• Aucun résultat trouvé

Study of niobium in UO$_2$ advanced fuel doped with NbO$_x$

N/A
N/A
Protected

Academic year: 2021

Partager "Study of niobium in UO$_2$ advanced fuel doped with NbO$_x$"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: cea-02489552

https://hal-cea.archives-ouvertes.fr/cea-02489552

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Study of niobium in UO_2 advanced fuel doped with

NbO_x

V. Pennisi

To cite this version:

V. Pennisi. Study of niobium in UO_2 advanced fuel doped with NbO_x. 2015 ANS annual meeting - Nuclear Technology: An Essential Part of the Solution”, Jun 2015, San Antonio, United States. �cea-02489552�

(2)

| PAGE 1 CEA | 10 AVRIL 2012

S

TUDY OF NIOBIUM IN

UO

2

ADVANCED

FUEL DOPED WITH

NbO

X

PhD supervisors : P. MATHERON (CEA/DEN/DEC/SPUA/LCU)

C. RIGLET-MARTIAL (CEA/DEN/DEC/SESC/LLCC) JM. HEINTZ (ENSCBP Bordeaux)

JF. SILVAIN (ICMCB - CNRS)

Vanessa PENNISI (CEA/DEN/DEC/SFER/LCU)

E-MRS Fall Meeting 2014 |Symposium G : Materials, processing, and characterization techniques for future nuclear technologies

(3)

O

UTLINE

 Study principle Context and aim

Determination of the range of oxygen potential

Choice of the redox buffer

 Manufacturing conditions  First results

Microstructural analysis

Precipitates composition analysis

 Niobium speciation study Synchrotrons presentation

Precipitates analysis

Matrix analysis

 Conclusion and future work

| PAGE 2 ANS | 11.06.2015

(4)

24 FÉVRIER 2020 | PAGE 3

Aim : Fuel lifetime and manoeuvrability enhancement

Limit fission gas release from the fuel

Limit the presence of corrosive species

Grain coarsening PO2control

Pressurized Water Reactor (2nd generation)  Uranium Dioxide fuel (reference fuel)

In situ control of PO2 in the nuclear fuel thanks to the buffer capacity of an

oxido-reductive dopant present under two different oxidation degrees.

Study of the doping and fission products chemistry

Thermo-mechanical evolution of the irradiated material  Governed by the temperature and the oxygen

partial pressure (i.e. oxygen potential)

ANS | 11.06.2015 V. PENNISI

Cross section of a failed fuel rod

S

TUDY PRINCIPLE

(5)

| PAGE 4 ANS | 11.06.2015

Objective : Fuel operating in the most favorable oxygen potential area.

Two selection criteria :

Main : Minimal gaseous fraction of corrosive Fission Products (FP)

Secondary : Highest FP immobilization

Three areas are delimited : An unfavorable area  Highest risk of corrosion.

An optimum area

 Minimal fraction of gaseous corrosive FP.  Maximal immobilization of the FP.

An intermediate area  Limited risk of corrosion.

Fugacity profiles and major gaseous speciation in a UO2fuel as a function of oxygen potential – 30 GWd/t U, 1500°C (FactSage 6.2)

The reactive fission gas speciation depends on PO2.

S

TUDY PRINCIPLE

(6)

| PAGE 5

Criteria for the choice of the redox buffer :

Temperature range, buffering capacity, cross section, final properties of the unirradiated fuel…

 Redox reactions likely to be

thermodynamically activated above 1000°C  Liquid phase Nb2O5 at T > 1500°C ( grain

growth)

| PAGE 5 ANS | 11.06.2015

Niobium buffering systems position compared to the stability areas of the corrosive species

V. PENNISI

Selected dopant : NIOBIUM

C. Riglet-Martial, M. Brothier et al., Combustible nucléaire oxyde régulateur des produits de fissions corrosifs additivé par au moins un système oxydo-réducteur. Patent FR2997786, 2012/11/08.

Potential redox buffers Buffering capacity (mole O / mole Nb) Nb2O5/NbO2 0,5 NbO2/NbO 1 Nb2O5/NbO2/NbO 1,5

S

TUDY PRINCIPLE

(7)

M

ANUFACTURING CONDITIONS

24 FÉVRIER 2020 ANS | 11.06.2015| PAGE 6

Powders mixture UO2 and NbOx

Forming

(uniaxial pressing, 400 MPa) Reduction (450°C, 2h) then Sintering (1700°C, 4h), under Ar/5%H2 Annealing 1000, 1200, 1500 and 1700°C 1h, under Ar/5%H2

Batches with different niobium compositions (50/50 wt.% for the redox couples) : UO2 + 0,8 wt.% (NbO2 + NbO)

UO2 + 0,8 wt.% (Nb2O5 + NbO2) Niobium doped pellets manufacturing process :

Sintering conditions reported in Nb – O phase diagram. Sintering conditions studied are given by red circles

(8)

24 FÉVRIER 2020 ANS | 11.06.2015| PAGE 7 V. PENNISI

Objective: Analysis of the doped pellets state

 Microstructures :

Healthy pellets (no crack)

Grain coarsening : grain size about 39 µm (10 µm classical)

Micrometer size Nb oxides precipitates at grain boundaries UO2 + 0,8%wt. (NbO2+NbO) – 1700°C Td = 10.90 g.cm-3 UO2 + 0,8%wt. (Nb2O5+NbO2) – 1700°C Td = 10.86 g.cm-3 S1 39 µm S2 94,6%Tdh 39 µm 95,9%Tdh

F

IRST RESULTS

Microstructural analysis

(9)

25 µm

24 FÉVRIER 2020 | PAGE 8

A

B

SEM + EDX analyses on UO2 + 0,8%wt. (NbO2+NbO) pellets

C

D

Composition lines

Change of the Nb/O ratio

Objective : Check of elemental composition of NbO precipitates

Observation of a single grey Observation of a grey contrast

No change of the Nb/O ratio

ANS | 11.06.2015

 Annealing at 1700°C

 Annealing at 1000°C

Profile and element contents

U Nb O A B C D Nb O U

Profile and element contents

F

IRST RESULTS

(10)

24 FÉVRIER 2020 | PAGE 9

SEM + EDX analysis on UO2 + 0,8%wt. (NbO2+NbO) pellets

Same results observed for UO2 + 0,8%m.(Nb2O5+NbO2)

 Annealing at 1700°C (same for 1500°C)

« high temperature » annealing

 Hypothesis : Presence of a single niobium oxide phase

 Hypothesis : Presence of two niobium oxide phases or more

complex system

 Annealing at 1000°C (same for 1200°C)

« low temperature » annealing

µ-XANES experiments

F

IRST RESULTS

Precipitates composition analysis

Change of the Nb/O ratio

Observation of a single grey Observation of a grey contrast

No change of the Nb/O ratio

(11)

24 FÉVRIER 2020 | PAGE 10

Objective : Identify the niobium valence state in the precipitates to check the presence

of the two NbOx phases

 Experiences performed on two Synchrotrons :

ESRF - ID21 beamline Niobium L3 edge (2 371 eV) 1x1 µm² beam

Depth interaction : entre 0,3 et 1 µm SOLEIL - MARS beamline

Nb K edge (18 986 eV) 12x13 µm² beam Depth interaction : ~10µm µ-XRF cartographies Nb localisation µ-XANES spectrum Nb chemical form µ-EXAFS spectrum Local environment ANS | 11.06.2015

(12)

24 FÉVRIER 2020 | PAGE 11

 Reference components :

ESRF - ID21 beamline SOLEIL – MARS beamline

18960 18980 19000 19020 19040 19060 19080 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 N b K edge nor m al is ed µ (E ) Energy (eV) Nb (0) NbO (+2) NbO2 (+4) Nb2O5 (+5)

4 references : Nb, NbO, NbO2 and Nb2O5

References Nb NbO NbO2 Nb2O5

E0(eV) 2368,6 2370,1 2371,2 2372,4

References Nb NbO NbO2 Nb2O5

E0(eV) 18986,0 18994,1 19001,7 19004,0 Nb (0) NbO (+2) NbO2 (+4) Nb2O5 (+5) ANS | 11.06.2015 V. PENNISI

(13)

Nb 100 µm 100 µ m U 100 µm 100 µ m 100 µm 100 µ m Zone 2 1 40 µ m Nb-U 160 µm

X

18960 18980 19000 19020 19040 19060 19080 19100 19120 N b K edge nor m al is ed µ (E ) Energy (eV) S1R - zone 2 S1R - zone 3 Nb (0) NbO (+2) NbO2 (+4) Zone 3

X

• Similar spectra • Similarity with NbO2

Linear combination fit

 Study of the sample UO2 + 0.8 wt.% (NbO2 + NbO) 2 precipitates studied (intensive Nb zone)

N

IOBIUM SPECIATION STUDY

– P

RECIPITATES ANALYSIS

µ-XRF and µ-XANES on MARS beamline

Nb-U

| PAGE 12 ANS | 11.06.2015

(14)

18960 18980 19000 19020 19040 19060 19080 19100 19120 N b K edge nor m al is ed µ (E ) Energy (eV) S1SR - zone 2 S1SR - zone 3 Nb (0) NbO (+2) NbO2 (+4) 18960 18980 19000 19020 19040 19060 19080 19100 19120 N b K edge nor m al is ed µ (E ) Energy (eV) S1R1 - zone 3 S1R1 - zone 1 Nb (0) NbO (+2) NbO2 (+4)

 Study of the sample UO2 + 0.8 wt.% (NbO2 + NbO)

| PAGE 13

Before annealing Annealing at 1000°C

Nb NbO NbO2 Rfactor

Zone 2 0,12 0,43 0,45 1,0e-3 Zone 3 0,07 0,27 0,67 4,0e-4

Nb NbO NbO2 Rfactor

Zone 3 0,19 0,19 0,62 1,0e-3 Zone 1 0,14 0,23 0,64 2,0e-3 Uncertainties ± 0,03 eV  Presence of the two phases NbO2 et NbO

 Unexpected presence of metallic Nb

Linear combination

ANS | 11.06.2015 V. PENNISI

E0between NbO and NbO2 positions

N

IOBIUM SPECIATION STUDY

– P

RECIPITATES ANALYSIS

(15)

24 FÉVRIER 2020 | PAGE 14

 Study of the sample UO2 + 0.8 wt.% (NbO2 + NbO)

ANS | 11.06.2015

N

IOBIUM SPECIATION STUDY

– P

RECIPITATES ANALYSIS

µ-XANES on ID21 beamline

Annealing at 1700°C Annealing at 1000°C

(16)

24 FÉVRIER 2020 | PAGE 15

 Study of the sample UO2 + 0.8 wt.% (NbO2 + NbO)

ANS | 11.06.2015 V. PENNISI

N

IOBIUM SPECIATION STUDY

– P

RECIPITATES ANALYSIS

µ-XANES on ID21 beamline

Annealing at 1700°C Annealing at 1000°C

 Presence of the two phases NbO2 and NbO  Unexpected presence of metallic Nb

(17)

µ-XRD and µ-XANES analyzes (on MARS and ID21 beamlines)

 Whatever the starting redox couple and the annealing temperature, three niobium phases are present in the precipitates : Nb, NbO and NbO2.

 Absence of the Nb2O5 species (initially present) in UO2 + 0,8%m. (Nb2O5+NbO2)

 Unexpected presence of metallic niobium in all the S1 and S2 precipitates.

 Precipitates homogenization at high temperature (1500 and 1700°C).

Reduction of the initially introduced NbOx species

 Ar/5%H2 too much reducer

 Change of the annealing atmosphere necessary

24 FÉVRIER 2020 ANS | 11.06.2015| PAGE 16

N

IOBIUM SPECIATION STUDY

– P

RECIPITATES ANALYSIS

(18)

24 FÉVRIER 2020 | PAGE 17

Objective : Characterize the soluble form of Nb in UO2 matrix

 Sample UO2 + 0.8 m.% (NbO2 + NbO) and UO2 + 0.8 m.% (Nb2O5 + NbO2) for 1000 and 1200°C annealings

ANS | 11.06.2015 V. PENNISI

Similar matrix for all the samples

 The soluble form of Nb in UO2 matrix is Nb5+.

E0 (Nb2O5) = 2372,4 eV

2372, 5 < E0 (matrix) < 2372,6 eV

N

IOBIUM SPECIATION STUDY

– M

ATRIX ANALYSIS

(19)

24 FÉVRIER 2020 | PAGE 18

Objective : Characterize the physical form of the matrix and Nb speciation inside UO2

matrix

 µ-XANES on the matrix :

 µ-EXAFS on the matrix :  signal up to 11,5 Å-1

18960 18980 19000 19020 19040 19060 19080 19100 19120 N b K edge nor m al is ed µ (E ) Energy (eV) precipitate Matrix signal

• Signal from hidden

precipitates can not be excluded

 Work in progress

 Same spectra observed on every sample (S1 and S2, annealed or not)

 Different with known NbOx  Different symetry  E0 position : between Nb4+ / Nb5+

 Hypothesis :

Contribution of the matrix and the precipitates

ANS | 11.06.2015

N

IOBIUM SPECIATION STUDY

– M

ATRIX ANALYSIS

(20)

C

ONCLUSION ET PERSPECTIVES

24 FÉVRIER 2020

 Influence of the sintering atmosphere (reduction of the dopants during the process)  Whatever the starting redox couple and the annealing temperature, coexistence of two

niobium oxides (NbO2 and NbO) inside the precipitates  Presence of two different valence states

Possible existence of an in-situ oxygen buffer effect due to niobium

 New experiments using less reductive annealing atmospheres  Preserve the initial redox composition of the dopants

 Solubility limit of niobium in UO2 (Electronic Probe MicroAnalysis)  Establish a solubility model of niobium in UO2

CONCLUSION

FUTURE WORK

| PAGE 19 ANS | 11.06.2015

(21)

Nuclear Energy Division Fuel Study Department Plutonium Uranium and Minor Actinides Service

Commissariat à l’Energie Atomique et aux Energies Alternatives Centre de Cadarache| 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 70 94 |F. +33 (0)4 42 25 48 86

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019

| PAGE 20

CEA | 10 AVRIL 2012

Thank you for your

attention

Références

Documents relatifs

It was conducted through combining atoms in molecules (AIM) theoretical criteria suggested by Koch and Popelier and natural bond orbital (NBO) analyses by means of

Tretkowski has shown that the diffusion coefficient goes to 0 ; since the relaxation time is proportional to the inverse diffusion coefficient, this means

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The influence of the N interstitials on the diffu- sion coefficient is correlated with the low-temperature diffusion anomaly of H in the pure metals.. For H in pure Nb and pure

In addition to untwinned grains and contact twins we were able to automatically classify different types of cyclic and non- cyclic (branched) multiple twins based on the

An analysis of the electron band structure shows that lithiation changes the insulating oxide into a semi-metal; some of the extra electrons inserted with

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

By X-ray diffraction also the crystallite size and the root mean square (rms) strain can be obtained enabling one to estimate the enthalpy stored by grain boundaries and by the