• Aucun résultat trouvé

Long time existence and bounded scalar curvature in the Ricci-harmonic flow

N/A
N/A
Protected

Academic year: 2021

Partager "Long time existence and bounded scalar curvature in the Ricci-harmonic flow"

Copied!
24
0
0

Texte intégral

(1)

LONG TIME EXISTENCE AND BOUNDED SCALAR CURVATURE IN THE RICCI-HARMONIC FLOW

YI LI

ABSTRACT. In this paper we study the long time existence of the Ricci-harmonic flow in terms of scalar curvature and Weyl tensor which extends Cao’s result [6]

in the Ricci flow. In dimension four, we also study the integral bound of the “Rie- mann curvature” for the Ricci-harmonic flow generalizing a recently result of Si- mon [38].

1. INTRODUCTION

In this paper we study the long time existence of the Ricci-harmonic flow (RHF) (1.1) tg

(

t

) = −

2Ricg(t)

+

(

t

)∇

g(t)φ

(

t

) ⊗ ∇

g(t)φ

(

t

)

, tφ

(

t

) =

g(t)φ

(

t

)

. introduced in [25, 26, 30, 32], whereg

(

t

)

is a family of Riemannian metric,φ

(

t

)

is a family of functions, andt

∈ [

0,T

)

(withT

≤ +

∞). Hereα

(

t

)

is a time-dependent positive constant. In particular, we may choose α

(

t

) ≡

αa positive constant. If all functionsφ

(

t

) ≡

0, we obtain the Ricci flow (RF) introduced by Hamilton in his famous paper [23] and definitely used by Perelman [34, 35, 36] on his work about the Poincar´e conjecture. The flow equations (1.1) come from static Einstein vacuum equations arising in the general relativity, and also arise as dimensional reductions of RF in higher dimensions [28].

For the RF, Hamilton [23] showed that the short-time existence and (1.2) T

<

= ⇒

lim sup

t→T

maxM

|

Rmg(t)

|

2g(t)

=

∞.

Later, Sesum [37] improved Hamilton’s result as (1.3) T

<

= ⇒

lim sup

t→T

maxM

|

Ricg(t)

|

2g(t)

=

by blow-up argument. For the integral bounds, Ye [47] and Wang [42] indepen- dently proved that

(1.4) T

<

= ⇒

Z T

0 Z

M

|

Rmg(t)

|

g(t)m+22dVg(t)dt m2+2

=

∞.

2010Mathematics Subject Classification. Primary 53C44.

Key words and phrases. Ricci-harmonic flow, curvature pinching estimates, bounded scalar curvature.

Yi Li is partially sponsored by Shanghai Sailing Program (grant) No. 14YF1401400 and NSFC (grant) No. 11401374. Yi Li is also supported in part by the Fonds National de la Recherche Luxembourg (FNR) under the OPEN scheme (project GEOMREV O14/7628746).

1

(2)

Moreover, Wang [42] proved another version for RH that (1.5) Ricg(t)

≥ −

C, T

<

= ⇒

Z T

0 Z

M

|

Rg(t)

|

g(t)m+22dVg(t)dt m2+2

=

∞.

HereCis a uniform constant. For other works on integral bounds, see for example [8, 29, 43, 46].

A well-known conjecture (see [6]) about the extension of RF states that (1.6) Is it true for lim sup

t→T

maxM Rg(t)

=

∞?Here T

<

∞.

This conjecture was settled for K¨ahler-Ricci flow by Zhang [48] and for type-I maximal solution of RF by Enders-M ¨uller-Topping [11]. Cao [6] proved the fol- lowing

(1.7)

T

<

= ⇒

either lim supt→T

maxMRg(t)

=

∞, or lim supt→T

maxMRg(t)

<

∞but lim supt→T|WgR(t)|g(t)

g(t)

=

∞, whereWg(t)denotes the Weyl tensor ofg

(

t

)

.

For 4DRF, Simon [38] and Bamler-Zhang [5] independently proved (1.8) T

<

∞,

|

Rg(t)

| ≤

C

= ⇒

Z

M

|

Ricg(t)

|

2g(t)dVg(t), Z

M

|

Rmg(t)

|

2g(t)dVg(t)

C0 by different methods (for earlier work see [41]).

On the other hand, for the Ricci-harmonic flow (RHF) we have the following results. Whenm

=

dimM

3 andT

< +

∞. M ¨uller [30, 32] showed that (1.2) is also true for RHF. Recently, Cheng and Zhu [9] extended Sesum’s result [37] to Ricci-harmonic flow, that is, (1.3) is true for RHF. For more results about the RHF, see [1, 2, 3, 4, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33, 39, 40, 44, 45, 49].

The first main result is an extension of Cao’s result [6] to RHF.

Theorem 1.1. Let

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T) be a solution to RHF (1.1) withα

(

t

) ≡

αa positive constant on a closed manifold M with m

=

dimM

3and T

< +

∞. Either one has

lim sup

t→T

maxM Rg(t)

=

or

lim sup

t→T

maxM Rg(t)

<

∞but lim sup

t→T

maxM

|

Wg(t)

|

g(t)

+ |∇

2g(t)φ

(

t

)|

2g(t) Rg(t)

!

=

∞.

Here Wg(t)is the Weyl part ofRmg(t).

The second main result focuses on the 4DRHF. Write

Sicg(t):

=

Ricg(t)

α

g(t)φ

(

t

) ⊗ ∇

g(t)φ

(

t

)

, Sg(t):

=

Rg(t)

α

|∇

g(t)φ

(

t

)|

2g(t). According to Theorem 2.2 below we can find a uniform constantCsuch thatSg(t)

+

C

>

0 for allt

∈ [

0,T

)

.

(3)

Theorem 1.2. Let

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)be a solution to RHF (1.1) on a closed manifold M with m

=

dimM

=

4, T

≤ +

∞,α

(

t

) ≡

αa positive constant. Choose a uniform constant C in Theorem 2.2 such that Sg(t)

+

C

>

0. Then

Z

M

|

Sicg(s)

|

g(s)dVg(s)

2c0

(

M,g

(

0

)

,φ

(

0

)

,s

) +

C

2Vol

(

M,g

(

s

))

(1.9)

+

1148e36Cs Z s

0 Z

MS2g(t)dVg(t)dt, Z s

0 Z

M

|

Sicg(t)

|

2g(t)dVg(t)dt

8c0

(

M,g

(

0

)

,φ

(

0

)

,s

) +

C

2

4 Z s

0 Vol

(

M,g

(

t

))

dt

+

4592e36Cs

Z s 0

Z

MS2g(t)dVg(t)dt, (1.10)

for all s

∈ [

0,T

)

. Here, A1

=

maxM

|∇

g(0)φ

(

0

)|

2g(0)and c0

(

M,g

(

0

)

,φ

(

0

)

,s

)

=

256π

2χ

(

M

)

36C

e36Cs

1

+

104α

2A21Vol

(

M,g

(

0

))

35C

e35Cs

eCs (1.11)

+

e37CsαA1Vol

(

M,g

(

0

)) +

e36Cs Z

M

|

Sicg(0)

|

2g(0) Sg(0)

+

C dVg(0).

According to Theorem 2.3 below and following [38], we consider the basic as- sumption (BA) for a solution

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)to RHF:

(a) Mis a connected and closed 4-dimensional smooth manifold,

(b)

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)is a solution to RHF withα

(

t

) ≡

αa positive constant, (c) T

< +

∞,

(d) maxM×[0,T)

|

Sg(t)

| ≤

1.

The upper bound 1 in condition (d) is not essential, since we can rescale the pair

(

g

(

t

)

,φ

(

t

))

so that the condition (d) is always satisfied. Furthermore, since

|∇

g(t)φ

(

t

)|

2g(t)

A1

(by (3.6)) it follows that condition (d) is equivalent to the uniform bound forRg(t). Theorem 1.3. If

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)satisfiesBA, then

Z

M

|

Sicg(s)

|

2g(s)dVg(s)

b

(

M,g

(

0

)

,φ

(

0

)

,s

)

, (1.12)

Z s 0

Z

M

|

Sicg(t)

|

4g(t)dVg(t)dt

b

(

M,g

(

0

)

,φ

(

0

)

,s

)

, (1.13)

for any s

∈ [

0,T

)

. Here

b

(

M,g

(

0

)

,φ

(

0

)

,s

)

:

=

9e88s Z

M

|

Sicg(0)

|

2g(0)dVg(0)

+

1152

88 π2χ

(

M

)

e88s

1

+

468

86

(

αA1

)

2Vol

(

M,g

(

0

))

e88s

e2s (1.14)

+

9

(

αA1

)

Vol

(

M,g

(

0

))

e90s.

(4)

Define

c

(

M,g

(

0

)

,φ

(

0

)

,T

)

:

=

9e90T Z

M

|

Sicg(0)

|

2g(0)dVg(0)

+

π2

|

χ

(

M

)|

+ [(

αA1

)

2

+ (

αA1

)]

Vol

(

M,g

(

0

))

. (1.15)

Then

|

b

(

M,g

(

0

)

,φ

(

0

)

,T

)| ≤

c

(

M,g

(

0

)

,φ

(

0

)

,T

)

. Theorem 1.3 now yields Theorem 1.4. If

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)satisfiesBA, then

sup

t∈[0,T) Z

M

|

Sicg(t)

|

2g(t)dVg(t)

c

(

M,g

(

0

)

,φ

(

0

)

,T

) < +

∞, (1.16)

sup

t∈[0,T) Z

M

|

Smg(t)

|

2g(t)dVg(t)

32π2χ

(

M

) +

8c

(

M,g

(

0

)

,φ

(

0

)

,T

)

(1.17)

+

13

(

αA1

)

2Vol

(

M,g

(

0

))

e2T

< +

∞.

Remark1.5. For a time-dependent tensor field, we always omit time variable in its components. Although in Theorem 1.2–Theorem 1.4, we assume thatα

(

t

) ≡

αis a positive constant, the same results also hold forα

(

t

) >

0 and ˙α

(

t

) <

0 (see Section 4).

The proof of Theorem 1.1 is based on a “curvature pinching estimate” for RHF (see Theorem 2.2). The new ingredient in the proof of Theorem 2.2 is an intro- duction of “Riemann curvature tensor” Smg(t)for RHF, so that we can express the Weyl tensorWg(t)in terms of Smg(t).

The proofs of Theorem 1.2–Theorem 1.4 follow from the method of Simon [38].

As in [38] we define Zijk:

=

iSjk

(

Sg(t)

+

C

) −

Sjk

iSg(t)

, Zg(t):

= (

Zijk

)

, f :

=

|

Sicg(t)

|

2g(t) Sg(t)

+

C . Analogous to [38], we can show that

d dt

Z

Mf dVg(t)

=

Z

M

2

|

Z

|

2

(

S

+

C

)

3

2f2

+

4Sm

(

Sic, Sic

)

S

+

C

f S

2α ∆φ Sic

S

+

C

− ∇

2φ

2

+

|∇

2φ

|

2

dVg(t).

The main difference is the last term on the right-hand side of the above equation.

To control the integral of

|∇

2φ

|

2 we make use the evolution equation for

|∇

φ

|

2 (see (3.6)) so that

2 Z t

0 Z

M

|∇

2φ

|

2dVg(s)ds

+

Z

M

|∇

φ

|

2dVg(t)

eCtA1Vol

(

M,g

(

0

))

.

The above estimate not only controls the space-time integral of

|∇

2φ

|

2, but also an uniform bound for the integral of

|∇

φ

|

2. These two estimates play essential role in the following proof. In dimension four, the famous Gauss-Bonnet-Chern formula (3.10) should transform to (3.13), where the terms involving

|∇

φ

|

2can be bounded by the above discussion. A modification of [38] is now applied to the RHF.

(5)

2. CURVATURE PINCHING ESTIMATE FORRHF

Consider a solution

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)to RHF with coupling time-dependent constantα

(

t

)

(2.1) tg

(

t

) = −

2Ricg(t)

+

(

t

)∇

g(t)φ

(

t

) ⊗ ∇

g(t)φ

(

t

)

, tφ

(

t

) =

g(t)φ

(

t

)

. Let

g(t):

=

t

g(t). As in [25, 26, 30, 32] we define the following notions

Sicg(t) :

=

Ricg(t)

α

(

t

)∇

g(t)φ

(

t

) ⊗ ∇

g(t)φ

(

t

)

, (2.2)

Sg(t) :

=

trg(t)Sicg(t)

=

Rg(t)

α

(

t

)

g(t)φ

(

t

)

2

g(t). (2.3)

Hereα

(

t

)

is a family of time-dependent functions. Motivated by RF, we introduce a “Riemann curvature” type for RHF

(2.4) Sijk`:

=

Rijk`

α 2

gj`

iφ

kφ

+

gk`

iφ

jφ

. Our notation forSijk`implies that

Sij:

=

gk`Sik`j

=

Rij

α

iφ

jφ

=

gk`Skij`

which coincides with the components of Sicg(t). The corresponding tensor field for Sijk`is denoted by Smg(t).

Lemma 2.1. For a solution

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)with a time-dependent coupling func- tionα

(

t

)

, we have

g(t)Sg(t)

=

2

|

Sicg(t)

|

2g(t)

+

(

t

)

g(t)φ

(

t

)

2

g(t)

α˙

(

t

)

g(t)φ

(

t

)

2

g(t), (2.5)

g(t)Sicg(t)

=

2Smg(t)

(

Sicg(t),

·) −

2Sic2g(t)

+

(

t

)

g(t)φ

(

t

)∇

2g(t)φ

(

t

) −

α˙

(

t

)∇

g(t)φ

(

t

) ⊗ ∇

g(t)φ

(

t

)

(2.6)

whereSic2g(t)

= (

SikSj`gk`

)

ijandSmg(t)

(

Sicg(t),

·) = (

Skij`Sk`

)

ij.

Proof. The first equation can be found in [32], Corollary 4.5. In the same corollary we also have

tSij

=

g(t),LSij

+

2α∆g(t)φ

(

t

)∇

i

jφ

α˙

iφ

jφ.

Here∆g(t),Ldenotes the Lichnerowicz Laplacian with respect tog

(

t

)

defined by

g(t),LSij

=

g(t)Sij

+

2Rkij`Sk`

RikSjk

RjkSik. Then

g(t)Sij

=

2Rkij`Sk`

RikSjk

RjkSik

+

2α∆g(t)φ

(

t

)∇

i

jφ

α˙

iφ

jφ.

PluggingSij

=

Rij

α

iφ

jφinto the above equation yields the second desired

equation.

As a corollary of Lemma 2.1 we have (see [32], Corollary 5.2)

(2.7) min

M Sg(t)

min

M Sg(0), providedα

(

t

) ≥

0 and ˙α

(

t

) ≤

0.

(6)

Theorem 2.2. (Curvature pinching estimate)Let

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)be a solution to RHF on a closed manifold M with m

=

dimM

3, T

≤ +

∞,α

(

t

) ≥

0andα˙

(

t

) ≤

0.

There exist uniform constants C1,C2,C, depending only on m,g

(

0

)

,φ

(

0

)

,α

(

0

)

such that (2.8) Sg(t)

+

C

>

0,

|

Sing(t)

|

g(t)

Sg(t)

+

C

C1

+

C2 max

M×[0,t]

v u u t

|

Wg(s)

|

g(s)

+ |∇

2g(s)φ

(

s

)|

2g(s) Sg(s)

+

C

whereSing(t)

=

Sicg(t)

Smg(t)g

(

t

)

is the trace-free part ofSicg(t)and Wg(t)is the Weyl tensor field of g

(

t

)

.

Proof. The first inequality follows from (2.7). Let f :

= |

Sing(t)

|

2g(t)

(

Sg(t)

+

C

)

γ, γ

>

0.

Since Sing(t)

= (

Sicg(t)

+

mCg

(

t

)) − (

Sg(tm)+C

)

g

(

t

)

, it follows that f

=

|

Sicg(t)

+

Cmg

(

t

)|

2g(t)

(

Sg(t)

+

C

)

γ

1

m

(

Sg(t)

+

C

)

2−γ. In the following we always omit the subscriptstandg

(

t

)

and set

Sic0g(t):

=

Sicg(t)

+

C

mg

(

t

)

, S0g(t):

=

Sg(t)

+

C

=

trg(t)Sic0g(t).

In the following we always omit the subscripts g

(

t

)

and t. Using the equation (3.21) in [10] we have

|

Sic0

|

2

(

S0

)

γ

=

1

(

S0

)

γ

|

Sic0

|

2

γ

|

Sic0

|

2

(

S0

)

γ+1

S

γ

(

γ

+

1

) |

Sic0

|

2

(

S0

)

γ+2

|∇

S0

|

2

+

(

S0

)

γ+1

h∇|

Sic0

|

2,

S0

i

. It is clear from (2.6) that

|

Sic

|

2

= −

2

|∇

Sic

|

2

+

4Sm

(

Sic, Sic

) +

2

Sic, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

(

t

)

. Therefore

|

Sic0

|

2

=

|

Sic

|

2

+

C

2

m

+

2C mS

= |

Sic

|

2

+

2C m

h2

|

Sic

|

2

+

|

∆φ

|

2

α˙

|∇

φ

|

2i

= −

2

|∇

Sic0

|

2

+

4Sm

(

Sic, Sic

) +

4C m

|

Sic

|

2

+

2D

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ E

= −

2

|∇

Sic0

|

2

+

4Sm

(

Sic0, Sic0

) −

4C

m

|

Sic0

|

2

+

4C

2

m2S0

+

2

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i

(7)

and

|

Sic0

|

2

(

S0

)

γ

= −

2

(

S0

)

γ

|∇

Sic0

|

2

|

Sic0

|

4

(

S0

)

γ+1

+

4

(

S0

)

γSm

(

Sic0, Sic0

)

γ

(

γ

+

1

) |

Sic0

|

2

|∇

S

|

2

(

S0

)

γ+2

+

(

S0

)

γ+1

h∇|

Sic0

|

2,

S0

i +

4C

2

m2 S0

(

S0

)

γ

4C m

(

1

γ

)

S0

+

12γC

(

S0

)

γ+1

|

Sic0

|

2

+

2

(

S0

)

γ

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i

γ

|

Sic0

|

2

(

S0

)

γ+1

h2α

|

∆φ

|

2

α˙

|∇

φ

|

2i, according to

S0

=

2

|

Sic0

|

2

4C

mS0

+

2C

2

m

+

|

∆φ

|

2

α˙

|∇

φ

|

2. Using the identity

∇ |

Sic0

|

2

(

S0

)

γ,

S0

=

1

(

S0

)

γ

h∇|

Sic0

|

2,

S0

i −

γ

(

S0

)

γ+1

|∇

S

|

2

|

Sic0

|

2, we arrive at

|

Sic0

|

2

(

S0

)

γ

=

S0

∇ |

Sic0

|

2

(

S0

)

γ,

S0

2

(

S0

)

γ+2

|

S0

Sic0

|

2

+

γ

(

γ

1

)

(

S0

)

γ+2

|

Sic0

|

2

|∇

S0

|

2

+

4

(

S0

)

γSm

(

Sic0, Sic0

) −

(

S0

)

γ+1

|

Sic0

|

4

+

4C

2

m2 S0

(

S0

)

γ

4C m

(

1

γ

)

S0

+

12γC

(

s0

)

γ+1

|

Sic0

|

2

+

2

(

S0

)

γ

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i

γ

|

Sic0

|

2

(

S0

)

γ+1 h

|

∆φ

|

2

α˙

|∇

φ

|

2i. On the other hand, the following two identities

|

S0

Sic0

|

2

= |

S0

iS0jk

S0jk

iS0

+

S0jk

iS0

|

2

= |

S0

iS0jk

S0jk

iS0

|

2

− |

Sic0

|

2

|∇

S0

|

2

+

S0

h∇|

Sic0

|

2,

S0

i

,

h∇|

Sic0

|

2,

S0

i =

(

S0

)

γ

|

Sic0

|

2

(

S0

)

γ

,

S0

=

γ

S0

|

Sic0

|

2

|∇

S0

|

2

+ (

S0

)

γ

∇ |

Sic0

|

2

(

S0

)

γ,

S0

(8)

implies

|

Sic0

|

2

(

S0

)

γ

=

2

(

γ

1

)

S0

∇ |

Sic0

|

2

(

S0

)

γ,

S0

2

(

S0

)

γ+2

S0

iS0jk

S0jk

iS0

2

− (

2

γ

)(

γ

1

)

(

S0

)

γ+2

|

Sic0

|

2

|∇

S0

|

2

+

4

(

S0

)

γSm

(

Sic0, Sic0

) −

|

Sic0

|

4

(

S0

)

γ+1

+

4C

2

m2 S0

(

S0

)

γ

4C m

(

1

γ

)

S0

+

12γC

(

S0

)

γ+1

|

Sic0

|

2

+

2

(

S0

)

γ

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i −

γ

|

Sic0

|

2

(

S0

)

γ+1

h2α

|

∆φ

|

2

α˙

|∇

φ

|

2i. It is clear that

(

S0

)

2−γ

= (

2

γ

)(

S0

)

1−γ

S0

− (

2

γ

)(

1

γ

)(

S0

)

−γ

|∇

S0

|

2 and

|

Sic

|

2

= |

Sic0

|

2

+

Cm2

2CSm0. These yield

(

S0

)

2−γ

=

2

(

γ

1

)

S0

D

∇(

S0

)

2−γ,

S0E

+

2

(

2

γ

)(

S0

)

1−γ

|

Sic0

|

2

− (

2

γ

)(

γ

1

)

(

S0

)

2

(

S0

)

2−γ

|∇

S0

|

2

+ (

2

γ

)(

S0

)

1−γ 2C2

m

4C mS0

+ (

2

γ

)(

S0

)

1−γ

|

∆φ

|

2

α˙

|∇

φ

|

2. Then

f

=

2

(

γ

1

)

S0

h∇

f,

S0

i −

2

(

S0

)

γ+2

|

S0

iS0jk

S0jk

iS0

|

2

− (

2

γ

)(

γ

1

)

(

S0

)

2

|∇

S0

|

2f

+

Q1

+

Q2

+

Q3 (2.9)

where

Q1 :

= −

2

(

2

γ

)

m

(

S0

)

1−γ

|

Sic0

|

2

+

4

(

S0

)

γSm

(

Sic0, Sic0

) −

|

Sic0

|

4

(

S0

)

1+γ , (2.10)

Q2 :

=

4C m

"

CS0

m

(

S0

)

2

− (

1

γ

)

S0

+

12γC

(

S0

)

γ+1

|

Sic0

|

2

2

γ 2m

C

2S0

(

S0

)

γ−1

# (2.11)

Q3 :

=

2

(

S0

)

γ

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i

|

∆φ

|

2

α˙

|∇

φ

|

2

(

S0

)

γ+1

γ

|

Sic0

|

2

+

2

γ m

(

S0

)

2

. (2.12)

Observe that

(2.13) Q2

=

4C m2

C

S0

+

C

(

S0

)

γ−1

+

1

(

S0

)

γ−2

+

m f

γ

1

γC sS0

. TheQ1terms can be written as

Q1

=

2

(

S0

)

γ+1

γ

2

m

|

Sic0

|

2

(

s0

)

2

+

2S0Sm

(

Sic0, Sic0

) −

γ

|

Sic0

|

4

=

2

(

S0

)

γ+1

(

2

γ

)|

Sic0

|

2

|

Sin

|

2

2

|

Sic0

|

4

S0Sm

(

Sic0, Sic0

)

, (2.14)

(9)

where Sin

=

Sic

mSg

=

Sic0

mCg

mSg

=

Sic0

Sm0g

=

: Sin0. Recall the decom- position of Rm that

Rijk`

=

1

m

2

(

Ri`gjk

+

Rjkgi`

Rikgj`

Rj`gik

) −

R

(

gi`gjk

gikgj`

)

(

m

1

)(

m

2

) +

Wijk`

whereWijk`stands for the Weyl tensor field. Then Sijk`

=

Wijk`

+

1

m

2

(

S0i`gjk

+

S0jkgi`

S0ikgj`

S0j`gik

) −

S

0

(

gi`gjk

gikgj`

) (

m

2

)(

m

1

)

+

C

m

(

m

1

)(

m

2

) (

gi`gjk

gikgj`

) −

C

m

(

m

2

) (

gjkgi`

gj`gik

)

+

α

m

2

(

gjk

iφ

`φ

+

gi`

jφ

kφ

gj`

iφ

kφ

gik

jφ

`φ

)

(2.15)

α

|∇

φ

|

2

(

m

2

)(

m

1

) (

gi`gjk

gikgj`

) −

α

2

(

gj`

iφ

kφ

+

gk`

iφ

jφ

)

. Together with (2.15), we get

Sm

(

Sic0, Sic0

) =

1 m

2

2m

1

m

1 S0

|

Sic0

|

2

2Sic03

S

03

m

1

+

W

(

Sic0, Sic0

)

1 m

1

C m

+

α

m

2

|∇

φ

|

2

|

S0

|

2

− |

Sic0

|

2 (2.16)

+

m

2

DS0Sic0

m

2Sic02,

φ

⊗ ∇

φ E

where Sic03

=

S0ijS0jkS0ki. Substituting (2.16) into (2.14) we arrive at Q1

=

2

(

S0

)

γ+1

(

2

γ

)|

Sic0

|

2

|

Sin

|

2

2Q4

+

2S0W

(

Sic0, Sic0

)

2 m

1

C m

+

α

m

2

|∇

φ

|

2

S03

S0

|

Sic0

|

2 (2.17)

+

m

2

D

S02Sic0

m

2S0Sic02,

φ

⊗ ∇

φ E

where

(2.18) Q4

= |

Sic0

|

4

S

0

m

2

2m

1

m

1 S0

|

Sic0

|

2

2Sic03

S

03

m

1

. The first term

(

2

γ

)|

Sic0

|

2

|

Sin

|

2

2Q4

+

2S0W

(

Sic0, Sic0

)

on the right-hand side of (2.17) can be written as

γ

|

Sin

|

4

+

2

(

m2

+

2m

2

)

m

(

m

1

)(

m

2

) −

γ

m

S02

|

Sin

|

2

+

4

m2

(

m

2

)

S

04

4

m

2S0Sic03

+

2S0W

(

Sic0, Sic0

)

by using the fact that

|

Sic0

|

2

= |

Sin

|

2

+

Sm02, where Sic03is equals to

Sic03

=

Sin3

+

3S

0

m

|

Sin

|

2

+

S

03

m2,

(10)

and therefore

γ

|

Sin

|

4

+

2

(

m

2

)

m

(

m

1

) −

γ

m

S02

|

Sin

|

2

4

m

2S0Sin3

+

2S0W

(

Sin, Sin

)

, because ofW

(

Sic0, Sic0

) =

W

(

Sin, Sin

)

. Finally, we obtain

f

=

2

(

γ

1

)h∇

f,

lnS0

i −

2

(

S0

)

γ

|∇

iS0jk

S0jk

ilnS0

|

2

− (

2

γ

)(

γ

1

)|∇

lnS0

|

2f

+

Q1

+

Q2

+

Q3 (2.19)

where

Q1

=

2

(

S0

)

γ+1

γ

(

S0

)

f2

+

2m

4 n

(

m

1

) −

γ

m

(

S0

)

γ+2f

4S

04

m

2 sin3

S03

+

2

(

S0

)

3W

Sin S0 ,Sin

S0

2 m

1

C

m

+

α

|∇

φ

|

2 m

2

m

1

m S03

− (

S0

)

γ+1f

+

m

2

DS02Sic0

m

2S0Sic02,

φ

⊗ ∇

φ E

, Q2

=

4C

m2 C

S0

+

C

(

S0

)

γ+1

+

1

(

S0

)

γ−2

+

m f

γ

1

γC 2S0 , Q3

=

2

(

S0

)

γ

h

Sic0, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i

|

∆φ

|

2

α˙

|∇

φ

|

2

(

S0

)

γ+1

γ

(

S0

)

γf

+

2S

02

m

. from (2.9)–(2.13) and (2.17)–(2.18).

In particular, whenγ

=

2, we have f

= |

Sin

|

2/S02

= |

Sic0

|

2/S02and (2.20)

f

=

2

h∇

f,

lnS0

i −

2

Sin

S0

2

+

Q1

+

Q2

+

Q3

where

Q1

=

4S0

f2

f

m

(

m

1

) −

2 m

2

Sin3 S03

+

1

S0W Sin

S0 ,Sin S0

1 S0

C

m

+

α

|∇

φ

|

2 m

2

1 m

f

m

1

+

1 S0

α m

2

*Sin2

S02 ,

φ

⊗ ∇

φ +

+

1 S0

α

|∇

φ

|

2 2m

(

m

2

)

, Q2

=

4C

m2 C

S0

+

C S03

+

m f

1

C

S0

, Q3

=

2

S0

h

Sin, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ

i −

|

∆φ

|

2

α˙

|∇

φ

|

2f

.

(11)

Sinceα

(

t

) ≥

0 and ˙α

(

t

) ≤

0, it follows from [32], Proposition 5.5, that

|∇

φ

|

2is bounded from above by a uniform constant. Consequently

Q1

4S0

f2

f

m

(

m

1

) +

2

m

2f3/2

+

Cm

|

W

|

S0 f

+

C0f

, Q2

4S0

(

C0

+

C0f

)

,

Q3

4S0

C0

+

C0

|∇

2φ

|

2 S0 f1/2

where Cm

=

C

(

m

) >

0 and C0

=

C

(

m,g

(

0

)

,φ

(

0

)

,α

(

0

)) >

0. Without loss of generality, we may assume thatf

1. In this case, we have

f

2

h∇

f,

lnS0

i +

4S0f

f

1

m

(

m

1

) +

2 m

2f1/2

+

C0

+

C0

|

W

| + |∇

2φ

|

2

S0 (2.21)

Applying the maximum principle to (2.21) yields f

2

m

2f1/2

+

1

m

(

m

1

) −

C0

C0

|

W

| + |∇

2φ

|

2 S0

0

at the point where f achieves its maximum. Thus we obtain (2.8).

As an immediate consequently of Theorem 2.2 we obtain the following theorem that is an extension of Cao’s result ([6], Corollary 3.1).

Theorem 2.3. Let

(

M,g

(

t

)

,φ

(

t

))

t∈[0,T)be a solution to RHF with nonincreasingα

(

t

) ∈ [

α,α

]

,0

<

α

α

< +

∞, on a closed manifold M with m

=

dimM

3and T

< +

∞.

Either one has

lim sup

t→T

maxM Rg(t)

=

or

lim sup

t→T

maxM Rg(t)

<

∞but lim sup

t→T

maxM

|

Wg(t)

|

g(t)

+ |∇

2g(t)φ

(

t

)|

2g(t) Rg(t)

!

=

∞.

Proof. Suppose now that lim sup

t→T

maxM Rg(t)

<

and lim sup

t→T

maxM

|

Wg(t)

|

g(t)

+ |∇

2g(t)φ

(

t

)|

2g(t) Rg(t)

!

<

∞.

In this case bothRg(t)and

|

Wg(t)

|

g(t)

+ |∇

2g(t)φ

(

t

)|

2g(t)are uniformly bounded. The- orem 2.2 then implies that

|

Sing(t)

|

g(t) is uniformly bounded. Since Sing(t)

=

Sicg(t)

Sgm(t)g

(

t

)

, it follows that Sicg(t)is uniformly bounded. However, the as- sumption onα

(

t

)

tells us that

|∇

g(t)φ

(

t

)|

2g(t)is uniformly bounded (e.g., [32], Propo- sition 5.5). Thus Ricg(t) is uniformly bounded, contradicting with the fact (1.2).

Therefore we prove the theorem.

(12)

3. 4D RICCI-HARMONIC FLOW WITH BOUNDEDSg(t): I

Let the constantCbe given in Theorem 2.2 and we assume thatαis a positive constant so that ˙α

(

t

) ≡

0, andm

=

dimM

=

4. As in [38] we define

(3.1) Zijk:

=

iSjk

(

Sg(t)

+

C

) −

Sjk

iSg(t)

, Zg(t):

= (

Zijk

)

. In the proof of Theorem 2.2, we actually have proved

|

Sic

|

2

S

+

C

= −

2

|

Z

|

2

(

S

+

C

)

3

2

|

Sic

|

4

(

S

+

C

)

2

+

4Sm

(

Sic, Sic

)

S

+

C

1

(

S

+

C

)

2

|

∆φ

|

2

α˙

|∇

φ

|

2

|

Sic

|

2 (3.2)

2

(

S

+

C

)

DSic, 2α∆φ

2φ

α˙

φ

⊗ ∇

φ E

. The bracket in the right-hand side of (3.2) can be expressed as

Sic∆φ

− (

S

+

C

)∇

2φ

2

− (

S

+

C

)

2

|∇

2φ

|

2

because of ˙α

0. Therefore the identity (3.2) is equal to

f

= −

2

|

Z

|

2

(

S

+

C

)

3

2f2

+

4Sm

(

Sic, Sic

)

S

+

C

2α ∆φ Sic

S

+

C

− ∇

2φ

2

+

|∇

2φ

|

2, (3.3)

where

(3.4) f :

= |

Sic

|

2

S

+

C

which differs from the previous one in the proof of Theorem 2.2. Integrating (3.3) overMyields

d dt

Z

Mf dVg(t)

=

Z

M

2

|

Z

|

2

(

S

+

C

)

3

2f2

+

4Sm

(

Sic, Sic

)

S

+

C

f S

2α ∆φ Sic

S

+

C

− ∇

2φ

2

+

|∇

2φ

|

2

dVg(t). (3.5)

To control the integral of

|∇

2φ

|

2we recall the evolution equation for

|∇

φ

|

2(see [32], Proposition 4.3):

(3.6)

|∇

φ

|

2

= −

|∇

φ

⊗ ∇

φ

|

2

2

|∇

2φ

|

2. In particular, we see that

(3.7)

|∇

φ

|

2

max

M

|∇

φ

|

2 t=0

=

:A1. Moreover we have

d dt

Z

M

|∇

φ

|

2dVg(t)

Z

M

h

−(

S

+

C

)|∇

φ

|

2

2

|∇

2φ

|

2

+

C

|∇

φ

|

2idVg(t)

Références

Documents relatifs

At least in dimension 4, there are Ricci flow invariant cones which contain all conformally flat scalar flat curvature operators, the first example is the cone of curvature

— We obtain Euclidean volume growth results for complete Rie- mannian manifolds satisfying a Euclidean Sobolev inequality and a spectral type condition on the Ricci curvature.. We

Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlin- ear elliptic equation on Riemannian manifolds, J.. Harnack estimates for a heat-type equation under

Differential Harnack estimates for backward heat equations with potentials under an extended Ricci flow.. The (logarithmic) Sobolev inequalities along geometric flow

In the sec- ond part these local curvature estimates are extended to a class of generalized Ricci flow, introduced by the author [42], whose stable points give Ricci-flat metrics on

If h = 0, Sun [9] derived the gradient estimates and the Harnack inequalities for the positive solutions of the linear parabolic equation ∂ t u = ∆ t u under the geometric flow..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In the study of the Ricci flow, various nonnegative curvature conditions have been shown to be preserved, and the discovery of new invariant conditions has of- ten given rise to