattice-gas

variables

t~ j,k "

(1

+ a~

j,k)/2

and i~j,k =

(1

a~

j,k)/2.

(5)

For further

convenience,

we define the bilinear

products

U~,j,k "

t~-1,j,kt~+1,j,k

~i>J>k

Î~-1,j,kt~+1,j,k

Wj,j,k "

t~-1,j,kt~+1,j,k

+

i~-1,j,kt~+1,j,k,

and similar one obtained

by replacing1

~

j

and ~ k. In terms of these

operators,

H is

given by

H =

-Ko ~j t$ûjûk (Ko

+

Ki) ~j t(w~ûjûk

+

$wjûk

+

$

+

ûj

+

wk)

2

(Ki

+

K2) ~j t(u~wjûk

+

w~ujûk

+

$wjuk

+

$ujwk

+

w~ûjuk

+

u~ûjwk)

2

-Ki ~j t(u~ûjûk

+

$ujûk

+

$ûjuk) K2 ~j t(u~ujûk

+

û~ujuk

+

ufijuk)

-J

~j1(u~

+ u~ + uk h

£(t 1),

where we have

suppressed

all

except

the underlined indices and the summations are over ail site indices

[16].

The Hamiltonian H is transformed in terms of

Ising variables,

to the form

-H =

Ji ~j

a~ +

2J2 ~j

a~aj +

2J3 ~j

a~aj +

J4 ~j

a~aj

(1) (2) (3) (4j

+J5 ~j

Sa j ak +

J6 ~j

Sa j ak +

J7 ~j

Sa j ak

(5) (6) (7)

+J8 ~j

S°j °k +

Jg ~j

S°j °k°1 +

J10 ~j

S°j °k°1

(S) (9) (10)

+

J11 ~j

$ajakal +

J12 ~j

$ajakai +

J13 ~j

$ajakalam

(il) (12) (13)

+J14 ~j

~°j°k°1°m +

J15 ~j

S°j°k°1°m +

J16 ~j

S°j°k°1°m°n

(14) (là) (16)

+Ji7 ~j

a~aj ak ai aman +

Ji8 ~j

a~ajak ai amanap,

(17) (18)

where

Ji

" h

((14Ko

+

6Ki -15K2 48J) /128),

J2

"

-(6Ko

+

6Ki 2K2

+

32J) /128,

J3

"

-(-4Ko+4Ki+6K2)/128,

J4

=

(2Ko

+

6Ki

+

5K2

+

16J) /128,

J5

"

(2Ko

+

6Ki

+

5K2 16J)/128,

J6

=

(2Ko 2Ki 3K2)/128,

J7

"

-(Ko+Ki-K2)/128,

J8

=

-(Ko 3Ki

+

3K2 )/128,

Jg

=

-(Ko

+

Ki K2)/128,

Jio

=

K2/128,

(6)

Jii

=

-(Ko-3Ki+3K2)/128,

J12

"

J13

"

Ji4

"

K2/128,

J15

"

J16

"

(Ko

+

Ki

+

K2 )/128

and

J17

"

J18

"

-(2Ko

+

6Ki

+

3K2)/128.

'The summation

(1), (2),

,

(18) corresponding

to the

configurations

mdicated in Table I are the sums which run over the different

sites,

bonds and

loops

of the

following

cell:

~i

~m q

i~

'Table

,q

q.

q

~

i q~

~ ~___~ ,

°~~~*~i ~l~'q~

,

?~l

~i

; q

. q~

J'~

q~

( ~Îj~ (

;

,

~

*,, ---à~--«

q~ ~Î

OEj

( "Q

~l

i~ q~.

q

~.

~ qk.

q ~.

q~

qç. q

~l » . » . »

i,' i,'

qi,'

i,'

qi,'

~ ~ ~

~jj,W~

~,

~ ~jj,f~~~

~

ÎÎn ~'

Q1

~qn q~ Îq~

(7)

3. Ground States of trie Model

To discover the

ground

states of the

model,

we propose the

following:

First,

we divide the lattice

Z~

into

eight

sublattices and we denote

by

mi, m2,

, ms the

parameters characterizing

the

magnetizations

on the

eight

sublattices

(Fig. lb).

Dur atm here is to determine all the

periodic configurations

of the lattice

Z~ (which

in tum are

translationally

invariant in each

sublattice)

that mmimize the energy U

(see Appendix).

To do

this,

we must search

numerically for

the values of

magnetizations (mi,

m2,

,

m8)

which minimize the energy,

U,

for

given

values of the

parameters

of the

system.

We daim that our

procedure

must be

self-consistent;

hence it is necessary to use

correctly

the definition of a

ground

state

[18]: by

a

ground

state we mean a

periodic configuration having

a minimal energy "Eo" such that any local

perturbation

increases its energy. Therefore it is useful to look for the excitations of all the

preceding penodic configurations (Tab. Il)

and to indicate the

region

of their

stability by verifying

whether

they

are

positive

or not

(see Fig. 2b).

We

point

out that we

only consider,

in this paper, the different cases

corresponding

to com-

peting

interactions of the model

(e.g. Ko

>

Ki

>

K2, Ko

>

K2

>

Ki,

and to show what

happens

to

phase diagrams

at low

temperature

if we vary the chemical

potential

of the

amphiphiles.

We denote

by Gi

the "water"

ground

state

(g.s.), G2

the set of

"hexagonal" (infinite

"rod"

micelles), G3

the set of

"spherical" micelles, G4

the set of mixed

"rod-spherical" micelles, G5

the set of mixed

"rod-layer" micelles, G6

the set of "reversed"

micelles, G7

the set of rarefied

"spherical" micelles, G8

the set of rarefied infinite "rod"

micelles, Gg

the set of "lamellar"

(infinite "bilayer" micelles), Gio

the set of rarefied "reversed" micelles and

Gii

the

amphiphile (see Fig. 2a).

Theirs energies, Eo, are

Eo(Gi)

"

h, Eo(G2)

"

-)ÎKI

+

2J], Eo(G3)

"

-jÎKo

+

3J],

Eo(G4

=

Î2h

+

3Ki

+

Ko

+

9J], Eo(G5

"

Î2h

+

Ki

+

K2

+

3J],

Eo(G6)

"

Î2h

+

3K2

+

3J], Eo(G7)

"

Î-6h

+

Ko

+

3J],

Eo(G8)

"

-jÎ-2h+Ki+2J], Eo(Gg)=-j[K2+J],

Eo(Gio)

"

-(Î2h

+ J +

K2), Eo(Gii)

" -h.

4. Mean Field

Approach

Using

the mean field

approximation

the free energy,

F,

of the micellar

binary

solutions at three dimensions may be

expressed

as function of the inverse

temperature fl,

variational

parameters h~,

=

1,

,

8,

the

magnetizations

m~,

=

1,

,

8,

and

J~,1

=

1,

,

18,

which are mentioned

previously:

8 8

~

~~ Î~ ~~~~~~~~~~~~~

~

Î~ ~~~~

~

~

where trie average

magnetization

per 8pin

m~,1

=

1,. ,8,

is

given by

ill~ =

tanin(flà~).

(8)

'The mean field

equations

for this situation are obtained

by minimizing

the expression for the free energy,

F,

with

respect

to the variational parameters

h~,

1=

1,

,

8 combined with the llast

expression

for the

magnetization.

Then the first

equation

for this

system corresponding

to

'fable II.

Energies of elementary

e~citations

of

trie

ground

states

Gi, G2,

...,

Gii.

Ground

state Excitation

energy Spin flip fn(@ ) J

j----j j+---1

GI E(ti~)=-2H-Ko

~ l

G~

à=2H+3J+2Kj-Ko

~

-++-

-++-

(Gzfi=-2H+2J+2Ki-3K~ ~~

1-++-1 j-++-j

1-++-1

j--+-j

G3

3~1=2H+Ko+6J

~

+--+

+--+

(G3fi=-2H+3J+3Ko-3Kj ~~

1+--+~ j+++-j

Î+--+~

j+-+-j

G4 E(G4

+--+

+--+

j+++-j j++++j

E(G4 fi

+--+

--+

j+++-j j+-+-j

E(G4 h

+--+

--+

j+++-j j+++-j

4)4=2H+Ko+6J

~

+--+

---+ 8

G5 E(G5~1=-2H+3J+2Ki

+--+1

1++-+1

fi=2H-3J+2K~-Ki-Ko

(~~~~j

+--+ ---+

j++++j j+-++j

E(G5 h

+--+

--+

j++++j j++++j

5)4=2H+3J+Kj

~

+--+

---+

j+++-j j-++-j

G6 E(G6

~1

-+++

-+

j+++-j j++++j

~~6~2~

~~~~~~~~

(9)

Table II.

(continued)

----1

G7

E(G7J1=-2H-Ko ___~j~~~__~

l/2

1---+1

~-+-+~

E(G7 h

~++--j+--j

Gg E(Gg ---- +---

++--j ~++--j

. ----

fi

~++--j-+--j

Gy

~l=-2H+J+2K~-Kil/4

~----Î

~+---Î

----~

~----~ t~o

~o~l=-2H+3J+6K~

+++-

t~ofi=2H+K~++++ ~~~j~~~~~~j

+++-

+-+-

E(t~oh=2H-3J+2K~-2Kj

~~~~

~+++-Î ~+++-Î

E(t~o )4

+++- ++++j

+++-

j++++j

Gij

~ l

++++ +++-

(10)

++++ ~++++j j++++j

~m

Gto~

G1i~ ~~

~) Î----~+++- +

Kj>

~

'

' ~

Kj> K2> Ko Kj=6J; Ko" 2J; K2" 4J

~

~

~~

h/J W

G ~ G~ in G~ lsn G~~

K2> Kj> Ko K~ 6J; Kj = 4J; Km 2J

~ ~~

h/J

, , ~

G~ -7/2 G~ 21/2

G,

q> Kj> K~ Koz 6J; Kj = 3J; K2=J G~

h/J

, , ~

G~ -9/2 G~ +9/2 G~~

q> K2> Kj Ko~ 6J; K2* 4J; K j= 2J

~

~

~~

h/J

~

G -9/2 G~ 3n G~ lsn G~~

Kj>K2>

Ko

Kj= 10J;K~=4J; Xj = J G~

h/J

' ~

~) ~i

~~ ~2

~~

~5

1712

~ii

Fig.

2.

a)

Ground states of the model: Gi trie "water"

ground

state

(g.s.),

G2 the set of

"hexagonal"

(infinite

"rod"

micelles),

G3 trie set of

"sphencal" micelles,

G4 trie set of mixed

"rod-sphencal"

micelles, G5 trie set of mixed

"rod-layer"

micelles, G6 trie set of "reversed" micelles, G7 trie set of rarefied

"sphencal"

micelles, G8 trie set of rarefied infinite "rod" micelles, Gg trie set of "lamellar"

(infinite

"bilayer" micelles),

Gio trie set of rarefied "reversed" micelles and Gii trie

amphiphile. b)

Phase

diagrams

at zero temperature for different values of the parameters

Ko,

Ri and K2. Trie above arrows mdicate the points where the three

phases

coexist.

(11)

c

L(~.5,C) L(C,4.5)

Gi G3 ~11

~.5 4.5 h

Fig.

3. Phase

diagram

of trie model for Ko > Ri > K2

(for example,

Ko

= 6J Ri

" 3J, K2 = J

on trie T h

plane.

Water

(Gi ), "spherical"

micelles

(G3)

and

arnphiphile (Gii

are trie pure

phases.

The tricritical point C separates trie second order

phase

transition fine

L(-4.5, C)

from trie first order fine

L(C, 4.5)

of trie first order transition.

which is trie intersection of m lines of second order and n lines of first

order;

-B~ multicritical

point (which

is the intersection of m lines of second

order);

-A" the

n-phase point (where

n

which is the intersection of n lines of the first

order).

In

particular

we call C the tricritical

point

which is the intersection of a line of second order and a line of first order.

In the case

Ko

>

Ki

>

K2 (here

we

choose,

for

example, Ko

=

6J, Ki

=

3J, K2

=

J)

(see Fig. 3)

the

phase diagram

shows the existence of the

phases corresponding

to the

ground

states

Gi, G3

and

Gii

which are defined

previously.

The tricritical

point

C separates the

second-order

phase

transition lines

L(-4.5, C)

from the first order transition

(Fig. 3)

line L

(C,4.5).

In the case

Ko

>

K2

>

Ki (here

we

choose,

for

example, Ko

"

6J, Ki

"

2J, K2

"

4J)

(see Fig. 4)

the

phase diagram

shows the existence of the

phases corresponding

to the

ground

states

Gi, G3, G6

and

Gii. So,

the

triple

point

A~

separates the first order

phase

transition line

L(C,A~), L(1.5,A~)

and

L(7.5,A~).

The tricritical

point

C

separates

the second~order

phase

transition lines

L(-4.5, C)

from the first order transition lme

L(C, A~) (Fig. 4).

In the case

K2

>

Ki

>

Ko (here

we

choose,

for

example, Ko

=

2J, Ki

=

4J, K2

=

6J)

(see Fig. 5)

the

phase diagram

shows the existence of the

phases corresponding

to the

ground

states

GI G6

an~l

Gii

The coexistence Îine

L(-3.5, 10.5), separating

the

phases correspon~ling

to

(Gi, G6)

and

(G6, Gii),

is a first order transition line

(Fig. 5).

We note that the case where

K2

>

Ko

>

Ki

is identical to the one where

K2

>

Ki

>

Ko.

In the case

Ki

>

K2

>

Ko

we find two different situations: The first one

corresponds

to the

case

Ki

>

2K2 (here

we

choose,

for

example, Ko

"

J, Ki

=

10J, K2

=

4J) (see Fig. 6):

the

phase diagram

shows the existence of the

phases corresponding

to the

ground

states

Gi, G8, G2, G6, G5

and

Gii

which are defined

previously.

The

triple points (A~)i, (A~)2, (A~)3,

and

(A~)4

separate the first-order

phase

transition lines

L(-6., (A~)i), L((A~)i, (A~)2), L((A~)2,

(A~)3), L((A~)2, (A~)4), L((A~)3, (A~)4), L((A~)3,3.5)

and

L((A~)4,8.5) (Fig. 6).

The second

(12)

~

L(cA~)

L175A~)

~3

~ ~~~~

~~ Gii

G~ L(1.5,A~)

~.5 1.5 7.5 h

Fig.

4. Phase

diagram

of the model for Ko > K2 > Ri

(for example,

Ko

" 6J, Ri

# 2J, K2

"

4J)

on trie T h

plane.

Water

(Gi), "sphencal"

micelles

(G3),

"reversed" micelles

(G6)

and

amphiphile (Gii

are the pure

phases.

Trie

triple

point A~ separates the first order

phase

transition fines

L(C,

A~

), L(1.5, A~)

and

L(7.5, A~).

Trie tricritical

point

C separates the second order

phase

transition hne

L(-4.5, C)

from trie first order fine

L(C, A~).

L(-3.5,10.5)

5

~i ~6 GU

3.5 la.5 h

Fig.

5. Phase

diagram

of the model for K2 > Ri > Ko

(for example,

Ko " 2J, Ri " 4J, K2

"

6J)

on trie T h

plane.

Water

(Gi ),

"reversed" micelles

(G6),

and

amphiphile (Gii

are trie pure

phases.

L(-3.5,10.5)

is a fine of the first order transition.

one

corresponds

to trie case

Ki

<

2K2 (here

we

choose,

for

example, Ko

"

2J, Ki

"

6J,

K2

"

4J) (Fig. 7):

the

phase diagram

shows the existence of the

phases corresponding

to trie

ground

states

Gi, G8, G2, G6, Gio

and

Gii. Moreover,

the cntical

end~point BA2 separates

the first order

phase

transition lines

L((A~)i,BA~)

and

L(BA~,C2)

from the second-order

(13)

L((A3)~(A3)4) (A3)~

(A3)

Ll(A3)1,(A3jij L((A3)2,(A3)~

~6 ~

(A3j (A3j~ L((A3)~/A3jj

L(-6,(A3)il G~

Gi G~ ~5 Gii

3.5 8.5 h

Fig.

6. Phase

diagram

of the model for Ri > K2 > Ko

(for example,

Ri >

2K2,

Ko

" J, Ri "

10J, K2

"

4J)

on trie T h plane. Water

(Gi),

rarefied infinite "rod" micelles

(G8), "hexagonal"

(m~

finite "rod"

micelles) (G2),

"reversed" micelles

(G6),

mixed

"rod-layer"

micelles

(G5)

and

arnphiphile (Gii)

are trie pure

phases.

Trie

triple

points

(A~)i, (A~)2, (A~)3,

and

(A~)4,

separate trie first or~

der

phase

transition fines

L(-6., (A~)i), L((A~)i, (A~)2), L((A~)2, (A~)3), L((A~)2, (A~)4), L((A~)3, (A~)4), L((A~)3, 3.5)

and

L((A~)4, 8.5).

Lici,(A3)~)

L(Ci,BA~) Ci (A3~

~~~"~~~

~~BA2,Cz)

~~ ~~

Llcz,5)

~jj~3~z,7s)

G~ G8 G~ G6 ~ll

-4 7.5 h

Fig.

7. Phase

diagram

of trie model for Ri > K2 > Ko

(for

example, Ri < 2K2, Ko

"

2J,

Ri #

6J, K2

"

4J)

on trie T-h

plane.

Water

(Gi ),

rarefied infinite "rod" micelles

(G8), "hexagonal" (infinite

"rod"

micelles) (G2),

"reversed" micelles

(G6),

rarefied "reversed" micelles

(Gio)

and

amphiphile (Gii)

are trie pure

phases.

Trie critical

end~point BA~

separates trie first order

phase

transition fines

L((A~) BA~)

and

L(BA~, C2)

trie second order one

L(Ci, BA~)

The triple points

(A~)i,

and

(A~)2

separateii

trie first order

phase

transition hnes

L(-4., (A~ )i ), L((A~)i, BA~ ), L(Ci, (A~)2

and

L((A~ )2, 7.5).

Trie tricntical points Ci and C2 separate the first order

phase

transition hnes

L(Ci, (A~)2)

and

L(BA~,

C2)

from trie second order ones

L(Ci, BA~)

and

L(C2, .5).

(14)

T

L((BA211,(BA~)11 (BA2j~

L((BA2)~~.161

G3 ~~,~~j~~3~

A3 L((BA~)iA~)

L(A3,.5)

Gi G2 ~4 ~ll

4 .5 h

Fig.

8. Phase

diagram

of trie model for Ri > Ko > K2

(for example,

Ko

" 4J, Ri " 6J, K2 "

J)

on trie T h

plane.

Water

(Gi), "hexagonal" (infinite

"rod"

micelles) (G2), "spherical"

micelles

(G3),

mixed

"rod~spherical"

micelles

(G4)

and

amphiphile (Gii

are the pure

phases.

The critical

end-point (BA~)i

and

(BA~)2

separates trie first order

phase

transition hnes

L(-4., (BA~)i), L((BA~)i,A~) L((BA~)2A~)

and

L((BA~)2, 5.16)

from trie second order one

L((BA~)i, (BA~)2).

transition fine

L(Ci, BA~).

The

triple points (A~)i,

and

(A~)2 separate

the first order

phase

transition lines

L(-4., (A~)i), L((A~)i,BA~), L(Ci, (A~)2)

and

L((A~)2, 7.5).

The tricritical

points Ci

and

C2 separate

the first order

phase

transition lines

L(Ci, (A~)2)

and

L(BA2, C2)

from the second order ones

L(Ci, BA~)

and

L(C2, .5) (Fig. 7).

For the case where

Ki

>

Ko

>

K2 (here

we

choose,

for

example, Ko

"

4J, Ki

"

6J,

K2

= J

(see Fig. 8)

the

phase diagram

shows the existence of trie

phases corresponding

to the

ground

states

Gi, G2, G3, G4

and

Gii. Moreover,

the critical

end-points (BA~)i

and

(BA~)2 separate

the first order

phase

transition lines

L(-4., (BA~)i), L((BA~)i, A~), L((BA~)2, A~)

and

L((BA~)2, 5.16)

from the second order one

L((BA2)1, (BA2)2) (Fig. 8).

6. Conclusions

We have

presented,

m this paper, some new theoretical and numencal results concernmg trie

phase diagrams

of the micellar

binary

solutions m three dimensions. We find that this model describes

qualitatively

the micellar

phases

observed

expenmentally [14]. Also,

we check that the

conjectured phase diagram proposed by

Shnidman and Zia is correct.

We want

to,mention

that

qualitatively,

the three-dimensional model

proposed by

Shnidman and Zia describes the

phase diagram

similar to those for the twc-dimensional model

[16].

Further,

we

point

ont that there is some resemblance between our

phase diagrams

and those round

experimentally (see [13]

and

[21]

for the

binary

mixture of

C12E5

and

water).

For

example

in

Figure

6 of our paper and in

Figure

6.3.b of reference [6] we can

observe,

for certain

temperatures,

as we increase the concentration of

amphiphiles,

the passage from the micellar

phase

to

"hexagonal" phase

and to the

"rod-layer" phase.

(15)

Appendix

The energy of the

configuration

mi, m2, ...,m8°

~

Î~'l~~Î

Îl'l~1

+

m4)(m2

+

m3)

+

l'l~5

+

m8)l'l~6

+

m7)

+ mlms + m2m6

~=1

+m3m7 +

m4m81

~3

((ml

+

m4)(m6

+

m7)

+

(m2

+

m3)(m5

+

m8)

+ mlm4 + m2m3

~~5~8 ~

~6~71

~

ÎÎ~ ~ÎÎ Îl'l~l

+

m4

)(mÎ +'l~Î)l'l~lml

~

'l~4mÎ)

~=l

~

~~ ~~~~ ~~~i

+(m2

+

m3)l'l~Î

~

~~~

~

~~~~~

~

~~~~~

~

~~

~

~~~~~~

~ ~~ ~ ~

jj~jjiij~ii~iiiiÎiTii~ÎmiiÎ~iÎ~il~8ÎÎ~~~~i5~~7~~

+ ~~

~~ Îl'I~Î'I~Î ~'l~Î'l~Î ~'l~Î'l~Î ~'l~Î'l~Î)

~

l'I~Î'I~Î)l'l~Î ~'l~Î)

~

l'l~Î ~'l~Î)l'l~Î ~'l~Î)

-Jii [(m2m3

+

m6m7)(mims

+

m4m8)

+

(mim4

+

m5m8)(m2m6

+

m3m7)]

~~ [m2m3m5(m2

+ m3 +

m5)

+ ml m4m6

(ml

+ m4 +

m6)

+ m1m4m7

(ml

+ m4 + m7

+m2m3m8

(m2

+ m3 + m8 + m1m6m7

(ml

+ m6 +

m7)

+

m2m5m8(m2

+ m5 + m8

+m3m5m8

(m3

+ m5 + m8 +

m4m6m7(m4

+ m6 +

m7)]

~~ l'l~Î'l~Îl'l~1

+ m4 +

mÎ'l~Îl'l~2

+

m3) +'l~Î'l~Îl'l~1

+

m7)

+

'l~Î'l~Îl'l~1

+ m6

+m(m((m2

+ m5 +

m(m((m2

+

m8)

+

m(m((m~

+ +

m(m((m~

+ m~

~'l~ÎRlÎl'l~4

+ m6 +

'l~Î'l~Îl'l~4

+

m7)

+

'l~Î'l~Î(m5

+

m8)

+

mÎmÎ (m6

+

m7)1

~~ Î'l~lm2m3msl'l~2

+ m3 +

m5)

+

'l~lm2m4m61'1~l

+ m4 + m6 +

mlm3m4m7(m1

+m4 +

m7)

+

m2m3m4m8(m2

+ m3 + Rl8 +

m1m5Rl6Rl7(ml

+ Rl6 +

Rl7)

+Rl2Rl5Rl6Rl8

(m2

+ Rl5 + m8 +

m3m5m7m8(m3

+ m5 + m8

+m4m6m7m8(m4

+ m6 +

m7)1

~~~

[m(m( (m5

+ m8 +

m(m((m2

+

m3)

+

m(m((m2

+ m8 +

m(m((m3

+ m5

8

+m]m( (m3

+

m8)

+

m(m( (m2

+ m5 +

m(m( (m6

+

m7)

+

m(m( (mi

+

m4)

(16)

+m(m( (mi

+

m7)

+

m(m((m4

+

m6)

+

m(m((m4

+

m7)

+

m(m((mi

+

m6))

~~ Îl'I~Î'I~Î

~

'l~Î'l~Î)l'l~1m5

+

m4m8)

+

l'I~Î'I~Î

~

'l~Î'l~Î)l'l~2m6

+

m3m7) +(m(m(

+

m(m()(mim2

+

m7m8)

+

(m(m(

+

m(m()(m3m4

+

m5m6) +(m]m(

+

m(m()(mim3

+

m6m8)

+

(m(m(

+

m(m()(m2m4

+

m5m7)]

~~ Î'l~Î'l~Î'l~Î

~

~llÎ'I~Î'I~Î

~

'l~Î'l~Î'l~Î

~

'l~Î'l~Î'l~Î

~

'l~Î'l~Î'l~Î

~

'l~Î'l~Î'l~Î

~

'l~Î'l~Î'l~Î +m(m(m(] ~~ [mim(m(m(

+

m2m(m(m(

+

m3m(m(m(

+

m4m(m(m(

8

+msm(m(m(

+

m6m(m(m(

+

m7m(m(m(

+

m8m(m(]

'fhe

expression

of the

magnetization equation

which

corresponds

to mi is

given by:

mi "

tanh(fini)

where

hi

"

Ji

+

4J2(m2

+ m3 +

m5)

+

8J3(m6

+ m7 +

m4)

+

6J4mi

+

J5[2mi(m2

+ m3 +

m5)

+(mÎ

+

+

mÎ)Î

+

4J6 [m2 (m3

+ m4 + m5 + m6 +

Rl3(Rl4

+ Rl5 +

m7)

+

m5(m6

+

m7)1 +4J7[2mi(m6

+ m4 +

m7)

+

(m(

+

ml

+

m()]

+

8J8[m4m6

+

m4m7 +

m6m7)

~~ j ~

~2

~

~2

~

~2

~

~2)

~

~

(~2

~

~2

~

~2

~

~2)

~ ~

~2

~

~2

~

~2

~

~2)

9 2 3 4 5 5 3 2 4 5 7 5 2 3 6 7

+2mi(m2m6

+ m3m7 + m2m4 + m5m7 + m3m4 + m5m6 )) +

2Jio[2mi (ml

+

m(

+

m()]

+8Jii Îm5(m2m3

+

m6m7)

+

m4(m2m6

+

m3m7))

+

4J12 Î2mi (m4m6

+ m4m7 +

m6m7) +m4m6(m4

+

m6))

+

J1312mi(m((m2

+

m3)

+

m((m2

+

m5)

+

m((m3

+

m5)

+(m(m(

+

m(m(

+

m(m()]

+

4J1412mi(m2m4m6

+ m3m4m7 +

m5m6m7)

+m2m3m5

(m2

+ m3 + m5 + m2m4m6

(m4

+ m6 +

m3m4m7(m4

+ m7

+m5m6m7(m6

+ m7))

+2J1512mi (ml (m6

+

m7)

+

m((m4

+

m7)

+

m((m4

+

m7))

+

m(m(

+

m(m(

+m(m(]

+

2J1612mi(m((m2m6

+

m3m7)

+

m((m3m4

+

m5m6) +'l~Îl'l~2m4

+

m5m7))

+ 'l~5

l'I~Î'I~Î

~

'l~Î'l~Î)

~ 'l~2

(RlÎ'I~I

~

'l~Î'l~Î) +m3(m(m(

+

m(m()]

+

J1712mi (m(m(

+

m(m(

+

m(m()]

+

J18 Îm(m(m(

+ 2mi

(m2m(m(

+

m3m(m(

+

msm(m(

)]

fhe mean field

equations corresponding

to m2, m3,

,

and m8 must be obtained

by exchanging, iespectively, (mi

- m2, m3 - m4, m5 - m6, m7 -

m8)1 (mi

- m3, m2 - m4, m5 - m7,

m6 **

m8)1 (ml

** m41 m2 ** m5, m3 ** m6, m7 **

m8)1 (ml

** msi m2 ** m6, m3 ** m7,

m4 **

m8)1 (ml

** m61 m2 ** m7, Rl3 ** m8, m4 **

m5)1 (ml

** Rl7, m2 ** m8, m3 ** m5,

m4 -

m6)

and

(mi

- m8, m2 - m3, m4 -

m7).

(17)

References

[ii

Dawson K-A- and Kurtovic

Z.,

J. Chem.

Phys.

92

(1990)

5473.

[2]

Halley

J-W- and Kolan

A.J.,

J. Chem.

Phys.

88

(1988)

3313.

[3] Matsen M.W. an Sullivan

D.E., Phys.

Reu. A 41

(1990)

2021.

[4]

Gompper

G. and Schick

M.,

Chem.

Phys.

Lett. 163

(1989)

475.

[5]

Gompper

G. and Schick

M., Self-Assembling Amphiphilic Systems

in Phase Transitions and Critical

Phenomena,

Vol.

16,

C. Domb and J-L- Lebowitz Eds.

(Academic, London, 1994).

[6]

Micelles, Membranes,

Microemulsions and

Monolayers,

W-M-

Gelbart,

D. Roux and A.

Ben-Shaul

(Springer-Verlag,

New

York, 1994).

[7] Jan N. and Stauffer

D.,

J.

Phys.

France 49

(1988)

623.

[8]

Physics

of

Amphiphiles: Micelles,

Vesicles and

Microemulsions,

V.

Degiorgio

and M. Corti Eds.

(North-Holland, Amsterdam, 1985).

[9]

Tiddy G-J-T-, Phys. Rep.

57

(1980)

1.

[loi Gompper

G. and Zschocke

S., Europhys.

Lett. 16

(1991)

731.

[iii

Seddon

I.M.,

Biochim.

Biophys.

Acta. 1031

(1990)

1.

[12]

Hoffmann

H.,

Adu. Colloid

Interface

Sci. 32

(1990)

123.

[13] Strey R.,

Schomàcker

R.,

Roux

D.,

Nallet F. and Dlsson

U.,

J. Chem. Soc.

Faraday

7Fans.

86

(1990)

2253.

[14] Degiorgio V.,

Corti M. and Cantu

L.,

Chem.

Phys.

Lett. 151

(1988)

349.

[15] Israelachvili

J-N-,

Mitchell D.J. and Ninham

B-W-,

J. Chem. Soc.

Faraday

Trans. 72

(1976)

1525.

[16] Shnidman Y. and Zia

R.K.P.,

J. Stat.

Phys.

50

(1988)

839.

[17]

Benyoussef A.,

Laanait L. and Moussa

N., Phys.

Reu. B 48

(1993)

16310.

[18]

Slawny J.,

in Phase Transitions and Critical

Phenomena,

Vol.

16,

C. Domb and J-L- Lebowitz Eds.

(Academic, London, 1987).

[19] Laanait

L.,

Masaif N. and Moussa

N.,

A

Study

of the Phase

Diagram

of the Micellar

Binary

Solution Models II: The

Low-Temperature Approach.

[20] Grifliths

R.B., Phys.

Reu. 812

(1975)

345.

[21] Mitchell

D.J., Tiddy G-T-J-, Warring L.,

Bostock Th. and McDonald

M.P.,

J. Chem. Soc.

Faraday

Trans. 79

(1983)

975.

Références

Documents relatifs

sodium nitrate structure... For model I, it is well known [15] in case of large rotational temperature factors that the fitting procedure gives too small a value

Right side: average size of the largest cluster, normalized to the total particle number, as a function of the temperature in the canonical ensemble at fixed volume for different

We show first that the second sound overdamping leads to much longer relaxation times, as observed by ultrasonic measurements.. We show then that the technique used

-We have used Monte Carlo simulations to investigate Ising systems on the FCC lattice with antiferromagnetic first neighbour interactions (J1) and ferromagnetic second

In the dilute part of the phase diagram, the system with the lowest salt concentration is known to present a continuous phase transition between phases of randomly

signal is due to linear dichroism. Similar behaviour is exhibited by MnCl2 in the same geometry. As discussed in the previous paper, the linear dichroism could come

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Due to the presence of a large amount of ordered mate- rial, nucleation of the ordered phase was not neces- sary, and growth could proceed on the boundaries of the not