• Aucun résultat trouvé

Carbon‐assisted stable silver nanostructures

N/A
N/A
Protected

Academic year: 2021

Partager "Carbon‐assisted stable silver nanostructures"

Copied!
5
0
0

Texte intégral

(1)

© 2020 Wiley-VCH GmbH

Supporting Information

for Advanced Materials Interfaces, DOI: 10.1002/admi.202001227

Carbon-Assisted Stable Silver Nanostructures

S. Narjes Abdollahi, Efraín Ochoa Martínez, Cédric Kilchoer,

Geoffroy Kremer, Thomas Jaouen, Philipp Aebi, Tim Hellmann,

Thomas Mayer, Yibei Gu, Ulrich B. Wiesner, Ullrich Steiner, Bodo D.

Wilts, and Ilja Gunkel*

(2)

Carbon–assisted stable silver nanostructures

Supporting Information

S. Narjes Abdollahi

1

, Efra´ın Ochoa Mart´ınez

1

, C ´edric Kilchoer

1

, Geoffroy Kremer

2

,

Thomas Jaouen

2

, Philipp Aebi

2

, Tim Hellmann

3

, Thomas Mayer

3

, Yibei Gu

4,5

, Ulrich B.

Wiesner

4

, Ullrich Steiner

1

, Bodo D. Wilts

1

and Ilja Gunkel

1*

1Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland 2D ´epartement de Physique and Fribourg Center for Nanomaterials, Universit ´e de Fribourg, CH-1700 Fribourg,

Switzerland

3Department of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, D-64287, Darmstadt,

Germany

4Department of Materials Science and Engineering, Cornell University, 330 Bard Hall, Ithaca, NY 14853-1501, USA 5Present address: TeraPore Technologies, Inc., 407 Cabot Road, South San Francisco, CA 94080, USA

*e-mail: ilja.gunkel@unifr.ch

Keywords: 3D plasmonic nanostructures, silver, long-term stability, argon plasma treatment, graphitic layer

References

1. J. S. Pan, A. T. S. Wee, C. H. A. Huan, H. S. Tan, K. L. Tan. Journal of Applied Physics 1996, 79, 6 2934. 2. W. M. Lau, L. J. Huang, I. Bello, Y. M. Yiu, S. Lee. Journal of Applied Physics 1994, 75, 7 3385. 3. H. Estrade-Szwarckopf. Carbon 2004, 42, 8 1713 .

(3)

30 35 40 45 50 C PS 296 292 288 284 280

Binding Energy (eV)

536 532 528

Binding Energy (eV)

Ag Gyroid - Ar Sputtered 538 536 534 532 530 528 296 292 288 284 280

In

te

ns

ity

Binding Energy (eV)

Ag Gyroid - Ar Plasma Ag Gyroid - Ar Sputtered

In

te

ns

ity

Binding Energy (eV)

Ag Gyroid - Ar Plasma

Ag Gyroid - Ar Sputtered

Binding Energy (eV)

Binding Energy (eV)

280 284 288 292 296 528 530 532 534 536 538

d

b

c

Ar sputtered Ag gyroid

sp2 satellite C–O C–O C=O C=O K–OH K 2p3/2 K 2p1/2 Ag–O C–C

Binding Energy (eV)

364 368 372 376 380 Ag 3d 5/2 Ag 3d 3/2 PL PL

Ag

0

Ag

0 Ag–O Ag–O

Intensity

Intensity

Intensity

a

Intensity

e

C–C sp2 gy sp gy pl sp gy gy pl gy sp

Fig. 1 | XPS analysis of the effect of Ar sputtering on Ag gyroid surfaces. Ag 3d XPS spectrum of an Ar plasma-etched Ag

gyroid after additional Ar sputtering (a). The colored shading corresponds to fits assuming binding energies of the indicated

bonds (cf. Fig. 3). XPS spectra of the O 1s (b) and C 1s (c) regions of an Ar plasma-etched Ag gyroid (blue) and the same

sample after additional Ar sputtering (red). The peaks corresponding to organic contamination are substantially reduced after Ar sputtering. Fits (shaded region) of the XPS spectra of the O 1s (d) and C 1s (e) regions of an Ar plasma-etched Ag gyroid after

additional Ar sputtering (cf. Fig. 4). The additional peak at 283.12 eV is likely induced by Ar sputtering and associated with the formation of either carbides1or defects in the carbonaceous material2, 3.

(4)

Sample

Ag gyroid - Ar plasma Ag gyroid - Ar sputtered

BE (eV) FWHM (eV)

Ag 3d 5/2 (Ag0)

Area (cps)

Ag 3d C 1s O 1s K 2p Ag 3d 5/2 (Ag–O) Ag 3d 3/2 (Ag0) Ag 3d 3/2 (Ag–O) C–O C=O K–OH Ag–O C–O C=O C C–C sp2 K 2p3/2 K 2p1/2 C–C 368.21 0.51 374.22 0.51 367.81 0.44 373.83 0.37 158228.23 110229.51 4526.86 9532.17 285.57 1.54 293.09 1.58 284.66 1.02 287.68 1.59 530.55 0.80 532.02 1.35 295.99 1.58 531.10 0.99 533.22 1.89 2674.03 3143.18 2001.82 5952.22 2483.49 4625.43 3973.24 1570.72 2738.96 Ag 3d 5/2 (Ag0) Ag 3d C 1s O 1s K 2p Ag 3d 5/2 (Ag–O) Ag 3d 3/2 (Ag0) Ag 3d 3/2 (Ag–O) C–O C=O K–OH Ag–O C–O C=O K 2p3/2 K 2p1/2 C–C 368.23 0.51 374.24 0.50 367.85 0.44 373.83 0.37 226873.13 159631.33 523.70 2099.30 285.58 1.50 293.58 1.38 284.95 1.10 287.68 1.60 530.54 1.00 532.31 1.25 296.36 1.27 531.61 1.19 532.91 1.60 550.00 2717.40 251.60 1740.00 524.73 627.99 953.34 1265.00 1125.18 284.10 1.18 283.12 1.02 1290.00 192.10

Fig. 2 | Summary of peak-fitting parameters in the XPS analysis of Ag gyroid samples. The binding energy (BE),

full-width-at-half-maximum (FWHM) and peak area values were determined from the fits of the spectra of an Ar plasma-etched Ag gyroid and the sample same after an additional Ar sputtering. The values for each bond are color-coded according to the associated fits shown in Fig. 3, Fig. 4 and Fig.1. The ratio of the metallic Ag0to Ag−O in oxidized silver Ag 3d5/2peak areas changed from 94.0:6.0 for the Ar plasma treated Ag gyroid to 99.0:1.0 for the same sample after additional Ar sputtering.

(5)

20 30 40 50 60 70 80 90

In

te

ns

ity

(C

ou

nt

s)

2θ (deg)

0 3 6 9 12 15

In

te

ns

ity

(c

ps

/e

V)

Energy (KeV)

a

b

C Si Au Ag O Au Au Ag Ag AgAg Ag SnO2

Fig. 3 | Elemental and crystallographic analysis of Ag gyroid samples. a, EDS spectrum of an Ag gyroid atop a Au-coated

Si wafer substrate, confirming that the gyroid sample contains Ag, C and O in addition to Au and Si originating from the substrate.b, XRD spectrum of a Ag gyroid on an FTO-coated glass substrate, revealing metallic Ag0(JCPDS card No. 04-0783)

with additional peaks stemming from the SnO2layer of the substrate (JCPDS card No. 77-0452).

a

b

Fig. 4 | SEM images of a silver gyroid network. a, Air-plasma etched and b, the same sample after 1-month storage under

ambient lab condition. The color change of the samples over time is obvious (the inset images). Scale bars: 1 µ m .

Figure

Fig. 1 | XPS analysis of the effect of Ar sputtering on Ag gyroid surfaces. Ag 3d XPS spectrum of an Ar plasma-etched Ag gyroid after additional Ar sputtering (a)
Fig. 2 | Summary of peak-fitting parameters in the XPS analysis of Ag gyroid samples. The binding energy (BE), full-width-at-half-maximum (FWHM) and peak area values were determined from the fits of the spectra of an Ar plasma-etched Ag gyroid and the samp
Fig. 3 | Elemental and crystallographic analysis of Ag gyroid samples. a, EDS spectrum of an Ag gyroid atop a Au-coated Si wafer substrate, confirming that the gyroid sample contains Ag, C and O in addition to Au and Si originating from the substrate

Références

Documents relatifs

Height at start, first-year growth response and cause of shortness at birth are major determinants of adult height outcomes of short children born small for gestational age

It provides the ability to investigate the comparative performance of different side-by-side wall assemblies as well as the interaction between the building envelope and the

In addition, this method is adequate for the continuous updating of the parameters of the normal operation of the machine, so that the monitoring of the variations of the

2-25 Average peak voltage gain (top) and quality factor (bottom) of the bidirectional cochlea transfer functions as a function of Q line and N nat... 2-28 Spatial transfer function

The influence of ammonia admixtures on breakdown voltage and transient voltage was studied for several concentrations of ammonia admixtures to argon. Obtained results, shown in figure

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Au cours d’une étude plus récente et de plus grande envergure, on a administré des doses de 0, 200, 400, 900 ou 1 800 mg/L de chloroforme dans de l’eau potable (milieu plus