• Aucun résultat trouvé

Differential mobility spectrometry of paralytic shellfish toxins for enhanced selectivity of LC-MS analysis

N/A
N/A
Protected

Academic year: 2021

Partager "Differential mobility spectrometry of paralytic shellfish toxins for enhanced selectivity of LC-MS analysis"

Copied!
2
0
0

Texte intégral

(1)

https://doi.org/10.4224/23001797

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=80555293-306e-4acb-867a-2463d5eb0f67 https://publications-cnrc.canada.ca/fra/voir/objet/?id=80555293-306e-4acb-867a-2463d5eb0f67

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Differential mobility spectrometry of paralytic shellfish toxins for enhanced selectivity of LC-MS analysis

(2)

Quantitation of PSTs by HILIC-DMS-MS/MS

• Limits of detection estimated from S/N ratios of low level matrix matched standards.

• Differences in LOD between runs with and without DMS were highly analyte dependent.

• Quantitation of PSTs in three different shellfish tissue reference

materials was compared by HILIC-MS/MS and HILIC-DMS-MS/MS. • Good agreement observed with reference values and especially with

HILIC-MS/MS results.

Source Fragmentation of Labile PSTs

• Sulphated PSTs exist as pairs of extremely labile 11-α and stable

11-β epimers.

• For each source parameter, a compromise setting is needed that will preserve fragile PSTs but sensitively detect stable ones.

• Similar trends are observed for energies, temperatures and gas flows elsewhere in the MS source, during CID and for DMS optimization.

Experimental

• SCIEX 5500 QTRAP operated in positive ionization mode • NRC HILIC Method – Agilent 1260 LC

o 5 μm TSKgel Amide-80 column (250 x 2 mm ID, Toso Hass)

o CH

3CN/H2O gradient, 50 mM HCOOH + 2 mM NH4OOCH

• Routine UHPLC HILIC Method – Agilent 1290 LC

o 1.7 μm BEH Amide (100 mm x 2.1 mm ID, Waters)

• A SelexION DMS was modified for external metering of carrier gas

modifier as described previously.1,2,3

Differential Mobility Spectrometry of Paralytic Shellfish Toxins for Enhanced

Selectivity of LC-MS Analysis

Fragmentation of Labile PSTs in DMS

• Fragmentation before or during DMS led to detection of

[M+H-SO3]+ product at a higher CV than the [M+H]+ precursor.

• Products formed after DMS are detected at the CV of the precursor.

• DMS parameters also cause fragmentation, but have an additional impact of changing the CV of precursor and product ions.

Conclusions and Future Work

• DMS showed excellent selectivity for PSTs and was able to separate all isomers from one another.

• Labile analytes are prone to dissociation during DMS separation. • DMS conditions with higher modifier concentrations and lower

temperatures help preserve labile analytes.

• Multidimensional HLIC-DMS-MS/MS method showed improved

selectivity compared to HILIC-MS/MS, but at the cost of sensitivity. • Planar DMS showed similar ability to separate PST epimers to

previous work using cylindrical FAIMS3, both of which showed

significantly higher resolution of epimers than linear traveling wave

ion mobility spectrometry4.

• Going forward, HILIC-DMS-MS/MS will be used for PST

quantitation in cases where matrix interference is suspected. • In the future, DMS could be used for direct screening by flow injection DMS-MS/MS, without the need for chromatography.

• The utility of DMS for other classes of algal biotoxins will continue to be investigated.

References

1. DG Beach, ES Kerrin, MA Quilliam. Anal. Bioanal. Chem. 2015, 407, 8397.

2. RW Purves et al. J. Am. Soc. Mass Spectrom. 2014, 1274.

3. DG Beach, JE Melanson, RW Purves. Anal. Bioanal. Chem. 2015, 407, 2473.

4. S Poyer et al. Int. J. Mass Spectrom. 2016, 402, 20.

Daniel G. Beach

Figure 4. Optimization of electrospray temperature for different classes of PSTs

Figure 7 Impact of ESI temperature and declustering potential on detection of labile (GTX2) and stable (GTX3) PST epimers by ESI-DMS-MS.

Figure 8. Impact of DMS parameters on detection of labile (GTX2) and stable (GTX3) PST epimers by ESI-DMS-MS.

Figure 2. Filtering of ions by DMS prior to MS detection

DMS electrode DMS electrode + + + selected ions to MS + all ions from ESI

DMS inlet on QTRAP cross-section of DMS separation

Introduction and Overview

• Paralytic Shellfish Toxins (PSTs) are a class of potent neurotoxin of algal origin that lead to intoxication and death annually as the result of consumption of contaminated shellfish.

• LC-MS is widely used for analysis of algal biotoxin, but challenges remain with small polar toxins like paralytic shellfish toxins (PSTs). • PSTs exist as a mixture of isomers and analogues (Fig. 1) that must

be separated prior to MS/MS analysis in complex biological and environmental samples prone to matrix interference.

• Recent work on the polar neurotoxin β-N-methylamino-L-alanine

and its isomers showed the benefit to selectivity and limits of detection that could be achieved by using differential mobility

spectrometry (DMS) in combination with LC and MS/MS detection.1

• Here, this approach is extended to PSTs with the goal of investigating their behaviour during DMS separation and developing a quantitative LC-DMS-MS/MS method.

• Preliminary using cylindrical FAIMS showed the promise of

separating PSTs from one another using differential mobility.2

• Precise metering of low (< 1%) concentrations of solvent vapours as carrier gas modifiers has been critical to the optimization of DMS separations for small polar analytes.

• Insight is gained into the causes of in-source fragmentation of labile PSTs before, during and after DMS separation.

Figure 6. Impacts of varying acetonitrile concentration in carrier gas on CV of transmission and sensitivity of PSTs analyzed by ESI-DMS-MS.

(DV = 3250 V)

DMS Optimization

• The DMS carrier gas modifier delivery system was modified to allow for external metering of modifier solvent.

o allowed for a full range of modifier concentrations to be

investigated

o improved signal stability and DMS peak shape

• Improved selectivity was observed at high dispersion voltage at the cost of sensitivity, especially for labile PSTs.

• Improved selectivity was observed at low carrier gas concentration (~ 0.25 %), but higher concentrations (~ 1%) showed a protective effect on labile PSTs.

HLIC-DMS-MS/MS Method Development

• Two sets of DMS conditions investigated in HILIC-DMS-MS/MS: • Maximum selectivity at 0.35% MeCN modifier and DV = 3250 • Improved duty cycle and detection of labile PSTs at 2% MeCN

and DV = 3500

• Selected reaction monitoring (SRM) transitions become compound specific once a CV is assigned

• DMS CV switching time slow (msec) compared to SRM (μsec)

• LOD proportional to the number of SRM transitions monitored.1

Retention time scheduling used to maximize duty cycle in final method.

Figure 9. Improvements in selectivity of PST detection using two different HILIC-DMS-MS/MS methods.

Figure 1. Chemical structures of PST analogues N N H2N NH H N NH2 OH OH H R4 R1 R2 R 3 O O NH2 O O NHSO3 -OH R1 R2 R3 H H H STX H H OSO3- GTX2 H OSO3- H GTX3 OH H H NEO OH H OSO3- GTX1 OH OSO3- H GTX4 H H H GTX5 H H OSO3- C1 H OSO3- H C2 OH H H GTX6 OH H OSO3- C3 OH OSO3- H C4 H H H dcSTX H H OSO3- dcGTX2 H OSO3- H dcGTX3 OH H H dcNEO OH H OSO3- dcGTX1 OH OSO3- H dcGTX4 STXs = saxitoxins GTXs = gonyautoxins CTXs = N-sulfocarbamoyl gonyautoxins 1 3 7 9 10 12 6 -11 Toxin R4 carbamoyl decarbamoyl N-sulfocarbamoyl

gas from onboard flow meter

1/16” PEEK tubing

gas + modifier to DMS

¼"Brass Union Tee

½” to ¼” Brass reducer (female-female) ½” to ¼” Brass reducer (male-male) Glass wool DMS gas line

modifier flow from syringe or LC pump

Figure 3. Modified carrier gas modifier solvent delivery system

% MeCN in Carrier Gas

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 20 40 60 80 100 GTX3 GTX4 STX dcSTX NEO dcNEO dcGTX3 C2 GTX5 GTX6 C4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -30 -25 -20 -15 -10 -5 0 GTX3 GTX4 STX dcSTX NEO dcNEO dcGTX3 C2 GTX5 GTX5 C4

% MeCN in Carrier Gas

0.0 0.2 0.4 0.6 0.8 1.0 1.2 % R el at iv e Int ens it y 0 20 40 60 80 100 GTX2 GTX1 dcGTX2 C1 C3 0.0 0.2 0.4 0.6 0.8 1.0 1.2 C om pens at ion V ol tag e (V ) -30 -25 -20 -15 -10 -5 0 GTX2 GTX1 dcGTX2 C1 C3 Labile PSTs Stable PSTs Se le c ti v it y Se n s it iv it y Dispersion Voltage(V) 2500 2750 3000 3250 3500 3750 4000 0 20 40 60 80 100 GTX3 GTX4 STX dcSTX NEO dcNEO dcGTX3 C2 GTX5 GTX6 C4 2500 2750 3000 3250 3500 3750 4000 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 STX GTX4 GTX3 C4 GTX6 GTX5 C2 dcGTX3 dcNEO NEO dcSTX Dispersion Voltage (V) 2500 2750 3000 3250 3500 3750 4000 % R el at iv e Int ens it y 0 20 40 60 80 100 GTX2 GTX1 dcGTX2 C1 C3 2500 2750 3000 3250 3500 3750 4000 C om pens at ion V ol tag e (V ) -30 -25 -20 -15 -10 -5 0 GTX2 GTX1 dcGTX2 C1 C3 Labile PSTs Stable PSTs Se le c ti v it y Se n s it iv it y

Figure 5. Impacts of varying dispersion voltage on CV of transmission and sensitivity of PSTs analyzed by ESI-DMS-MS. (0.4 % MeCN modifier)

Dispersion Voltage DMS Temperature

-30 -20 -10 2900 V 3300 V 3500 V 3700 V [GTX3+H]+ [GTX2+H-SO3]+ [GTX2+H]+ Compensation Voltage (V) -30 -20 -10 0.03% 0.2% 0.5% 1% [GTX3+H]+ [GTX2+H-SO3]+ [GTX2+H]+ Compensation Voltage (V) -30 -25 -20 -15 -10 -5 0 150 ○C 225 ○C 300 ○C Compensation Voltage (V) % MeCN Modifier [GTX3+H]+ [GTX2+H-SO3]+ [GTX2+H]+ 22 23 24 25 26 27 28 0 2000 4000 6000 8000 10000 Time (min) 22 23 24 25 26 27 28 0 1000 2000 3000 4000 5000 dcGTX2 dcGTX3 dcGTX3 dcGTX2 Time (min) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 0 2000 4000 6000 8000 5.0 5.5 6.0 6.5 7.0 7.5 8.0 0 20000 40000 60000 80000 0 0 NEO NEO m/z > m/z, CV 316 > 296, -19.2 V H IL IC -DMS -MS /MS H IL IC -MS /MS Int ens it y ( c ps ) Int ens it y ( c ps )

routine UHPLC-HILIC NRC 5 μm HILIC

variab le r .t . ma trix in te rf e re n ce variab le r .t . ma trix in te rf e re n ce m/z > m/z, CV 353 > 273, -16.4 V 353 > 255, -13.4 V

Figure 10 Comparison of quantitative analysis by MS/MS and HILIC-DMS-MS/MS to reference values for three shellfish tissue reference materials. PSTs were extracted using a dispersive single step extraction and quantitated using matrix matched calibration.

1 2 3 4 5 6 7 8 9 μ m ol /k g t is s ue blue mussel RM HILIC-DMS-MS/MS LC-pCox-FLD HILIC-MS/MS 0 1 2 3 4 5 6 μ m ol /k g t is s ue NRC CRM-PSP-Mus HILIC-DMS-MS/MS Certified Value HILIC-MS/MS 0.0 0.2 0.4 0.6 0.8 1.0 μ m o/ k g t is s ue

CEFAS pacific oyster CRM

HILIC-DMS-MS/MS Certified Value HILIC-MS/MS LOD STX dcSTX NEO GTX1 GTX4 GTX2 GTX3 dcGTX2 dcGTX3 C2 C1 GTX5 HILIC-MS/MS (nM) 132 95 73 23 7.8 8.0 8.4 5.2 6.6 0.60 5.4 3.8 HILIC-DMS-MS/MS (nM) 23 48 22 2.8 36 5.0 3.0 1.5 1.6 1.5 0.62 5.4 HILIC-MS/MS (nmol/kg tissue) 661 476 364 116 39 40 42 26 33 3.0 27 19 HILIC-DMS- MS/MS (nmol/kg tissue) 114 240 111 14 181 25 15 7.4 8.0 7.6 3.1 27

Measurement Science and Standards, National Research Council Canada, Halifax, NS

glass wool

diffuser gas + modifier to DMS

gas from onboard flow meter

modifier solvent from LC or syringe pump STXs 11α-GTXs 11β-GTXs Compensation Voltage (V) -30 -25 -20 -15 -10 -5 0 600 ○C 400 ○C 200 ○C Compensation Voltage (V) -30 -25 -20 -15 -10 -5 0 20 V 150 V 300 V

ESI Temperature Declustering Potential

[GTX3+H]+ [GTX2+H-SO3]+ [GTX2+H]+ [GTX3+H]+ [GTX2+H-SO3]+ [GTX2+H]+

View publication stats View publication stats

Références

Documents relatifs

Cette expérience a montré que les rayons X sont bien des ondes et que les atomes sont périodiquement organisés au sein des cristaux, confirmant ainsi les résultats

En offrant un espace de réflexion sur le devenir de la francophonie dans plusieurs régions francophones du monde, ce numéro présente sept contributions qui sont

Les buts principaux de cette revue de littérature étaient de ressortir les interventions infirmières efficaces et ainsi de pouvoir enrichir la thématique du

&#34;Adequate sexual adjustment i n early childhood is a prime factor in later adult sexual adjustment, as healthy attitudes toward self and sexuality are the foundations of

Parallèlement à ces approches théoriques, de multiples études pratiques étaient réalisées au niveau des pays, des branches ou des industries( 2 ). Ces différents travaux ont

Magma travels in volcanic conduits from its stor- age region to the surface. Volcanic conduits therefore are the sites of processes such as magma vesiculation, crystallization,

Effect of extraction conditions on phenolic content, anthocyanin content and antioxidant activity of bran extracts from Thai rice cultivars. Comparative Evaluation of

Restauration de terres dégradées dans la vallée du au Niger: une expérience réussie en matière de gestion participative de ressources naturelles fragiles.. Kader Mohamed