• Aucun résultat trouvé

Lepton flavour universality violating B decays in trees

N/A
N/A
Protected

Academic year: 2021

Partager "Lepton flavour universality violating B decays in trees"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: in2p3-01917578

http://hal.in2p3.fr/in2p3-01917578

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Lepton flavour universality violating B decays in trees

Adam Morris

To cite this version:

(2)

Lepton flavour universality violating B decays in trees

Adam Morris

Aix Marseille Univ, CNRS/IN2P3, CPPM

XIII Meeting on B Physics Marseille, 2nd October, 2018

(3)

Introduction

Introduction

Lepton Flavour Universality (LFU):

• In SM, electroweak couplings of charged leptons are identical (universal).

Difference between e, — and fi should therefore only be driven by mass.

• Test: ratios of branching fractions to final states differing by lepton flavour. LFU tests with tree-level b-hadron decays:

R(X

c

) =

B(X

b

→ X

c

fi

+



fi

)

B(X

b

→ X

c

+



)

:

Xb: b-hadronXc: c-hadron

+: average e+& —+or just —+

b c q Xb Xc W+ e+=—+=fi+ 

(4)

Introduction

Introduction

In this talk:

BaBar R(D)–R(D) hadronic tag, leptonic fi

Belle R(D)–R(D) hadronic tag, leptonic fi

Belle R(D) semileptonic tag, leptonic fi

LHCb R(D) muonic fi

LHCb R(J= ) muonic fi

Belle R(D) 1-prong hadronic fi (+ fi polarisation)

LHCb R(D) 3-prong hadronic fi

Predictions:

R(D) = 0:299 ± 0:003[HFLAV Summer 2018] • R(D) = 0:258 ± 0:005[HFLAV Summer 2018]

R(J= ) ∈ [0:25; 0:28][PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]

(5)

Leptonic fi modes

Leptonic fi modes

(6)

Leptonic fi modes

Introduction to B-factory measurements

B-factory measurements: R(D(∗)) = B(B → D (∗)fi fi) [B(B → D(∗)e e) + B(B → D(∗)—)]=2Use fi→ e efi and fi→ ——fi so

normalisation modes have same visible final states

Charged and neutral B and D(∗) mesons

D and D∗ reconstructed in many final states

+ µ 0 D 0 B p PV p τ ν τ+ − → * 0 D B + K − * D µ ν 0 D 0 B p PV p µ ν µ+ − → * 0 D B + K + µ µ ν − * D

(7)

BaBar: R(D)–R(D∗ ) hadronic tag PRL 109, 101802 (2012) and PRD 88, 072012 (2013)

BaBar R(D)–R(D) with hadronic tag

Reconstruct hadronic decays of other B (=Btag)

+ D(∗) + ‘(=e,—)

• Yields determined from 2D fit:

m2 miss≡ |Pe+e− PBtag− PD(∗)− P‘|2 • |p∗ ‘| ≡ momentum of ‘ in B frame R(D) = 0:440 ± 0:058 (stat) ± 0:042 (syst) R(D) = 0:332 ± 0:024 (stat) ± 0:018 (syst)R(D) 2:0ff above SMR(D) 2:7ff above SMCombination 3:4ff from SM [PRL 109, 101802 (2012)]

(8)

Belle: R(D)–R(D∗ ) hadronic tag PRD 92, 072014 (2015)

Belle R(D)–R(D) with hadronic tag

Reconstruct hadronic decays of other B (=Btag)

+ D(∗) + ‘(=e,—)

• Yields determined from simultaneous 1D fits:

mmiss2 for m 2

miss< 0:85 GeV/c 2

Neural network output for mmiss2 > 0:85 GeV/c 2 , trained to distinguish B → D(∗)fifi from backgrounds R(D) = 0:375 ± 0:064 (stat) ± 0:029 (syst) R(D) = 0:293 ± 0:038 (stat) ± 0:015 (syst)

Combination 1:8ff from SM, 1:4ff from BaBar result

[PRD 92, 072014 (2015)]

(9)

Belle: R(D)–R(D∗ ) hadronic tag PRD 94, 072007 (2016)

Belle R(D) with semileptonic tag

Reconstruct B0tag→ D∗+‘ along with B0sig→ D∗+‘ or D∗+fifi

• Yields determined 2D fit:

EECL≡ energy in ECAL not associated with

reconstructed B

• Neural network output, trained to distinguish

Dfi  from D‘

R(D) = 0:302 ± 0:030 (stat) ± 0:011 (syst)

1:6ff above SM

[PRD 94, 072007 (2016)]

(10)

Belle: R(D)–R(D∗ ) hadronic tag PRD 94, 072007 (2016) Introduction to LHCb measurements LHCb measurements: R(Xc) = B(Xb→ Xcfi+fi) B(Xb→ Xc—+—)

Same visible final state Xc—+

+ µ 0 D 0 B p PV p τ ν τ+ − → * 0 D B + K − * D µ ν 0 D 0 B p PV p µ ν µ+ − → * 0 D B + K + µ µ ν − * D

(11)

Belle: R(D)–R(D∗ ) hadronic tag PRL 115, 112001 (2015) LHCb R(D) muonic: introduction R(D∗) = B(B 0→ D∗−fi+ fi) B(B0→ D∗−+ )

• Both modes havesame visible final state: D∗−+.

• Neither fully reconstructable, due to neutrinos.

B0momentum approximated using B0decay vertex and scaling visible

longitudinal momentum by m(B0)=m(D∗−+)

Resolution on kinematic variables enough to distinguish between fi /— modes.

• 3D binned template fit to extract yields:

q2≡ |P

B0− PD∗|2,

m2miss≡ |PB0− PD− P+|2,

E∗+≡ muon energy in B0rest frame.

(12)

Belle: R(D)–R(D∗ ) hadronic tag PRL 115, 112001 (2015)

LHCb R(D) muonic: fit and result

R(D) = 0:336 ± 0:027 (stat) ± 0:030 (syst)

1:9 ff above SM

• Largest systematics: simulated sample size and mis-ID — template

) 4 /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 Pulls -2 2 4) /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 5000 10000 15000 20000 −0.40 < q2 < 2.85 GeV2/c4 LHCb ) 4 /c 2 Candidates / (0.3 GeV ) 4 /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 Pulls -2 2 4) /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 10000 20000 30000 2.85 < q2 < 6.10 GeV2/c4 LHCb ) 4 /c 2 Candidates / (0.3 GeV ) 4 /c 2 (GeV miss 2 m -2 0 2 4 6 8 10

Pulls -2 2 miss (GeV2/c4) 2 m -2 0 2 4 6 8 10 5000 10000 15000 20000 25000 LHCb 4 /c 2 < 9.35 GeV 2 6.10 < q ) 4 /c 2 Candidates / (0.3 GeV ) 4 /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 Pulls -2 2 ) 4 /c 2 (GeV miss 2 m -2 0 2 4 6 8 10 1000 2000 3000 4000 LHCb 4 /c 2 < 12.60 GeV 2 9.35 < q ) 4 /c 2 Candidates / (0.3 GeV * (MeV) µ E 500 1000 1500 2000 2500 Pulls -2 2 500 1000 1500 2000Eµ* (MeV)2500 1000 2000 3000 4000 −0.40 < q2 < 2.85 GeV2/c4 LHCb Candidates / (75 MeV) * (MeV) µ E 500 1000 1500 2000 2500 Pulls -2 2 500 1000 1500 2000Eµ* (MeV)2500 2000 4000 6000 8000 10000 12000 2.85 < q2 < 6.10 GeV2/c4 LHCb Candidates / (75 MeV) * (MeV) µ E 500 1000 1500 2000 2500 Pulls -2 2 500 1000 1500 2000Eµ* (MeV)2500 5000 10000 15000 6.10 < q2 < 9.35 GeV2/c4 LHCb Candidates / (75 MeV) * (MeV) µ E 500 1000 1500 2000 2500 Pulls -2 2 * (MeV) µ E 500 1000 1500 2000 2500 1000 2000 3000 4000 9.35 < q2 < 12.60 GeV2/c4 LHCb Candidates / (75 MeV) Data ν τ D* → B X')X ν l → ( c D*H → B ν D**l → B ν µ D* → B Combinatorial µ Misidentified [PRL 115, 112001 (2015)]

(13)

Belle: R(D)–R(D∗ ) hadronic tag PRL 120, 121801 (2018) LHCb R(J= ) muonic: introduction R(J= ) = B(B + c → J= fi+fi) B(Bc+→ J= —+—)

• Both modes havesame visible final state: J= —+.

• 3D binned template fit to extract yields:

B+

c decay time,

m2miss,

Z(E∗+; q2) ≡ flattened 4 × 2 histogram of E∗+, q2.

B+

c decay form factors not precisely determined;

constrained experimentally from this analysis.

Low rate of Bc+production, but no long-lived D-meson background. + µ + c B p PV p µ ν τ ν ψτ+ +→ /J Bc ψ / J − µ + µ + µ + c B p PV p µ ν µ ν ψµ+ +→ /J Bc ψ / J − µ + µ

(14)

Belle: R(D)–R(D∗ ) hadronic tag PRL 120, 121801 (2018)

LHCb R(J= ) muonic: fit and result

• First evidenceof the decay B+

c → J= fi+fi (3 ff

significance).

R(J= ) = 0:71 ± 0:17 (stat) ± 0:18 (syst)

2 ff above the SM.

Largest systematics: B+

c → J= form factors and

MC statistics 5 − 0 5 10 ) 4 /c 2 Candidates / ( 0.6 GeV 1000 2000 3000 4000 5000 ) 4 /c 2 (GeV miss 2 m 5 − 0 5 10 Pulls−05 5 LHCb 0.5 1 1.5 2 Candidates / ( 0.376 ps ) 2000 4000 6000 8000 10000 12000 14000 16000 (ps) τ 0.5 1 1.5 2 Pulls−50 5 0 2 4 6 8 Candidates / ( 1 ) 1000 2000 3000 4000 5000 6000 7000 8000 ) * µ ,E 2 Z(q 0 2 4 6 8 Pulls−50 5 [PRL 120, 121801 (2018)]

(15)

Hadronic fi modes

Hadronic fi modes

(16)

Hadronic fi modes PRL 118, 211801 (2017) and PRD 97, 012004 (2018)

Belle R(D) 1-prong hardonic and fipolarisation

Using fi→ ı

fi and fi→ fi

Reconstruct hadronic mode of other B (Btag) +

D+ fi /‘

B → Dfi

fi yield from simultaneous fit to EECLin different signs of cos „h, B species and fi− decay

B → D‘‘ yield from fitting mmiss2

R(D) = 0:270 ± 0:035 (stat)+0:028−0:025(syst) Pfi(D) = −0:38 ± 0:51 (stat)+0:21−0:16(syst)

[PRD 97, 012004 (2018)]

(17)

Hadronic fi modes PRL 120, 171802 (2018) and PRD 97, 072013 (2018)

LHCb R(D) 3-prong hadronic: introduction

K(D∗) =B(B 0→ D∗−fi+ fi) B(B0→ D∗−±) = Nsig Nnorm "norm "sig 1 B(fi+→ 3ı±0) fi)

• Signal and normalisationsame visible final state:

D∗−±.

Nsig from 3D binned template fit:

q2≡ |PB0− PD∗|2,

fi+ decay time,

• Output of BDT trained to discriminate signal from DD+s.

Nnormfrom unbinned max likelihood fit to

m(D±).

• Make use ofthree-prong tau vertexin selection.

Convert K(D) to R(D∗): R(D) = K(D∗) B(B 0→ D∗−±) B(B0→ D∗−+ ) B0→ D*−τ+ν τ π− π+ π+ ντ D0 B0 π− p PV p B0 → D*− τ+ν τ π− K+ τ+ Δz > 4σΔz ντ B0→ D*−τ+ν τ π−K+ π− ππ− + π+ D0 B0 π0... PV p p B0→ D*−π+ππ+X

(18)

Hadronic fi modes PRL 120, 171802 (2018) and PRD 97, 072013 (2018)

LHCb R(D) 3-prong hadronic: fit and result

[ps] τ t 0 0.5 1 1.5 2 Candidates / ( 0.25 ps ) 0 500 1000 1500 2000 2500 3000 3500 LHCb Data Total model τ ν + τ − * D → 0 B τ ν + τ ** DB (X) + s D − * DB (X) + D − * DB X π 3 − * DB (X) 0 D − * DB Comb. bkg. (a) ] 4 c / 2 [GeV 2 q 0 5 10 ) 4 c/ 2 Candidates / ( 1.375 GeV 0 500 1000 1500 2000 2500 (b) BDT 0 0.1 0.2 0.3 Candidates / 0.1 0 1000 2000 3000 4000 5000 6000 (c) [PRL 120, 171802 (2018), PRD 97, 072013 (2018)] K(D) = 1:97 ± 0:13 (stat) ± 0:18 (syst)

R(D) = 0:291 ± 0:019 (stat) ± 0:026 (syst) ± 0:013 (ext):

0:9 ff above SM, compatible with experimental average.

(19)

Averages

Averages

(20)

Averages World averages R(J/ψ) LHCb R(J/ψ) PRL 120, 121801 (2018) 0.71± 0.17± 0.18 -0.5 0 0.5 1 SM predictions PLB 452 (1999) 129 arXiv:hep-ph/0211021 PRD 73 (2006) 054024 PRD 74 (2006) 074008 Range 0.25 - 0.28 • 6 × R(D), 2 × R(D), 1 × R(J= ).

• All lie above the SM expectation.

0.2 0.3

R(D*)

BaBar had. tag

0.018

±

0.024

±

0.332

Belle had. tag

0.015 ± 0.038 ± 0.293 Belle sl.tag 0.011 ± 0.030 ± 0.302

Belle hadronic tau

0.027 ± 0.035 ± 0.270 LHCb muonic tau 0.030 ± 0.027 ± 0.336 LHCb hadronic tau 0.029 ± 0.019 ± 0.291 Average 0.007 ± 0.013 ± 0.306 SM Pred. average 0.005 ± 0.258 PRD 95 (2017) 115008 0.003 ± 0.257 JHEP 1711 (2017) 061 0.008 ± 0.260 JHEP 1712 (2017) 060 0.005 ± 0.257 HFLAV Summer 2018 /dof = 0.4/ 1 (CL = 52.00 %) 2 χ [HFLAV Summer 2018] 0.2 0.4 0.6 R(D) BaBar had. tag

0.042

±

0.058

±

0.440 Belle had. tag

0.026 ± 0.064 ± 0.375 Average 0.024 ± 0.039 ± 0.407 PRD94,094008(2016) 0.003 ± 0.299 FNAL/MILC (2015) 0.011 ± 0.299 HPQCD (2015) 0.008 ± 0.300 HFLAV Summer 2018 /dof = 0.4/ 1 (CL = 52.00 %) 2 χ

(21)

Averages

World averages

• HFLAV summer 2018 R(D)–R(D∗) average is

3:8 fffrom the SM.

Reduction from 4:1 ff due to increase in theory uncertainties. 0.2 0.3 0.4 0.5 0.6 R(D) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 R(D*) BaBar, PRL109,101802(2012) Belle, PRD92,072014(2015) LHCb, PRL115,111803(2015) Belle, PRD94,072007(2016) Belle, PRL118,211801(2017) LHCb, PRL120,171802(2018) Average Average of SM predictions = 1.0 contours 2 χ ∆ 0.003 ± R(D) = 0.299 0.005 ± R(D*) = 0.258 HFLAV Summer 2018 ) = 74% 2 χ P( σ 4 σ 2 HFLAV Summer 2018 [HFLAV Summer 2018]

(22)

Averages

Conclusions and prospects

• Hints of LFU violationin semitauonic B decays.

R(D)–R(D): 3:8 ff away from SM.

R(J= ): 2 ff above SM.

• BaBar and Belle results statistics dominated

• Improved precision from Belle II

• LHCb results only use Run 1 data: Runs 2,3,4... will bring much larger statistics.

• LHCb results systematics-dominated

• Many systematics will reduce with more data and more MC

• Others will reduce with improved external measurements (BESIII, Belle II)

• LHCb plans: analyses of more modes

b → cfifi: R(D+), R(D0), R(Ds+ (∗) ), R(˜+c (∗) ) ... • b → ufifi: ˜0b→ pfifi, B+→ ppfi+fi ...

• New observables beyond ratios of branching fractions, e.g. angular analyses to discriminate between NP models.

(23)

Backup slides

Backup slides

(24)

Backup slides

Tau branching fractions

Mode BF (%) fi→ ıı0 fi 25:49 ± 0:09 fi→ e efi 17:82 ± 0:04 fi→ — —fi 17:39 ± 0:04 fi→ ı fi 10:82 ± 0:05 fi→ 3ı fi 9:31 ± 0:05 fi→ 3ıı0 fi 4:62 ± 0:05 [PDG]

(25)

Backup slides

LHCb R(D) muonic systematics

• MC statisticslargest

systematic.

Mis-ID — template: reduce

withimproved rejectionand

more sophisticated technique.

Source ‹R(D∗)[×10−2]

Simulated sample size (model) 2.0

Misidentified — template shape 1.6

B0→ D∗+(fi=—) form factors 0.6

B → D∗+Xc(→ —X0)X shape corrections 0.5 B(B → D∗∗fi

fi)=B(B → D∗∗—) 0.5

B → D∗∗(→ Dıı)— shape corrections 0.4

Corrections to simulation 0.4

Combinatorial background shape 0.3

B → D∗∗(→ D∗+ı)—

form factors 0.3

B → D∗+(D+

s → fi )X fraction 0.1

Simulated sample size (normalisation) 0.6

Hardware trigger efficiency 0.6

Particle identification efficiencies 0.3

Form-factors 0.2

B(fi→ —

—fi) < 0:1

Total systematic uncertainty 3.0

[PRL 115, 112001 (2015)]

(26)

Backup slides

LHCb R(J= ) systematics

Bc+form factors: recent

improvements should enter into updated measurement.

• MC statisticssecond-largest

systematic.

Source ‹R(J= )[×10−2]

Simulation sample size 8.0

Bc+→ J= form factors 12.1 B+ c→ (2S) form factors 3.2 Bias correction 5.4 Bc+→ J= XcX cocktail composition 3.6 Z binning strategy 5.6

Misidentification background strategy 5.4

Combinatorial background cocktail 4.5

Combinatorial J= sideband scaling 0.9

Empirical reweighting 1.6

Semitauonic (2S) and fflcfeed-down 0.9

Fixing A2(q2) slope to zero 0.3

Efficiency ratio 0.6

B(fi+→ —+

—fi) 0.2

Total systematic uncertainty 17.7

[PRL 120, 121801 (2018)]

(27)

Backup slides

LHCb R(D) hadronic systematics

• Largest systematic

uncertainty isMC statistics.

• Uncertainties on double charm backgrounds should improve withmore dataand

improved external

measurements.

• Uncertainty on efficiency ratio should improve with more statistics.

Source ‹R(D∗ )R(D∗ )[%]

Simulated sample size 4.7

Empty bins in templates 1.3

Signal decay model 1.8

D∗∗fi fiand D∗∗s fi fifeed-down 2.7 D+s→ 3ı±X decay model 2.5 B → DDs+X; DD+X; DD0X backgrounds 3.9 Combinatorial background 0.7 B → D∗−±X background 2.8 Efficiency ratio 3.9

Normalisation channel efficiency 2.0

(modelling of B0→ D∗−±)

Total systematic uncertainty 9.1

[PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

(28)

Backup slides

LHCb R(D) hadronic backgrounds

• Most abundant background: Xb→ D∗−±X.

• ∼ 100× more abundant than signal.

Suppressed by requiring fi+vertex

to be 4ff∆z downstream from B

vertex.

Improves S=B by factor 160.

• Remaining backgrounds: double charm modes with non-negligible

lifetimes: • Xb→ DD+sX ∼ 10× signal,Xb→ DD+X ∼ 1× signal,Xb→ DD0X ∼ 0:2× signal. z ∆ σ z/ ∆ -8 -4 0 4 8 12 16 20 Candidates / 0.1 1 10 2 10 3 10 4 10 → LHCb simulation ) X π π π * D Prompt ( ) DX * D Double-charm ( ) ν τ * D Signal ( [PRD 97, 072013 (2018)]

(29)

Backup slides

LHCb R(D) hadronic backgrounds

Discriminate between signal and double charm backgrounds using a BDT that exploits the resonant structures in the 3ı± systems from fi+ and D+

s decays. Control samples of DD+ sX, DD+X and DD0X used to correct simulation. BDT response -0.4 -0.2 0 0.2 Candidates 0 0.02 0.04 0.06 0.08 0.1 Signal Background LHCb simulation [PRD 97, 072013 (2018)] ] 2 c ) [MeV/ + π − π + π − * D ( m 4000 4500 5000 5500 ) 2 c Candidates / ( 24 MeV/ 0 20 40 60 80 100 120 140 160 180 200 (a) Data Total model + s D − * D → 0 B + * s D − * D → 0 B (2317) + * 0 s D − * D → 0 B (2460) + 1 s D − * D → 0 B X + s D ,0 − ** D → 0,+ B X + s D − * D → 0 s B Comb. bkg. [PRL 120, 171802 (2018), PRD 97, 072013 (2018)]

Références

Documents relatifs

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion