• Aucun résultat trouvé

The Saxothuringian Terrane affinity of the metamorphic Stachów Complex (Strzelin Massif, Fore-Sudetic Block, Poland) inferred from zircon ages

N/A
N/A
Protected

Academic year: 2021

Partager "The Saxothuringian Terrane affinity of the metamorphic Stachów Complex (Strzelin Massif, Fore-Sudetic Block, Poland) inferred from zircon ages"

Copied!
20
0
0

Texte intégral

(1)

Geo log i cal Quar terly, 2018, 62 (2): 237–256 DOI: http://dx.doi.org/10.7306/gq.1405

The Saxothuringian Terrane af fin ity of the meta mor phic Stachów Com plex

(Strzelin Mas sif, Fore-Sudetic Block, Po land) in ferred from zir con ages

Teresa OBERC-DZIEDZIC

1,

*, Ryszard KRYZA

1

, Stanis³aw MADEJ

1

and Chris tian PIN

2 1 Uni ver sity of Wroc³aw, In sti tute of Geo log i cal Sci ences, 50-205 Wroc³aw, Plac M. Borna 9, Po land

2 Département de Géologie, CNRS, Université Blaise Pascal, Cam pus des Cézeaux, 63178 AubiÀre Cedex, France

Oberc-Dziedzic, T., Kryza, R., Madej, S., Pin, C., 2018. The Saxothuringian Terrane af fin ity of the meta mor phic Stachów Com plex (Strzelin Mas sif, Fore-Sudetic Block, Po land) in ferred from zir con ages. Geo log i cal Quar terly, 62 (2): 237–256, doi: 10.7306/gq.1405

The Saxothuringian Terrane de fined in the west ern part of the Bo he mian Mas sif is re garded to have east erly con tin u a tions in the Karkonosze–Izera Mas sif, the Kamieniec Z¹bkowicki Belt and the Orlica–Œnie¿nik Dome. All these units com prise Early Or do vi cian (~500 Ma) metagranites as so ci ated with mica schists. Even more to the east, ~500 Ma metagranites and metasedimentary rocks oc cur also in the Strzelin Mas sif of the East Sudetes, where they are known as the pale and dark Stachów gneiss es, re spec tively. Al to gether, these rocks form the Stachów Com plex which was thrust on the Strzelin Com -plex of the Brunovistulicum Terrane dur ing the Variscan Orog eny. The con tri bu tion pres ents lines of ev i dence for a Saxothuringian af fin ity of the Stachów Com plex rocks: (1) the new SHRIMP U-Pb age data of zir cons from both the pale and dark Stachów gneiss es; (2) the in di ca tion that the zir con age spec tra from the ~500 Ma granitoids and their ac com pa ny ing metasedimentary rocks are sim i lar to those found in other parts of the Sudetes; (3) the “Armori can” age pat tern of in her ited zir cons of the pale Stachów gneiss es, as also ob served in the Saxothuringian Terrane; (4) the sim i lar ity of trace el e ments and Sm-Nd iso tope data of the Stachów gneiss es and cor re la tive rocks from the Karkonosze–Izera Mas sif and the Orlica–Œnie¿nik Dome.

Key words: Stachów Com plex, Saxothuringian Terrane, SHRIMP zir con ages, Strzelin Mas sif.

INTRODUCTION

The Bo he mian Mas sif, sit u ated near the east ern ter mi na -tion of the Eu ro pean Variscan belt, com prises a col lage of the Moldanubian, Saxothuringian (Kossmat, 1927) and Teplá–Barrandian (Franke, 1989) tectonostratigraphic zones, in ter preted as ter ranes (Matte et al., 1990; Franke and ¯elaŸniewicz, 2000) of the Armori can Terrane As sem blage (Tait et al., 1997; Franke, 2000), and the west ern part of the Brunovistulian Terrane (Brunovistulicum, Dudek, 1980), re spec tively. The Brunovistulicum is sep a rated from the other Bo -he mian Mas sif Ter ranes by the NNE–SSW-strik ing Moldanubian Thrust Zone (Suess, 1912).

Sev eral tectonostratigraphic units in the Sudetes re cord the same geo log i cal events as in the cen tral seg ment of the Variscides SW of the Elbe Fault Zone, namely, a late Pro tero -zoic (Cadomian) orogenic event, a Cambro-Or do vi cian rift ing ep i sode ac com pa nied by an im por tant bi modal magmatism, Si -lu rian and De vo nian pe lagic sed i men ta tion, and, fi nally, a late De vo nian to Early Car bon if er ous subduction-col li sion phase,

doc u mented by Car bon if er ous synorogenic sed i men ta tion with flysch and olistoliths. These Sudetic units have been re garded as east erly con tin u a tions of the Saxothuringian Terrane (Franke and ¯elaŸniewicz, 2000). Some of them, namely: the Lausitz–Izera Block, the Kamieniec Z¹bkowicki Belt and the Orlica–Œnie¿nik Dome com prise Early Or do vi cian (~500 Ma) metagranites and ac com pa ny ing mica schists, but the west ern part of the Lausitz–Izera Block is built of older, ~540 Ma Lusatian granodiorites (Linnemann and Romer, 2002; Bia³ek et al., 2014) which have not been found in the Kamieniec Z¹bkowicki Belt and the Orlica–Œnie¿nik Dome.

U-Pb dat ing of de tri tal zir cons from the metasedimentary rocks as so ci ated with the ~500 Ma orthogneisses in the West and Cen tral Sudetes showed that their ul ti mate source re gion was to be found in the West Af ri can craton (e.g., Jastrzêbski et al., 2010; Žaèkova et al., 2012; Mazur et al., 2012, 2015). Such prov e nance is typ i cal for clastic sed i ments of the Saxothuringian Terrane (Friedl et al., 2000; Linnemann et al., 2004, 2007).

Age of the youn gest de tri tal zir cons put lim its on the max i -mum pos si ble depositional ages of their host sed i ments and thus pro vide use ful con straints on re gional in ter pre ta tions and larger-scale palaeogeographic re con struc tions. These sug gest (e.g., Cho pin et al., 2012; Mazur et al., 2015) that the Cen tral Sudetes in clude tec tonic units re cy cled from the subducted Saxothuringian pas sive mar gin and may rep re sent an accretionary prism com pris ing a col lage of units of * Corresponding author, e-mail: teresa.oberc-dziedzic@ing.uni.wroc.pl

Received: August 28, 2017; accepted January 10, 2018; first published online: April 17, 2018

(2)

Saxothuringian/Cadomian prov e nances, which are mixed with the Cen tral Sudetic ophiolite.

Metagranitoids with ~500 Ma ig ne ous em place ment ages (Ol i ver et al., 1993; Klimas, 2008, Mazur et al., 2010) oc cur also in the Strzelin Mas sif, in the East Sudetes. These rocks, known as the pale Stachów orthogneisses, are as so ci ated with metasedimentary rocks – the dark Stachów paragneisses. Both types of gneiss es form the Stachów Com plex which was thrust on the Strzelin Com plex of the Brunovistulicum Terrane dur ing the Variscan Orog eny (Oberc-Dziedzic and Madej, 2002; Oberc-Dziedzic et al., 2005a).

The aim of this con tri bu tion is to es tab lish the prov e nance of the Stachów Com plex rocks and as sess their af fin ity to the Saxothuringian Terrane. We pro vide new SHRIMP (Sen si tive High-Res o lu tion Ion Microprobe) U-Pb data for zir cons from two sam ples of dark Stachów paragneisses and two sam ples of pale Stachów orthogneisses, and com pare the re sults with pub lished data for orthogneisses of sim i lar age and their ac com pa ny ing metasedimentary rocks from the Karkonosze–Izera Mas -sif and the Orlica–Œnie¿nik Dome, and for the Lusatian greywackes. In or der to sup port sim i lar ity of metasedimentary rocks as so ci at ing the ~500 Ma orthogneisses, we briefly char -ac ter ize their li thol ogy, and dis cuss their spa tial re la tion ships with the ~500 Ma orthogneisses. Fi nally, the un pub lished (Madej, 2010) trace el e ment and new Nd iso tope sig na ture of the dark Stachów gneiss es is com pared with pub lished data for the mica schists as so ci ated with the ~500 Ma orthogneisses in the Karkonosze–Izera Mas sif and the Orlica–Œnie¿nik Dome. Sim i lar com par i son for the ~500 Ma gneiss es, in clud ing the pale Stachów orthogneisses, was pre vi ously pub lished by Pin et al. (2007).

GEOLOGICAL SETTING

The Sudetes con sti tute the NE ter mi na tion of the Bo he mian Mas sif (Fig. 1A, B). The Sudetic Mar ginal Fault di vides them into the moun tain ous Sudetic Block and the largely peneplained Fore-Sudetic Block (Fig. 1C).

The Strzelin Mas sif is sit u ated ~40 km south of Wroc³aw in the east ern part of the Fore-Sudetic Block. It crops out in two N–S-trending belts in the Lipowe Hills on the west and the Strzelin Hills on the east. On the west, the Strzelin Mas sif is jux -ta posed along the Ma³a Œlê¿a Fault with the Kamieniec Z¹bkowicki Belt (Fig. 2). The Kamieniec Z¹bkowicki Belt is in -ter preted to be long ei ther to the Saxothuringian Terrane (Franke and ¯elaŸniewicz, 2000; Cho pin et al., 2012) or to the Moldanubian Terrane (Matte et al., 1990; Cymerman et al., 1997; Aleksandrowski and Mazur, 2002; Mazur et al., 2006).

The Strzelin Mas sif con sists of two units sep a rated by the Strzelin Thrust (Oberc-Dziedzic and Madej, 2002; Oberc-Dziedzic et al., 2005a) cor re spond ing to the north ern pro lon ga tion of the Moldanubian Thrust Zone (Suess, 1912) in the Fore-Sudetic Block. The footwall of the Strzelin Thrust is com posed of the Strzelin Com plex be long ing to the Brunovistulicum, whereas the hang ing wall of the thrust is made of the Stachów Com plex (Fig. 3).

The Strzelin Com plex (Fig. 3) com prises the Neoproterozoic gneiss es, older schist se ries (com posed of mica schists, calksil i cate rocks and am phi bo lites), and youn ger schist se ries made of the Jeg³owa Beds which are cor re -lated with the quartz ite for ma tion in the Jeseniki Mts of the East Sudetes (Bederke, 1931; Oberc, 1966), con tain ing Early De vo

-nian fos sils (Chlupáè, 1975; Fig. 3). These rocks are ex posed mainly in the Strzelin Hills.

The Stachów Com plex rocks oc cur as large out crops in the west ern part of the mas sif (Lipowe Hills), in two klippes sit u ated north of Goœciêcice and Strzelin in the north ern part of the Strzelin Hills, and in a third small klippe south of Bo¿nowice (Fig. 3). Oberc (1972) re garded these klippes as rem nants of the West Sudetic units thrust over the East Sudetic base ment. The Stachów Com plex is com posed of two con trast ing types of gneiss es: flaser orthogneisses, re ferred to as the pale Stachów gneiss es, and fine-grained paragneisses, re ferred to as the dark Stachów gneiss es. The lat ter are interlayered with mica schists, am phi bole schists and rare am phi bo lites, and are in ter preted to rep re sent the meta mor phic en ve lope of the granitoid protolith of the pale Stachów gneiss es (Figs. 3 and 4A). Both types of gneiss es form the coun try rocks of the Variscan bi o tite gran ites ex posed in the Strzelin quar ries in which they also oc cur as xe no liths (Figs. 3 and 4B).

The dark Stachów gneiss es (Fig. 4C, D) dis play three inter-lay ered va ri et ies: (1) streaky gneiss with out ev i dence of migmatization; (2) partly migmatized – banded, streaky gneiss -es, the most wide spread va ri ety of gneiss es; (3) migmatic gneiss es strongly folded (Madej, 2010). The banded, streaky gneiss es con tain in ter ca la tions of am phi bo lites and bi o titeam -phi bole schists. The dark Stachów gneiss es are fine-grained, dark grey, fo li ated rocks com posed of quartz, plagioclase, K-feld spar, bi o tite, sillimanite, and rare mus co vite.

The pale Stachów orthogneisses are known un der dif fer ent lo cal names (Stachów gneiss, Goœciêcice gneiss, Nieszkowice gneiss, Henryków gneiss) which were in tro duced be fore it was shown that all these gneiss es be long to the same ~500 Ma gen er a tion and share sim i lar petrographic and geo chem i cal fea -tures (Oberc-Dziedzic et al., 2016 and ref er ences therein). The orthogneisses form sheets rang ing from tens of centi metres up to 35 m in thick ness, inter-lay ered with dark gneiss es (Fig. 4A) or small bod ies not ac com pa nied by dark gneiss es (the Goœciêcice and Henryków gneiss es). The pale Stachów gneiss es show a se quence of tex tural va ri et ies: rare, por phy ritic, coarsegrained gneiss es with poorly de fined pla nar ani so -tropy, and more com mon augen, flaser, lay ered, and streaky gneiss es. Augen and flaser gneiss es of ten show pen cil struc -tures and stretch ing lineation (Fig. 4E). Augen 1–3 cm in size, are com posed of vari ably de formed K-feld spar megacrysts or quartz-feld spar ag gre gates (Fig. 4F). In the Goœciecice gneiss -es, nearly idiomorphic grey-blue microcline augen are rimmed by plagioclase. These augen are very sim i lar to those oc cur ring in the Izera gran ites and gneiss es (Oberc-Dziedzic et al., 2005b). The gneiss ma trix is com posed of quartz, plagioclase and bi o tite, usu ally form ing monomineral do mains.

SAMPLING AND METHODS

Four sam ples rep re sen ta tive of typ i cal gneiss es of the Stachów Com plex have been se lected for SHRIMP zir con in -ves ti ga tions, spe cif i cally, two dark Stachów gneiss es (SA 1 and WL 5) and two pale Stachów orthogneisses (310C, 300V1).

The pro ce dures used for zir con sep a ra tion and iso tope anal y sis with the Sen si tive High-Res o lu tion Ion Microprobe (SHRIMP II) were the same as those de scribed by

Oberc-Dziedzic and Kryza (2012) and are given in Ap pen dix 1*. The an a lyt i cal re sults are listed in Ap pen di ces 2–5. Con ven -tion ally, the ages given in the text, if not oth er wise stated, are 238 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

(3)

The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 239

Fig. 1. Geological position of the Saxothuringian Terrane

A – lo ca tion of the Sudetes (black dot) in the Eu ro pean Variscides; B – sketch map of the Bo he mian Mas sif (MO – Moldanubian zones, ST – Saxothuringian, TB – Teplá–Barrandian, af ter Franke, 2012) and Brunovistulicum (BV): MNST – Moldanubian–Nyznerov–Strzelin Thrust sep a rat ing the Bo he mian Mas sif from Brunovistulicum; quad ran gle shows the lo ca tion of the Sudetes; grey rect an gle shows the po si tion of the Strzelin Mas sif; C – sketch map of the Sudetes: B – Bardo Struc tural Unit, FSB – Fore-Sudetic Block, NM – NiedŸwiedŸ Mas sif, S – Sudetes; faults: MIF – Main Intra-Sudetic Fault, NOF – North ern Odra Fault, SMF – Sudetic Mar ginal Fault, SOF – South ern Odra Fault, UEFZ – Up per Elbe Fault Zone; thrusts: NT – Nyznerov Thrust, ST – Strzelin Thrust

(4)

207

Pb/206Pb ages for zir cons older than 650 Ma, and 206Pb/238U ages for zir cons youn ger than 650 Ma. The er rors in the text and ta bles are given at the 1 s level for in di vid ual points, and at the 2 s level in Con cordia di a grams and for av er age Con cordia ages.

Two sam ples of dark Stachów gneiss es have been ana -lysed for Sm-Nd iso topes (Ap pen dix 6), fol low ing pro ce dures de scribed in de tail by Pin and Santos Zalduegui (1997) and sum ma rized in Oberc-Dziedzic et al. (2016). The re sults are pre sented in Dis cus sion.

ZIRCON U-PB SHRIMP DATA

DARK STACHÓW GNEISS

Sam ple SA 1 co mes from the SA 1 bore hole (depth 102.0;

Fig. 4C), lo cated in Sadowice, in the Lipowe Hills (Fig. 3). It is a dark to pale grey, fine-grained, well-fo li ated rock. The lighter parts of the gneiss con tain rare leucocratic veins, 1–3 mm thick, in places swol len up to 10 mm, and white spots, 1–2 mm across. The darker parts of gneiss are com posed of plagioclase (An24-18), bi o tite, spo radic mus co vite and small (0.6 ´ 5 mm)

nod ules of sillimanite (Sil, Fig. 5A). The lighter parts are a lit tle coarser-grained and con tain microcline. The white spots (N, Fig. 5A) are com posed of K-feld spar con tain ing rounded, drop-like in clu sions of plagioclase and quartz, and small bi o tite flakes aligned par al lel or oblique to the fo li a tion. These do mains are in ter preted as small leucosome pools, ro tated af ter crys tal li -za tion. Leucocratic veins are com posed of quartz, plagioclase, K-feld spar with ir reg u lar do mains rich in Ba, and mus co vite.

In sam ple SA 1, most of the zir cons are subhedral to subrounded, short- to nor mal-pris matic (~100–200 µm long and 50–100 µm wide), clean and trans par ent. Some oth ers are darker, subrounded or ir reg u lar in shape.

In the CL im ages, the zir cons dis play var i ous in ter nal struc -tures. Most of the euhedral crys tals show os cil la tory zon ing of ig ne ous style, but a few grains have dis tinct and of ten large CL-bright in ter nal do mains con tain ing vac u oles and in clu sions (Fig. 6A).

In this sam ple, 17 points have been mea sured in 12 zir con grains (Ap pen dix 2). One of the points (8.1) is strongly dis cor -dant, with a 207Pb/206Pb age of 2018 ± 17 Ma pro vid ing min i mum es ti mate for the crys tal li za tion of this zir con, which might be of the same age as point 8.2 at ~2090 Ma. The other data in this sam ple have a low to mod er ate de gree of dis cor dance, rang ing from –9 to +7%. The 206Pbc con tents are low, 0.35% at most.

The U and Th con cen tra tions dis play a fairly large range (U: 55 – 1294 ppm, Th: 35 – 729 ppm).

Four con cor dant points, mostly in core do mains, yielded Archean and Paleoproterozoic 207Pb/206Pb ages: 7.1: 2883 ± 20, 6.1: 2784 ± 18, 10.1: 2468 ± 23, 8.2: 2089 ± 18 Ma (Fig. 6A). Five other 206Pb/238U ages are scat tered be tween 738 and 663 Ma, with a mean Con cordia age of 697 ± 18 Ma (Fig. 7A). Seven other points are sig nif i cantly youn ger, be tween 623 and 583 Ma, with a mean Con cordia age at 602 ± 8 Ma (Fig. 7B).

Sam ple WL 5 was taken from the out crop near Nieszkowice vil lage in the Lipowe Hills (Figs. 3 and 4D). It is a grey rock, show ing a fine-grained struc ture (grain of 0.25–0.5 mm in size) and no dis tinct mac ro scopic fo li a tion. A poorly vis i ble folded lay er ing is de fined by an in creased pro por tion of bi o tite. Un der the mi cro scope, the rock shows par al lel ar -240 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 2. Terranes in the eastern part of the Fore-Sudetic Block (modified from Franke, 2012)

(5)

The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 241

Fig. 3. Geological map of the Strzelin Massif (compiled by Oberc-Dziedzic and Madej, 2002; based on Wójcik, 1968; Wroñski, 1973; Badura, 1979; Oberc et al., 1988) with lo ca tion of sam ples an a lysed by SHRIMP method

In sert: Lower Silesia, sim pli fied tec tonic sub di vi sion and li thol ogy (ex clud ing the Variscan granitoids) mod i fied from Oberc-Dziedzic et al. (2005a); studied samples [location GPS: 310C (N50°46’39.8”, E17°2’44.4”); 300V1 (N50°46’35.2”, E17°3’13.8”); SA 1 (N50°44’4.6”,

E16°57’44.4”); WL 5.33 (N50°42’11.9”, E16°57’46”)]. Published SHRIMP age data of gneiss es from out crops: Gosc (N50°46’30.1”, E17°5’21.2”; Ol i ver et al., 1993; Mazur et al., 2010); Niesz (N50°42’19.1”, E16°58’3.9”; Klimas, 2008)

(6)

242 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 4. The Stachów gneisses

A – sheets of the pale Stachów gneiss (p) in the dark Stachów gneiss (d), fo li a tion of both types of gneiss es is uni formly ori ented, the Mikoszów Quarry, NW wall, pres ently not ex ist ing; B – en claves of the dark (d) and pale (p) Stachów gneiss es in a me dium-grained bi o tite gran ite block from the Strzelin I Quarry; C – dark Stachów gneiss, sam ple SA 1 from the SA 1 bore hole (Sadowice, Lipowe Hills), sillimanite nod ules (Sil) are vis i ble; D – dark Stachów gneiss, sam ple WL 5; E – pale Stachów gneiss show ing stretch ing lineation, sam ple 310C, taken from the right gneiss layer vis i ble in photo A, Mikoszów Quarry; F – augen pale Stachów gneiss, sam ple 300V1 from an en clave in the me -dium-grained bi o tite gran ite, Strzelin I Quarry

(7)

range ment of sin gle bi o tite flakes em bed ded be tween quartz, plagioclase (An23-18) and microcline grains (Fig. 5B). Rare,

3 mm long microcline grains con tain sillimanite in clu sions. Neosome do mains form rounded white spots sim i lar to those ob served in sam ple SA 1, and sev eral milli metre long do mains (ND) com posed of par al lel-aligned grains of quartz, microcline with droplike in clu sions of quartz, plagioclase and flakes of bi o -tite (Fig. 5B).

Most of the zir con grains are subrounded, rounded and subhedral, short- to nor mal-pris matic, 100–250 µm long and 80–150 µm wide. The subhedral crys tals are mostly clear, with a few in clu sions. The rounded and subrounded grains are darker and have a mat sur face.

In the CL im ages, the zir cons re veal con sid er able vari a tion of their in ter nal struc tures. Many grains have CL-bright in ter nal do mains cov ered with darker os cil la tory zoned overgrowths (e.g., grain 3.2). A num ber of subrounded crys tals have CL-dark cores over grown by CL-bright man tles and, lo cally, by CL-dark rims (e.g., grains 4 and 12). Quite many zir cons are CL-dark, with some “ghost” zon ing in the cen tre (e.g., 6.1;

Fig. 6B).

Out of 24 anal y ses in 16 zir con grains (Ap pen dix 3), one point (15.2) is highly dis cor dant, while an other one (7.1) shows a strong re verse dis cor dance; these two anal y ses have been ex cluded from in ter pre ta tion. The 206Pbc con tents are be tween

0 and 0.47%. The U (50–1414 ppm) and Th (7–1283 ppm) con -cen tra tions are highly vari able but mostly low to mod er ate. The

232

Th/238U ra tios are scat tered be tween 0.03 and 3.1, sug gest ing that some of the zir con do mains ana lysed might have crys -tal lized from meta mor phic flu ids (with low Th/U) rather than from sil i cate melts.

The ages are also very scat tered. Three grains yield nearly con cor dant spots with Archean 207Pb/ 206Pb ages: 13.1: 2651 ± 21, 10.1: 2630 ± 8, and 1.1: 2605 ± 12 Ma. Six other points have

206

Pb/ 238U ages within the range 1830–2200 Ma, but most of them are some what dis cor dant, im ply ing that their true ages might be close to the up per bound of that range. Two other anal y ses (2.1 and 8.1) give nearly con cor dant data points in di -cat ing an age of ~1000 Ma.

The rest of the zir cons (11 spots) yield 206Pb/238U ages in the range of 570–630 Ma. Within this Late Neoproterozoic group, two sub sets of ages might pos si bly be dis tin guished with The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 243

Fig. 5. Photomicrographs of the dark and pale Stachów gneisses selected for SHRIMP zircon investigations

A – dark Stachów gneiss, sam ple SA 1, nod ule of muscovitized sillimanite (Sil) and white spot of neosome (N) are sur rounded by quartz, bi o -tite, plagioclase and rare microcline; B – dark Stachów gneiss, sam ple WL 5, do main of neosome (ND) com posed of microcline with drop-like in clu sions of quartz, plagioclase and par al lel-aligned bi o tite flakes; C – pale Stachów gneiss, sam ple 310C, len tic u lar pod com posed of quartz (Qz), plagioclase (Pl) and microcline (Kfs) is par al lel to brown bi o tite strips (Bt) and quartz lay ers (Qz); D – pale Stachów gneiss, sam ple 300V1, elon gate quartz grains (Qz), feld spars layer com posed of plagioclase and microcline (Fsp), brown bi o tite plate (Bt); min eral ab -bre vi a tions from Whit ney and Ev ans (2010)

(8)

av er age Con cordia ages of 617 ± 4 Ma (points 2.2, 4.1, 11.1, 12.1, and 12.2; Fig. 7C) and 577 ± 6 Ma (points 3.1, 3.2, 4.2, 5.1, 6.1, and 14.1; Fig. 7D).

PALE STACHÓW GNEISS

Sam ple 310C was taken from the 50 cm thick packet in the

dark gneiss es ex posed in the Mikoszów Quarry near Strzelin (Figs. 3 and 4A, E). It is a pale grey, yel low ish, crudely lay ered gneiss com posed of quartz-plagioclase-microcline len tic u lar pods with rare K-feld spar augen, up to 0.5 mm in di am e ter, and strips of brown bi o tite (Fig. 5C).

The zir con pop u la tion in this sam ple is rel a tively ho mo ge -neous: nor mal-pris matic (up to ~150 µm long and 100 µm wide), euhedral crys tals pre vail, with quite abun dant “dusty” and oval in clu sions. Darker rounded grains and bro ken crys tals are also found.

In the CL im ages, the in ter nal struc ture of the zir cons ap -pears rather com plex. The in ter nal do mains are CL-darker or brighter, lo cally with ir reg u lar cloudy zon ing. The ex ter nal parts of the crys tals are more reg u lar, dis play ing os cil la tory zonation (Fig. 8A).

In this sam ple, one point (6.2), out of 18 points ana lysed in 13 grains (Ap pen dix 4), has been ex cluded from in ter pre ta tion due to strongly re verse dis cor dance. Com mon Pb is low, be -tween 0 and 0.44%, ex cept in spot 13.1 (1.6% 206Pbc), caus ing

the very large un cer tainty of its 207Pb/206Pb age. The U (222–829 ppm) and Th (16–532 ppm) con cen tra tions are also uni form and mod er ate (ex cept for point 10.1, with much higher con tents). The 232Th/238U ra tios are mod er ate to fairly high in most cases (mostly be tween 0.15 and 1.0), and sug ges tive of ig ne ous crys tal li za tion.

With the ex cep tion of spot 1.1, which points to a min i mum age of ~620 Ma, the data points yield a spec trum of ages rang -244 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 6. CL images and ages of zircons from the dark Stachów gneisses A – sample SA 1; B – sample WL 5

(9)

ing from 450 Ma to 580 Ma, within which three age groups may be de fined with mean Con cordia ages of 462 ± 9 Ma (n = 3); 514 ± 6 Ma (n = 8; Fig. 9A); 562 ± 9 Ma (n = 4; Fig. 9B). The 514 Ma group might pos si bly be fur ther sub di vided into two sub groups with av er age Con cordia ages of 506 ± 8 Ma (n = 5) and 526 ± 10 Ma (n = 3). It is con cluded that the 514 ± 6 Ma age cal cu lated from the main group of zir cons (8 spots) pro vides a rea son able es ti mate of the ig ne ous em place ment age. The ~560 Ma and ~460 Ma dates mea sured on fewer grains are in ter preted to re flect the age of an in her ited com po nent and the ap par ent, geo log i cally mean ing less, age of zir con do mains which suf fered ra -dio genic lead loss, re spec tively.

Sam ple 300V1 was taken from a xe no lith, 1.5 m in size,

found in the me dium-grained Strzelin gran ite of the Strzelin I Quarry (Fig. 3). It is a light-col oured grey rock com posed of quartz, feld spars and bi o tite (Fig. 4F). Quartz do mains com -prise elon gate grains up to 1 mm. Feld spars form lay ers up to 5 mm thick, com posed of plagioclase (An18) and microcline

0.15–0.25 mm across. Microcline augen are rare. Bi o tite shows yel lowbrown pleochroism and in cludes nu mer ous zir con in clu -sions sur rounded by pleochroic ha loes (Fig. 5D).

The zir cons are ho mo ge neous in their hab its and in ter nal struc ture. They are euhedral to subhedral, nor mal-pris matic, ~80–120 µm long and 30–80 µm wide. Many crys tals have ir -reg u lar out lines and some are bro ken. Some grains dis play CL-dark in te ri ors and mod er ately bright ex ter nal parts (grains 2, 4, 8, 9 and 12), while a few show CL-brighter cores (1 and 17). Many grains ex hibit dis tinct zonation, both in the in ner and outer parts of the grains (Fig. 8B).

Twenty-one anal y ses have been made in 21 grains (Ap pen -dix 5). The 206Pbc con tents are low, be tween 0 and 0.63% (ex

-cept in point 8.1: 1.23%). The U and Th con cen tra tions are also low to mod er ate, be tween 116–1563 ppm and 57–1287, re -spec tively. The 232Th/238U ra tios fall within the mod er ate range of 0.17–0.87.

Sev eral anal y ses are re versely dis cor dant and should be treated with cau tion.

Five con cor dant dates are older that the main age pop u la -tion of zir cons and their 206Pb/238U ages are at ~617, 560, 528 (two points) and 510 Ma (Fig. 9C). The two grains with ages of ~617 and 560 Ma doc u ment the pres ence of zir cons which might have been in her ited from the magma source, or al ter na -The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 245

Fig. 7. Concordia diagrams for zircons from the dark Stachów gneiss

Sam ple SA 1: A – mean Con cordia age of 697 ± 18 Ma for a group of 5 points be tween 738–663 Ma; B – mean Con cordia age at 601.8 ± 7.7 Ma for group of 7 points be tween ~583–623 Ma; sam ple WL 5; C – mean Con cordia age of 616.5 ± 4.4 Ma for a group of 5 points be tween 605–635 Ma; D – mean Con cordia age at 577.3 ± 6.2 Ma for group of 6 points be tween ~559–597 Ma

(10)

tively in cor po rated as xeno crysts in the magma at a later stage. The mean ing of two grains with 528 Ma 206Pb/238U ap par ent ages is du bi ous in view of their sig nif i cant de gree of dis cor dance. The 510 Ma con cor dant grain 12.1 might have been in -cluded in the main group.

The main group of 206Pb/238U dates com pris ing 11 points, is in the nar row range of 498–504 Ma. Ex clud ing three rel a tively dis cor dant points, the re main ing 8 points yield a well-de fined mean Con cordia age of 499 ± 4 Ma (Fig. 9D) in ter preted as re -flect ing the em place ment age of the ig ne ous protolith. Two grains are some what youn ger, at ~483 Ma, prob a bly re flect ing ra dio genic lead loss.

DISCUSSION

Based on our new age data for the dark and pale Stachów gneiss es, we com pare these gneiss es with the ~500 Ma orthogneisses and as so ci ated metasedimentary rocks oc cur -ring out of the Strzelin Mas sif, in the Sudetic part of the Saxothuringian Terrane.

COMPARISON OF THE ZIRCON AGE SPECTRA OF THE STACHÓW GNEISSES AND SELECTED ROCKS OF THE SAXOTHURINGIAN

TERRANE

Dark Stachów gneiss es. The het er o ge neous zir con pop u

-la tion, in clud ing many rounded, subrounded and subhedral

grains, and the wide scat ter of their U-Pb ages pro vide strong ev i dence for a sed i men tary der i va tion of their protolith. Spe cif i -cally, the new SHRIMP zir con age data for sam ples SA 1 and WL 5 dis play sim i lar i ties, but also some dif fer ences (Fig. 10A, B). In both sam ples, the main ages broadly clus ter in the same ~570–630 Ma range, im ply ing a youn ger depositional age. How ever, sam ple SA 1 has an ad di tional sig nif i cant pop u la tion at ~660–690 Ma (Fig. 11A, B). There are also some dif fer ences in the dis tri bu tion of older re cy cled com po nents, al though the rel a tively low num ber of dated zir cons puts strong lim i ta tions on the in fer ences which can be drawn from our data. How ever, in both sam ples, the fol low ing in di vid ual dates are pres ent: ~2100–2200 Ma, 2400–2500 Ma, 2700–2800 Ma. In ter est ingly, two grains in WL 5 point to a ~1000 Ma old com po nent, which would de serve con fir ma tion by fur ther anal y ses on a larger zir -con pop u la tion (Ap pen di ces 2 and 3).

The two newly ana lysed sam ples of the Stachów dark gneiss es have been com pared with ear lier re ported SHRIMP data from six sam ples of se lected metapelites and metagreywackes of Lusatia along with paragneisses and mica schists ac com pa ny ing the ~500 Ma orthogneisses in the Karkonosze–Izera Mas sif and Orlica–Œnie¿nik Dome (Figs. 10C–H and 11C–H). In all the sam ples the main zir con pop u la tions are rep re sented by broadly “con tin u ous” spec tra within the range of ~550–660 Ma, and scarce, but symp tom atic in di vid ual points be tween ~700 and 800 Ma (Fig. 11C–H).

In spite of this dis tinct sim i lar ity, the sam ples show some dif -fer ences. In the Rothstein Fm. (meta)greywacke (Rothst) 246 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 8. CL images and ages of zircons from the pale Stachów gneisses A – sample 310C; B – sample 300V1

(11)

(Linnemann et al., 2007), the Z³otniki Lubañskie mica schist (Zlot; ¯elaŸniewicz et al., 2009), and the Wyszki paragneiss (Wyszki; Mazur et al., 2015), just as in the dark Stachów gneiss (SA 1, WL 5), zir con grains youn ger than 550 Ma were not found.

In the M³ynowiec paragneiss (sam ple Mlyn), five of the to tal of 44 anal y ses, fall be tween 515 and 547 Ma (Jastrzêbski et al., 2010), thus ex tend ing the youn ger shoul der of the main age pop u la tion. On the other hand, in the same for ma tion, Mazur et al. (2012) re ported only one anal y sis with an age of 548 Ma. The sig nif i cance of this ob ser va tion is un clear be cause the youn ger dates could merely re flect ra dio genic lead loss not re -solved by in situ U-Pb anal y ses. In deed, Mazur et al. (2012) in ter preted their 548 Ma date as a re sult of Pbloss ei ther by con -tin u ous dif fu sion or ep i sodic re sponse to later meta mor phism, but Jastrzêbski et al. (2010) in ter preted only one re sult at ~515 Ma as re flect ing lead loss, and con sid ered 10 ages be -tween 561 and 531 Ma as con cor dant.

Some what youn ger zir cons were found in the Stronie mica schist (Fig. 11H), i.e. 13 anal y ses in the 550–466 Ma time span, with only 4 ages youn ger than 500 Ma (Jastrzêbski et al., 2010). In con trast to the rest of the sam ples stud ied, the VUpa sam ple VU371 (a quartz ite from the low er most part of the mica schist com plex from the lower thrust sheet) shows, be sides

550–670 Ma old zir cons, a large pro por tion of youn ger zir cons with ages as young as ~446 Ma (Fig. 11D) and nearly half of the grains mea sured fall ing within the range 446–550 Ma (Žaèkova et al., 2012). Zir con grains of sim i lar age were re ported from quartzofeldspathic metavolcanogenic rocks of the mica schist se ries in the east ern part of the Karkonosze–Izera Mas sif (Oberc-Dziedzic et al., 2010).

Zir cons of Ediacaran age pre dom i nate in all the rocks com -pared with the dark Stachów gneiss es, ex cept in the VUpa quartz ite and the Stronie mica schist, which also con tain youn -ger, Cam brian to Late Or do vi cian zir cons. In low- to me diumgrade meta mor phic rocks, they may be used to put con -straints on the ages of the source ma te ri als and to ap prox i mate the old est pos si ble de po si tion age of their sed i men tary protoliths.

Be sides these Late Neoproterozoic or Early Pa leo zoic com -po nents, much older Pre cam brian zir cons are also fre quent, but their age dis tri bu tions dis play some dif fer ences from sam ple to sam ple. Four of the six sam ples com pared have prac ti cally no dates within the 1000–1800 Ma range, which is con sid -ered as symp tom atic of the Armori can crust (Friedl et al., 2000), whereas in two oth ers (VUpa and Mlyn), such zir cons are pres -ent but scarce (4 and 5 grains, re spec tively, out of the to tal 44 and 59 points mea sured). Char ac ter is ti cally, all the sam ples The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 247

Fig. 9. Concordia diagrams for zircons from the pale Stachów gneiss

Sample 310C: A – mean Concordia age of 513.8 ± 5.9 Ma for a group of 8 points; B – mean Concordia age of 561.8 ± 9.3 Ma for a group of 4 points; sample 300V1; C – Concordia diagram for all points; D – mean Concordia age of 498.5 ±

(12)

248 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 10. Distribution of detrital zircon ages from the Neoproterozoic dark Stachów gneisses compared with zircon ages from Lusatian greywacke and metasediments of the Karkonosze–Izera Massif and Orlica–Œnie¿nik Dome,

presented as a histogram (group of rectangles) and a cumulative probability plot (black curved line)

Strzelin Mas sif, dark Stachów gneiss, this study: A – SA 1; B – WL 5; Lusatian Mas sif: C – Rothst – (meta)greywacke, Ediacaran, Rothstein Fm., Torgau–Doberlug Syncline (Linnemenn et al., 2007); Karkonosze–Izera Mas sif: D – VUpa – mica schist, S Karkonosze, lower thrust sheet (Žaèkova et al., 2012); E – Zlot – mica schist, Z³otniki Schist Belt (¯elaŸniewicz et al., 2009); Orlica–Œnie¿nik Dome: F – Wyszki – Wyszki paragneiss, M³ynowiec For ma tion (Mazur et al., 2015); G – Mlyn – M³ynowiec paragneiss, M³ynowiec For ma tion (Jastrzêbski et al., 2010); H – Stronie mica schists, Stronie For ma tion (Jastrzêbski et al., 2010)

(13)

The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 249

Fig. 11. Distribution of detrital zircon ages <800 Ma from the Neoproterozoic dark Stachów gneisses compared with zircon ages from Lusatian greywacke and metasediments of the Karkonosze–Izera Massif and Orlica-Œnie¿nik Dome, presented

as a histogram (group of rectangles) and a cumulative probability plot (black curved line) Other explanations as in Figure 10

(14)

have ages pat terns with peaks at ~1900–2200 Ma, and a few of them also dis play older grains in the 2400–2800 Ma range.

Pale Stachów orthogneisses. The ho mo ge ne ity and mor

-phol ogy of the zir cons from 310C and 300V1 sam ples sug gest that most of them crys tal lized from a gra nitic melt. In deed, age data (Fig. 9) re veal only a small com po nent of older Pre cam -brian zir cons, ex em pli fied by grains with min i mum ages of ~680 Ma in sam ple 310C. The 206Pb/238U ages are scat tered be tween ~562 Ma and 462 Ma, with an ~514 Ma dom i nant age in sam ple 310C, and be tween 617 Ma and 483 Ma, with a dis -tinct main age group at 499 ± 4 Ma in sam ple 300V1. The large scat ter prob a bly re flects the com bi na tion of var i ous de grees of zir con in her i tance (re cy cled grains, much older than ~500 Ma, ir re spec tive of their pre cise or i gin) and ra dio genic Pb-loss (ages youn ger than ~500 Ma), pro duc ing strings of data points close to the Con cordia curve which SHRIMP can not re solve from truly con cor dant data due to the large count ing sta tis tics un cer tainty of the low abun dance of 207Pb (e.g., Pin and Ro dri -guez, 2009). Keep ing in mind this ba sic meth od olog i cal lim i ta -tion, the al ter na tive hy poth e sis that these ages re flect sev eral mag matic/anatectic pulses is be lieved to be less plau si ble, or at least can not be sup ported by the avail able data. In brief, it is con ser va tively con cluded that a pre cise as sess ment of the true ig ne ous em place ment age(s) within the ~490–520 Ma time span can not be reached based on our data. In spite of this, it is clear that the ig ne ous protoliths of the Stachów orthogneisses share the same ~500 Ma ig ne ous em place ment age as orthogneisses wide spread in the West and Cen tral Sudetes.

The new SHRIMP zir con age data for the two sam ples of the pale Stachów gneiss es, 310C and 300V1, have been com -pared with ear lier re ported SHRIMP data of the pale Stachów gneiss es from the Strzelin Mas sif: Gosc (Mazur et al., 2010) and Niesz (Klimas, 2008); and with ad di tional ~500 Ma gneiss -es from the other parts of the Sudet-es (Fig. 3): Sniez – Œnie¿nik gneiss from the Œnie¿nik Mas sif (Turniak et al., 2000) and three gneiss sam ples from the Karkonosze–Izera Mas sif: Izera CH (Oberc-Dziedzic et al., 2009), Izera IS (¯elaŸniewicz et al., 2009) and Kowary (Oberc-Dziedzic et al., 2010). It is worth not -ing that re sults ob tained by Turniak et al. (2000) for the Œnie¿nik gneiss es have been re cently con firmed by Redliñska-Mar -czyñska et al. (2016).

The main zir con age ranges, be tween 300 and 800 Ma, in the sam ples com pared are shown in Fig ure 12. For sim plic ity, the 206Pb/238U ages of all data points have been plot ted. Even older in her ited grains, which are usu ally scarce, are dis cussed be low.

In gen eral, the main age peak in all the sam ples is be tween ~480 and 520 Ma, with the max i mum close to 500 Ma (only in the Kowary gneiss the max i mum is at ~480 Ma). A few dates are sig nif i cantly youn ger, within the range of 420–480 Ma, and only in the Œnie¿nik gneiss, two much youn ger ages of ~327 and 336 Ma have been found and in ter preted as a re cord of Visean meta mor phism (Turniak et al., 2000).

Zir con ages older than 800 Ma are also scarce (207Pb/206Pb ages with 1s un cer tainty, un less spec i fied oth er wise): Gosc: 715 ± 190 (D 41), 1640 ± 41 (D 96), 1767 ± 8 (D 23), 1828 ± 51 (D 34), 2912 ± 11 Ma (D 16); Niesz: 1916 ± 25 Ma (206Pb/238U age); Sniez: 2616 ± 59 Ma (206Pb/238U age); Izera CH: 983 ± 226 (D 50), 1953 ± 23 (D -11), 3368 ± 9 Ma (D -2, 207Pb/206Pb age); Izera IS: 2116 ± 14 Ma (D -6); Kowary: 1955 ± 17 Ma (D 24). The 3368 ± 9 Ma zir con date from Izera CH is sim i lar to the 3417 ± 8 Ma date (207Pb/206Pb age) re ported by Kryza et al. (2007) from the Gackowa sand stone (Kaczawa Belt). These are the old est zir cons doc u mented in the Sudetes so far.

Sum ming up, all the pale Stachów gneiss sam ples (310C, 300V1, Gosc and Niesz) have very sim i lar zir con age spec tra,

with a prom i nent peak at ~500 Ma, and sub or di nate dates be -tween ~420–480 and 530–620 Ma. The older dates are scarce (ex cept for sam ple Gosc where, how ever, the old ages are mostly dis cor dant). These age spec tra are also very sim i lar to the zir con dates re ported from other orthogneisses of the Sudetes, i.e. the Izera, Kowary and Œnie¿nik gneiss es. Among the old in her ited zir con dates, a dis tinct group is at ~1950–2200 Ma. How ever, in gen eral, there is a dis tinct gap be tween 1000–1800 Ma, which is typ i cal of ma te ri als ul ti mately de rived from the West Af ri can craton and, in Eu rope, the crust of the Armorica Terrane (Friedl et al., 2000).

The zir con age data sup port the view that orthogneisses of the Stachów Com plex be long to the ~500 Ma group of orthogneisses, com mon in the Saxothuringian Zone (Pin et al., 2007). More over, the ages of the in her ited zir cons sug gest that the sources for their gra nitic pre cur sors were sim i lar to those found in Armorica.

The age pat terns of de tri tal zir cons of the dark Stachów paragneisses dis play fea tures sim i lar to those from the Lusatian greywacke, Z³otniki Lubañskie mica schists and Wyszki and M³ynowiec paragneisses, all con sid ered as be long ing to the Saxothuringian Terrane (Linnemann et al., 2004, 2007; Szczepañski and Ilnicki, 2014; Mazur et al., 2015). The age sim i lar ity of the dark Stachów gneiss es and other metasedimentary rocks ac com pa ny ing the ~500 Ma orthogneisses, sug gests that they also be long to the Saxothuringian Terrane.

COMPARISON OF THE CHARACTERISTIC FEATURES OF THE ~500 MA ORTHOGNEISSES AND ACCOMPANYING METASEDIMENTARY ROCKS The Stachów, Izera and Œnie¿nik orthogneisses are ac com -pa nied by metasedimentary rocks, namely: the dark Stachów gneiss es, mica schists of the Z³otniki Lubañskie, Stara Kamienica and Szklarska Porêba Belts, and rocks of the M³ynowiec and Stronie for ma tions, re spec tively. These rocks dif fer not only as to their min eral com po si tion which re flects the na ture of their protholith and the de gree of meta mor phism, but also by their as so ci ated rocks. The dark Stachów gneiss es (1:

Oberc-Dziedzic, 1995; Madej, 2010), the Z³otniki Lubañskie mica schists (2: ¯elaŸniewicz et al., 2009) and paragneisses of the M³ynowiec For ma tion (3: Jastrzêbski et al., 2010) all form mo not o nous se ries with small ad mix tures of volcanogenic ma -te rial. In con trast, the mica schists of the Stara Kamienica Belt in the Karkonosze–Izera Mas sif are ac com pa nied by quartzites, leptynites, calc-sil i cate rocks and am phi bo lites (Koz³owski, 1974), whereas the Stronie For ma tion in the Orlica–Œnie¿nik Dome is com posed of mica schists with interlayers of lightcol -oured or gra phitic quartzites, am phi bo lites, mar bles and leptynites (Jastrzêbski et al., 2010 and ref er ences therein).

These metasedimentary rocks were usu ally con sid ered as rep re sent ing the coun try rocks of mag matic pre cur sors of the gneiss es (e.g., ¯elaŸniewicz, 2005), al though, not sur pris ingly in highgrade con texts, con vinc ing ev i dence of con tact meta -mor phism has not been found. In fact, the con tacts be tween gneiss es and schists have usu ally a tec tonic char ac ter (Koz³owski, 1974; Jastrzêbski et al., 2010) and might re flect ei -ther re worked, orig i nally ig ne ous con tacts or purely tec tonic struc tures jux ta pos ing un re lated units.

Be cause the pri mary re la tion ships be tween schists and mag matic pre cur sors of the gneiss es are un known, rel a tive ages of de po si tion of the sed i men tary protoliths of the mica schists on the one hand, and the ig ne ous em place ment age of the gran ite pre cur sors on the other hand, can be used to put con straints on pos si ble coun try rocks of ~500 Ma metagranites. Tak ing into ac count zir con ages, only the dark Stachów gneiss -250 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

(15)

The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 251

Fig. 12. Distribution of detrital zircon ages <800 Ma from the pale Stachów gneisses compared with zircon ages from orthogneisses of the Orlica–Œnie¿nik Dome and Karkonosze–Izera Massif, presented as a histogram (group of rectangles)

and a cumulative probability plot (black curved line)

Strzelin Mas sif, pale Stachów gneiss: A – 310C (this study); B – 310V1(this study); C – Gosc (Mazur et al., 2010); D – Niesz (Klimas, 2008); Orlica–Œnie¿nik Dome: E – Sniez – Œnie¿nik gneiss (Turniak et al., 2000); Karkonosze–Izera Mas sif; F – Izera CH – Izera gneiss from Chmieleñ (Oberc-Dziedzic et al., 2009); G – Izera IS – Izera gneiss from Izerski Stóg (¯elaŸniewicz et al., 2009); H – Kowary – Kowary gneiss (Oberc-Dziedzic et al., 2010)

(16)

es, the Z³otniki Lubañskie schists oc cur ring in the north ern part of the Karkonosze–Izera Mas sif (Oberc-Dziedzic et al., 2009; ¯elaŸniewicz et al., 2009), and the Wyszki and M³ynowiec paragneisses from the M³ynowiec For ma tion (Jastrzêbski et al., 2010; Szczepañski and Ilnicki, 2014; Mazur et al., 2015), which do not con tain zir cons youn ger than 500 Ma, ful fill the age cri te -ria re quired to in ter pret them as pos si ble coun try rocks of the ~500 Ma gra nitic in tru sions. If this in ter pre ta tion is cor rect, the pres ent con tacts be tween these rocks and orthogneisses can be con sid ered as re worked, orig i nally ig ne ous con tacts, whereas the con tacts be tween the Izera orthogneisses and the Stara Kamienica schists as well as those be tween the Œnie¿nik orthogneisses and the Stronie For ma tion rocks are purely tec -tonic. Such in ter pre ta tion does not pre clude the pos si bil ity that rocks of the Z³otniki Lubañskie and the Stara Kamienica Belts as well as the M³ynowiec and Stronie For ma tions do not form con tin u ous suc ces sions (Jastrzêbski et al., 2010), but rather sug gests that in tru sions of the gra nitic mag mas did not in ter rupt the sed i men ta tion.

Apart from the age re la tion ships, the bulk pro por tions be -tween gneiss es and metasedimentary rocks and their spa tial re la tion ships may also be taken into ac count in the dis cus sion of their pri mary re la tion ships. The Izera and Œnie¿nik gneiss es form bod ies con sid er ably larger and less sus cep ti ble to de for ma tion than their as so ci ated metasedimentary rocks. The con tacts be tween them are prob a bly tec toni cally mod i fied. In con -trast, the pale Stachów gneiss es usu ally form thin (sev eral centi metres to sev eral metres) sheets (eas ily in ter preted as for

-mer dykes) within the dark Stachów gneiss es (Fig. 4A) and only ex cep tion ally larger stocks. The rel a tive pro por tions, to gether with the age of the dark Stachów paragneisses, clearly fa vour the in ter pre ta tion that the dark gneiss es are coun try rocks to the pale Stachów orthogneisses. More over, the space re la tion ships be tween the pale and dark Stachów gneiss es sug gest that they might cor re spond to the pe riph eral part of a larger plutonic body pos si bly sim i lar to the Izera gran ites, as in ferred from the oc cur -rence of blu ish K-feld spar in both cases.

The Izera, Œnie¿nik, and pale Stachów orthogneisses in the Sudetes show not only the same ~500 Ma age, but also the lithological and geo chem i cal sim i lar ity pre sented ear lier by Pin et al. (2007). The com par i son of chem i cal anal y ses of the pale Stachów gneiss es (Oberc-Dziedzic et al., 2016) with data pub lished for the Izera and Œnie¿nik gneiss es con firm their sim i lar -ity, pre vi ously de duced from only three chem i cal anal y ses (Pin et al., 2007).

In or der to show the geo chem i cal sim i lar ity of meta -sedimentary rocks ac com pa ny ing the ~500 Ma orthogneisses, the trace el e ments of the dark Stachów gneiss es (Madej, 2010) were nor mal ized to the up per con ti nen tal crust and chondrite and com pared with the nor mal ized pat terns of the Z³otniki Lubañskie, Stara Kamienica and Szklarska Porêba belts (Karkonosze–Izera Mas sif; Oberc-Dziedzic et al., 2009) and the M³ynowiec For ma tion paragneisses (Orlica–Œnie¿nik Dome; Szczepañski and Ilnicki, 2014; Fig. 13). The nor mal iza -tion val ues were taken from Rudnick and Gao (2003) for the up -per crust, and from Sun and McDonough (1989) for chondrite. 252 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Fig. 13. Upper crust-normalized multi-element diagrams and chondrite-normalized REE plots for the dark Stachów gneiss from the Strzelin Massif

A, B – com pared with val ues of the Izera mica schists (Oberc-Dziedzic et al., 2009); C, D – com pared with val ues of the M³ynowiec For ma tion paragneisses (Szczepañski and Ilnicki, 2014); A–D – trace el e ments val ues of dark Stachów gneiss es of

Madej (2010); A, C – nor mal iza tion val ues of Rudnick and Gao (2003); B, D – nor mal iza tion val ues of Sun and McDonough (1989)

(17)

It can be seen that the nor mal ized pat terns are sim i lar. How -ever, the dark Stachów gneiss es show higher con tents of trace el e ments and a deeper neg a tive Sr anom aly than the Izera mica schists and the M³ynowiec paragneisses (Fig. 13A, C).

The chondrite-nor mal ized REE plot of the dark Stachów gneiss es is char ac ter ized by a strong LREE en rich ment and mod er ate frac tion ation of LREE over HREE. Neg a tive Eu anom a lies oc cur in all sam ples. The REE plots of the Izera mica schists and the M³ynowiec paragneisses are sim i lar to those of the dark Stachów gneiss es, but the LREE bulk con cen tra tion in the dark Stachów gneiss es is lower than in the Izera schists (Fig. 13B) and higher than in the M³ynowiec paragneisses (Fig. 13D).

Two new Sm-Nd iso tope data of the dark Stachów gneiss es were com pared with 47 pub lished data (Ap pen dix 6). Most pub -lished Sm-Nd data (36) were ob tained on a sub set of sam ples whose petrographic and geo chem i cal stud ies were pre sented in our ear lier pub li ca tions cited in Ap pen dix 6. Some of these sam ples were also dated by the SHRIMP zir con method. The re main ing 11 anal y ses, con cern ing mainly (8 of 11) rocks out -side the Pol ish ter ri tory, were pub lished by other au thors cited in Ap pen dix 6. The 147Sm/144Nd ra tios (0.1100–0.1269) mea sured in the dark Stachów gneiss es are sim i lar to the ra tios of the Izera mica schists. As other ~500 Ma orthogneisses of the Saxothuringian Terrane, the pale Stachów gneiss es dis play higher 147Sm/144Nd ra tios (0.1209–0.1388) than the dark gneiss es (Ap pen dix 6). The eNd600 val ues of the dark Stachów

gneiss es (–7.4 and –7.5) are sim i lar to eNd570 val ues of the

Lusatian greywackes (–8.2 to –7.1) and the Z³otniki Lubañskie schists (–7.4 and –5.6) as well as to eNd500 val ues of the Izera

mica schists (–8.7 to –7.5; Ap pen dix 6; Fig. 14).

The ini tial eNd val ues of the ~100 Ma youn ger, pale Stachów orthogneisses (–4.9 < eNd500 < –6.7) are sim i lar to

those of other ~500 Ma orthogneisses of the Saxothuringian Terrane (i.e. the Izera, Œnie¿nik and Giera³tów gneiss es; Ap -pen dix 6; Fig. 14).

The av er age de pleted man tle model ages (TDM) of the

Lusatian greywackes 1.7 Ga), the Izera mica schists (1.61 Ga) and the dark Stachów gneiss es (1.66–1.68 Ga) are higher than those of the pale Stachów orthogneisses (1.49–1.67 Ga, up to 1.73 Ga in one sam ple) and the Œnie¿nik orthogneisses (1.39–1.77 Ga), but lower than TDMof the Izera gneiss es and

gran ites (1.73–1.99 Ga; Ap pen dix 6).

Dur ing the Variscan Orog eny, sed i men tary rocks ac com pa -ny ing the ~500 Ma granitoids ex pe ri enced meta mor phism of dif fer ent de grees: low-grade meta mor phism in case of the Z³otniki Lubañskie schists (e.g., Oberc-Dziedzic et al., 2009), me dium-grade meta mor phism in case of the M³ynowiec paragneisses (e.g., Jastrzêbski et al., 2014) and migmatization in case of the dark Stachów gneiss es (Madej, 2010).

The vari able de for ma tion con di tions dur ing the Variscan Orog eny are re flected in the great va ri ety of deformational struc tures of orthogneisses. The pale Stachów gneiss es usu -ally show in tense de for ma tion (Henryków gneiss es; Madej, 1999). The most de formed parts of the Izera gneiss es rep re -sent zones of in tense mylonitic de for ma tion. The char ac ter of de for ma tion in the Karkonosze–Izera Mas sif changes from semi-duc tile or brit tle in the west ern part of the mas sif to duc tile in its east ern part. A char ac ter is tic fea ture of the Izera gneiss es is albitization as so ci ated with de for ma tion (e.g., ¯elaŸniewicz, 2005). The ~500 Ma gran ites of the Orlica–Œnie¿nik Dome un -der went strong de for ma tion and were trans formed into the The Saxothuringian Terrane affinity of the metamorphic Stachów Complex... 253

Fig. 14. eNd versus Sm/Nd data compiled for selected metasedimentary rocks and ~500 Ma orthogneisses from the eastern part of the

Saxothuringian Terrane

Data sources: dark Stachów gneiss – this study; pub lished data (Ap pen dix 6): Lusatian greywacke – Linnemann and Romer (2002), Oberc-Dziedzic et al. (2009); Z³otniki Lubañskie mica schist – Oberc-Dziedzic et al. (2009); Izera mica schist – Crowley et al. (2002), Oberc-Dziedzic et al. (2009); quartzofeldspatic rock – Oberc-Dziedzic et al. (2009); Izera gneiss – Oberc-Dziedzic et al. (2005); Kowary gneiss – Oberc-Dziedzic et al. (2009); Karkonosze gneiss, Rumburk gran ite – Hegner and Kröner (2000), Kröner et al. (2001); pale Stachów gneiss –

Oberc-Dziedzic et al. (2016); Œnie¿nik gneiss and Giera³tów gneiss – Pin et al. (2007). All eNd are re cal cu lated for a 500 Ma age

(18)

Œnie¿nik rodding augen gneiss es (¯elaŸniewicz et al., 2014 and ref er ences therein).

Sum ming up, the ~500 Ma granitoids and their ac com pa ny -ing sed i men tary rocks were meta mor phosed un der a range of meta mor phic con di tions (e.g., Cho pin et al., 2012; Mazur et al., 2015), in creas ing from an ex ter nal zone in the north-west to an in ter nal zone in the south-east.

CONCLUSIONS

1. The Strzelin Mas sif com prises two meta mor phic com -plexes: (1) the authochthonous (or parauthochthonous) Strzelin Com plex that is part of the Brunovistulicum, and (2) the allochthonous Stachów Com plex, com posed of the Early Or do -vi cian (~500 Ma) orthogneisses (the pale Stachów gneiss es) and the metasedimentary dark Stachów gneiss es.

2. The ages of the in her ited zir cons of the pale Stachów gneiss es sug gest that the source ma te ri als for their gra nitic pre

-cur sors were of Armori can af fin ity. Such prov e nance of gra nitic sources is char ac ter is tic for the Saxothuringian Terrane.

3. The age sim i lar ity of zir cons from the dark Stachów gneiss es and those of other metasedimentary rocks as so ci ated with the ~500 Ma orthogneisses sug gests that they also be long to the Saxothuringian Terrane.

4. The pale and dark Stachów gneiss es show also geo chem i cal sim i lar ity to the ~500 Ma orthogneisses and ac com -pa ny ing metasedimentary rocks from other -parts of the Saxothuringian Terrane.

5. The dif fer ences in meta mor phic grade of the meta -sedimentary rocks ac com pa ny ing the ~500 Ma ortho gneisses, and the great va ri ety of deformational struc tures of the orthogneisses sug gest that they be long to dif fer ent struc tural units of a tec tonic stack.

Ac knowl edge ments. We thank K. Dymna for zir con sep a

-ra tion. An anon y mous re viewer and Dr. hab. M. Jastrzêbski are thanked for their de tailed and con struc tive re views. The in ves ti -ga tions were per formed within the Pro ject N307 008 32/0314 of the Min is try of Sci ence and Higher Ed u ca tion.

REFERENCES

Aleksandrowski, P., Mazur, S., 2002. Col lage tec ton ics in the

northeasternmost part of the Variscan Belt: the Sudetes, Bo he -mian Mas sif. Geo log i cal So ci ety Spe cial Pub li ca tions, 201: 237–277.

Badura, J., 1979. Szczegó³owa mapa geologiczna Sudetów, arkusz Stolec 1:25 000. Wyd. Geol., Warszawa.

Bederke, E., 1931. Die moldanubische Überschiebung im Sudetenvorlände. Zentralblatt für Mineralogie, Geologie und Paläontologie, Abt. B: 349–408.

Bia³ek, D., Kryza, R., Oberc-Dziedzic, T., Pin, C., 2014. Cam brian Zawidów granodiorites in the Cadomian Lusatian Mas sif (Cen -tral Eu ro pean Variscides): what do the SHRIMP zir con ages mean? Jour nal of Geosciences, 59: 313–326.

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Da vis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zir con stan dard for Phanerozoic U–Pb geo chron ol ogy. Chem i cal Ge ol -ogy, 200: 155–170.

Chlupáè, I., 1975. New finds of fauna in the meta mor phic De vo nian of the Hruby Jeseník Mts. (Moravia, Czecho slo va kia) (in Czech with Eng lish sum mary). Èasopis pro mineralogie a geologie, 20: 259–268.

Cho pin, F., Schulmann, K., Skrzypek, E., Lehmann, J., Dujardin, J.R., Martelat, J.E., Lexa, O., Corsini, M., Edel, J.B., Štípská, P., Pitra, P., 2012. Crustal in flux, in den ta tion, duc tile thin ning and grav ity re dis tri bu tion in a con ti nen tal wedge: build ing a Moldanubian man tled gneiss dome with underthrust Saxothuringian ma te rial (Eu ro pean Variscan belt). Tec ton ics, 31, TC1013, doi:10.1029/2011TC002951

Crowley, Q.G., Timmermann, H., No ble, S.R., Hol land, J.G., 2002. Palaeozoic terrane amal gam ation in Cen tral Eu rope: a REE and Sm-Nd iso tope study of the pre-Variscan base ment, NE Bo he mian Mas sif. Geo log i cal So ci ety Spe cial Pub li ca tions, 201: 157–176.

Cymerman, Z., Piasecki, M.A.J., Seston, R., 1997. Ter ranes and terrane bound aries in the Sudetes, north east Bo he mian Mas sif. Geo log i cal Mag a zine, 134: 717–725.

Dudek, A., 1980. The crys tal line base ment block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpravy Èeské Akademie Vìd, Øada matematických a pøirodnich Véd, 90: 1–85.

Franke, W., 1989. Tectonostratigraphic units in the Variscan belt of Cen tral Eu rope. GSA Spe cial Pa pers, 230: 67–89.

Franke, W., 2000. The mid-Eu ro pean seg ment of the Variscides: tectonostratigraphic units, terrane bound aries and plate tec tonic evo lu tion. Geo log i cal So ci ety Spe cial Pub li ca tions, 179: 35–61. Franke, W., 2012. Com ment on Dörr and Zulauf: El e va tor tec ton ics

and orogenic col lapse of a Ti betan-style pla teau in the Eu ro pean Variscides: the role of the Bo he mian shear zone. In ter na tional Jour nal of Earth Sci ences, 101: 2027–2034.

Franke, W., ¯elaŸniewicz, A., 2000. The east ern ter mi na tion of the Variscides: terrane cor re la tion and ki ne matic evo lu tion. Geo log -i cal So c-i ety Spe c-ial Pub l-i ca t-ions, 179: 63–86.

Friedl, G., Fin ger, F., McNaughton, N.J, Flechter, I.R., 2000. De -duc ing the an ces try of Ter ranes: SHRIMP ev i dence for South Amer icade rived Gond wana frag ments in cen tral Eu rope. Ge ol -ogy, 28: 1035–1038.

Hegner, E., Kröner, A., 2000. Re view of Nd iso to pic data and xenocrystic and de tri tal zir con ages from the preVariscan base -ment in the east ern Bo he mian Mas sif: spec u la tions on the palinspastic re con struc tion. Geo log i cal So ci ety Spe cial Pub li ca -tions, 179: 113–129.

Jastrzêbski, M., ¯elaŸniewicz, A., Nowak, I., Murtezi, M., Larionov, A.N., 2010. Protolith age and prov e nance of rocks in Variscan allochthon units: U–Pb SHRIMP zir con data from the Orlica–Œnie¿nik Dome, West Sudetes. Geo log i cal Mag a zine, 147: 416–433.

Jastrzêbski, M., Stawikowski, W., Budzyñ, B., Or³owski, R., 2014. Migmatization and large-scale fold ing in the Orlica–Œnie¿nik Dome, NE Bo he mian Mas sif: Pres suretem per a turetimede for ma tion con straints on Variscan terrane as sem -bly. Tectonophysics, 630: 54–74.

Klimas, K., 2008. Geo chron ol ogy and petrogenetical study of zir -cons from se lected crys tal line rocks in the east ern part of the Fore-Sudetic Block (in Pol ish with Eng lish sum mary). Uniwersytet Wroc³awski, Instytut Nauk Geologicznych, Wroc³aw.

Kossmat, F., 1927. Gliederung des varistischen Gebirgsbaues. Abhandlungen Sächsischen Geologischen Landesamts, 1: 1–39.

(19)

Koz³owski, K., 1974. Crys tal line schists and leucogranites of the Stara Kamienica–Œwieradów Zdrój Belt (in Pol ish with Eng lish sum mary). Geologia Sudetica, 9: 7–100.

Kröner, A., Jaeckel, P., Hegner, E., Opletal, M., 2001. Sin gle zir -con ages and whole-rock Nd iso to pic sys tem at ics of early Palaeozoic granitoid gneiss es from the Czech and Pol ish Sudetes (Jizerské hory, Krkonoše Moun tains and Orlice-Snežník Com plex). In ter na tional Jour nal of Earth Sci -ences, 90: 304–324.

Kryza, R., Zalasiewicz, J., Mazur, S., Aleksandrowski, P., Sergeev, S., Larionov, A., 2007. Pre cam brian crustal con tri bu tion to the Variscan accretionary prism of the Kaczawa Moun -tains (Sudetes, SW Po land): ev i dence from SHRIMP dat ing of de tri tal zir cons. In ter na tional Jour nal of Earth Sci ences, 96: 1153–1162.

Larionov, A.N., Andreichev, V.A., Gee, D.G., 2004. The Vendian al ka line ig ne ous suite of north ern Timan: ion microprobe UPb zir -con ages of gab bros and syenite. Geo log i cal So ci ety Mem oirs, 30: 69–74.

Linnemann, U., Romer, R.L., 2002. The Cadomian Orog eny in Saxo-Thuringia, Ger many; geo chem i cal and Nd-Sr-Pb iso to pic char ac ter iza tion of mar ginal bas ins with con straints to geotectonic set ting and prov e nance. Tectonophysics, 352: 33–64.

Linnemann, U., McNaughton, N.J., Romer, R.L., Gehmlich, M., Drost, K., Tonk, C., 2004. West Af ri can prov e nance for Saxo-Thuringia (Bo he mian Mas sif): did Armorica ever leave pre-Pangean Gond wana? – U/Pb-SHRIMP zir con ev i dence and the Nd-iso to pic re cord. In ter na tional Jour nal of Earth Sci ences, 93: 683–705.

Linnemann, U., Gerdes, A., Drost, K., Buschmann, B., 2007. The con tin uum be tween Cadomian Oro gen esis and open ing of the Rheic Ocean: con straints from LA-ICP-MS U–Pb zir con dat ing and anal y sis of plate-tec tonic set ting (Saxo-Thuringian Zone, NE Bo he mian Mas sif, Ger many). GSA Spe cial Pa per, 423: 61–96.

Lud wig, K.R., 2005a. SQUID 1.12 A User’s Man ual. A Geo chron ol ogi cal Toolkit for Microsoft Ex cel. Berke ley Geo chron ol ogy Cen ter Spe cial Pub li ca tion, 1–22, http://www.bgc.org/klprogram -menu.html

Lud wig, K.R., 2005b. User’s Man ual for ISOPLOT/Ex 3.22. A Geo chron ol ogi cal Toolkit for Microsoft Ex cel. Berke ley Geo chron ol ogy Cen ter Spe cial Pub li ca tion, 1–71, http://www.bgc.org/klpro -gram menu.html

Madej, S., 1999. Extensional tec ton ics in the east ern part of the ForeSudetic Block: ev i dence from the Henryków gneiss. Min er -al og i c-al So ci ety of Po land Spe ci-al Pa pers, 14: 38–41. Madej, S., 2010. Pe trol ogy and tec ton ics of gneiss es from the

Lipowe Hills (the Fore-Sudetic Block). Ph.D the sis (in Pol ish). Matte, P., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane

bound aries in the Bo he mian Mas sif: re sults of large-scale Variscan shear ing. Tectonophysics, 177: 151–170.

Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan Orogen in Po land. Geo log i cal Quar terly, 50 (1): 89–118.

Mazur, S., Kröner, A., Szczepañski, J., Turniak, K., Hanžl, P., Melichar, R., Rodionov, N.V., Paderin, I., Sergeev, S.A., 2010. Sin gle zir con U-Pb ages and geo chem is try of granitoid gneiss es from SW Po land: ev i dence for an Avalonian af fin ity of the Brunian microcontinent. Geo log i cal Mag a zine, 147: 508–526. Mazur, S., Szczepañski, J., Turniak, K., McNaughton, N.J., 2012.

Lo ca tion of the Rheic su ture in the east ern Bo he mian Mas sif: ev i dence from de tri tal zir con data. Terra Nova, 24: 199–206. Mazur, S., Turniak, K., Szczepañski, J., McNaughton, N.J., 2015.

Ves tiges of Saxothuringian crust in the Cen tral Sudetes, Bo he mian Mas sif: zir con ev i dence of a re cy cled subducted slab prov -e nanc-e. Gond wana R-e s-earch, 27: 825–839.

Oberc, J., 1966. Ge ol ogy of crys tal line rocks of the Wzgórza Strzeliñskie Hills, Lower Silesia (in Pol ish with Eng lish sum -mary). Studia Geologica Polonica, 20: 1–187.

Oberc, J., 1972. Sudety i obszary przyleg³e. In: Budowa geologiczna Polski, 4. Tektonika, 2. Instytut Geologiczny, Warszawa.

Oberc-Dziedzic, T., 1995. Re search prob lems of the Wzgórza Strzeliñskie meta mor phic se ries in the light of bore hole ma te ri -als (in Pol ish with Eng lish sum mary). Acta Universitatis Wratislaviensis, 1739, Prace Geologiczno-Mineralogiczne, 50: 77–103.

Oberc, J., Oberc-Dziedzic, T., Klimas-Au gust, K., 1988. Mapa geologiczna Wzgórz Strzeliñskich (1:25 000) (in Pol ish). Instytut Nauk Geologicznych Uniwersytetu Wroc³awskiego, Przedsiêbiorstwo Geologiczne, Wroc³aw.

Oberc-Dziedzic, T., Kryza, R., 2012. Late stage Variscan magmatism in the Strzelin Mas sif (SW Po land): SHRIMP zir con ages of tonalite and Bt-Ms gran ite of the Gêsiniec in tru sion. Geo log i cal Quar terly, 56 (2): 225–236.

Oberc-Dziedzic, T., Madej, S., 2002. The Variscan overthrust of the Lower Palaeozoic gneiss unit on the Cadomian base ment in the Strzelin and Lipowe Hills mas sifs, ForeSudetic Block, SW Po -land; is this part of the East-West Sudetes bound ary? Geologia Sudetica, 34: 39–58.

Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fan ning, M.C., Madej, S., 2005a. Gneiss protolith ages and tec tonic bound aries in the NE part of the Bo he mian Mas sif (ForeSudetic Block, SW Po -land). Geo log i cal Quar terly, 49 (4): 363–378.

Oberc-Dziedzic, T., Pin, C., Kryza, R., 2005b. Early Palaeozoic crustal melt ing in an extensional set ting: pet ro log i cal and Sm–Nd ev i dence from the Izera gran ite-gneiss es, Pol ish Sudetes. In ter na tional Jour nal of Earth Sci ences, 94: 354–368. Oberc-Dziedzic, T., Kryza, R., Pin, C., Mochnacka, K., Larionov,

A., 2009. The Orthogneiss and Schist Com plex of the Karkonosze-Izera Mas sif (Sudetes, SW Po land): U-Pb SHRIMP zir con ages, Nd-iso tope sys tem at ics and protoliths. Geologia Sudetica, 41: 3–24.

Oberc-Dziedzic, T., Kryza, R., Mochnacka, K., Larionov, A., 2010. Or do vi cian pas sive con ti nen tal mar gin magmatism in the Cen tral-Eu ro pean Variscides: U–Pb zir con data from the SE part of the KarkonoszeIzera Mas sif, Sudetes, SW Po land. In -ter na tional Jour nal of Earth Sci ences, 99: 27–46.

ObercDziedzic, T., Pin, C., Madej, S., Kryza, R., 2016. Three gen -er a tions of granitoids emplaced ov-er a 300 My time span in the Strzelin Mas sif, ForeSudetic Block, SW Po land: mu tual re la -tion ships and im pli ca -tions for sec u lar crustal evo lu -tion. Jour nal of Geosciences, 61: 289–308.

Ol i ver, G.J.H., Corfu, F., Krough, T.E., 1993. U-Pb ages from SW Po land: ev i dence for a Cal edo nian su ture zone be tween Baltica and Gond wana. Jour nal of the Geo log i cal So ci ety, 150: 355–369.

Pin, C., Ro dri guez, J., 2009. Com ment on “Rheic Ocean ophiolitic rem nants in south ern Ibe ria ques tioned by SHRIMP U-Pb zir con ages on the Beja-Acebuches am phi bo lites” by A. Azor et al., Tec ton ics, 28, TC5013, doi:10.1029/2009TC002495

Pin, C., Santos Zalduegui, J., 1997. Se quen tial sep a ra tion of light rare earth el e ments, tho rium and ura nium by min ia tur ized ex trac tion chro ma tog ra phy: ap pli ca tion to iso to pic anal y ses of sil i -cate rocks. Analytica Chimica Acta, 339: 79–89.

Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K., Waldhausrová, J., 2007. The di ver sity and geodynamic sig nif i -cance of Late Cam brian (ca. 500 Ma) fel sic anorogenic magmatism in the north ern part of the Bo he mian Mas sif: a re view based on SmNd iso tope and geo chem i cal data. GSA Spe -cial Pa per, 423: 209–229.

Redliñska-Marczyñska, A., ¯elaŸniewicz, A., Fan ning, C.M., 2016. An in sight into a gneiss core of the Orlica–Œnie¿nik Dome, NE Bo he mian Mas sif: new struc tural and U-Pb zir con data. Geo log i cal Quar terly, 60 (3): 714–736.

Rudnick, R.J., Gao, S., 2003. Com po si tion of the con ti nen tal crust, pp. 1–64. In: The crust (ed. R.J. Rudnick), 3. Trea tise on Geo -chem is try (eds. H.D. Hol land and K.K. Turekian). Elsevier-Pergamon, Ox ford.

(20)

Stacey, J.S., Kramers, J.D., 1975. Ap prox i ma tion of ter res trial lead iso tope evo lu tion by a two-stage model. Earth and Plan e tary Sci ence Let ters, 26: 207–221.

Steiger, R.H., Jäger, E., 1977. Subcommission on geo chron ol ogy: con ven tion on the use of de cay con stants in geo- and cosmochronology. Earth and Plan e tary Sci ence Let ters, 36: 359–362.

Suess, F.E., 1912. Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenke. Denkschriften Österreich, Akademie zur Wissenschaft, Mathematisch-Naturwissenschaftliche Klasse, 88: 541–631.

Sun, S.S., McDonough, W.F., 1989. Chem i cal and iso to pic sys tem -at ics of oce anic bas alts: im pli ca tions for man tle com po si tion and pro cesses. Geo log i cal So ci ety Spe cial Pub li ca tions, 42: 313–345.

Szczepañski, J., Ilnicki, S., 2014. From Cadomian arc to Or do vi -cian pas sive mar gin: geo chem i cal re cords pre served in metasedimentary suc ces sions of the Orlica-Œnie¿nik Dome in SW Po land. In ter na tional Jour nal of Earth Sci ences, 103: 627–647.

Tait, J.A., Bachtadse, V., Franke, V., Soffel, H.C., 1997. Geodynamic evo lu tion of the Eu ro pean Variscan fold belt: palaeomagnetic and geo log i cal con straints. Geologische Rundschau, 86: 585–598.

Turniak, K., Mazur, S., Wysoczanski, R., 2000. SHRIMP zir con geo chron ol ogy and geo chem is try of the OrlicaŒnie¿nik gneiss es (Variscan belt of Cen tral Eu rope) and their tec tonic im pli ca -tions. Geodinamica Acta, 13: 293–312.

Whit ney, D.L., Ev ans, B.W., 2010. Ab bre vi a tions for names of rock-form ing min er als. Amer i can Min er al o gist, 95: 185–187.

Wiedenbeck, M., Allé, P., Corfu, F., Grif fin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three nat u ral zir con stan dards for UThPb, LuHf, trace el e -ment and REE anal y ses. Geostandards News let ter, 19: 1–23. Wil liams, I.S., 1998. U-Th-Pb geo chron ol ogy by ion microprobe. In:

Ap pli ca tions in microanalytical tech niques to un der stand ing min er al iz ing pro cesses. Re views in Eco nomic Ge ol ogy, 7: 1–35. Wójcik, L., 1968. Szczegó³owa mapa geologiczna Sudetów, arkusz

Ciep³owody 1:25 000. Wyd. Geol., Warszawa.

Wroñski, J., 1973. Szczegó³owa mapa geologiczna Sudetów, arkusz Ziêbice 1:25 000. Wyd. Geol., Warszawa.

Žáèková, E., Konopásek, J., Košler, J., Jeøábek, P., 2012. De tri tal zir con pop u la tions in quartzites of the Krkonoše–Jizera Mas sif: im pli ca tions for precollisional his tory of the Saxothuringian Do -main in the Bo he mian Mas sif. Geo log i cal Mag a zine, 149: 443–458.

¯elaŸniewicz, A., 2005. Przesz³oœæ geologiczna (in Pol ish). In: Przyroda Dolnego Œlaska (ed. J. Fabiszewski): 61–134. PAN Wroc³aw.

¯elaŸniewicz, A., Fan ning, C.M., Achramowicz, S., 2009. Re fin -ing the gran ite, gneiss and schist in ter re la tion ships within the LusatianIzera Mas sif, West Sudetes, us ing SHRIMP UPb zir -con anal y ses and new geo logic data. Geologia Sudetica, 41: 67–84.

¯elaŸniewicz, A., Jastrzêbski, M., Redliñska-Marczyñska, A., Szczepañski, J., 2014. Orlica-Œnie¿nik Dome, the Sudetes, in 2002 and 12 years later. Geologia Sudetica, 42: 105–123. 256 Teresa Oberc-Dziedzic, Ryszard Kryza, Stanis³aw Madej and Christian Pin

Références

Documents relatifs

Description of a new species of the genus Leptus (Acari: Erythraeidae) from Iran and new data for two Abrolophus species... Acarologia is

N’a-t-il été comblé de trouver, pour rimer : Chère, sphère, lumière ou mère nourricière Et bien d’autres encore, il suffit de chercher Que ce soit ce vaisseau qui vogue

Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the

Stratigraphic studies have shown that the Jebilet massif was an area of marine sedimentation from Late Devonian to Early Carboniferous, linked to the opening of an

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

3.37 montre la présence de zone distinctes marquées par la diérence de valeur d'épaisseur, (1) la première zone se trouve dans la partie centrale du piedmont entre Tarbes

In a large multicentric retrospective study that included 116 patients with INS and onset ≥ 60 years of age, we showed that cumulative incidence of renal response was 95%

The present models with twinning may explain most obser- vations of seismic anisotropy in D  , in particular ScS splitting data indicating inclined (relatively to the CMB)