• Aucun résultat trouvé

A Sulfuric Acid Speleogenesis in the Northern Pyrenees (France)?

N/A
N/A
Protected

Academic year: 2021

Partager "A Sulfuric Acid Speleogenesis in the Northern Pyrenees (France)?"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02335918

https://hal.univ-lorraine.fr/hal-02335918

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Sulfuric Acid Speleogenesis in the Northern Pyrenees (France)?

Dimitri Laurent, E. Gaucher, Christophe Durlet, Cédric Carpentier, Guillaume Barre, Pauline Collon, Guillaume Paris, Jacques Pironon

To cite this version:

Dimitri Laurent, E. Gaucher, Christophe Durlet, Cédric Carpentier, Guillaume Barre, et al.. A Sulfuric Acid Speleogenesis in the Northern Pyrenees (France)?. Réunion des Sciences de la Terre 2018, Oct 2018, Lille, France. �hal-02335918�

(2)

6- Collaborations

2- Thermochemical Sulfate Reduction (TSR) and SAS

1- Introduction:

hypogenic caves in the Northern Pyrenees?

5- Conclusions:

1

st

hypothesis and Perspectives

4- Sulfur isotopes:

origin and processes

3- Field evidences of cave sulfates in the Arbailles massif:

SAS or evaporite leaching ?

notch

Audra, 2007

D. Laurent (1)*, E. C. Gaucher (2), C. Durlet (3), C. Carpentier (1), G. Barré (4), P. Collon (1), G. Paris(1), J. Pironon (1) (1) CREGU, GeoRessources, ENSG, CRPG, Univ. Lorraine (Nancy, France), (2) Total (Pau, France),

(3) UMR/CNRS Biogeosciences, Univ. Bourgogne Franche-Comté (Dijon, France), (4) UPPA (Pau, France)

A Sulfuric Acid Speleogenesis in the Northern Pyrenees (France)?

P. & S. Degouve (GSHP Tarbes) M. Douat (ARSIP, ICE Himalayas)

Collectif Nébélé

P. Sorriaux & CDS09/SCHS CDS64

Data base Karsteau

-> Problematic (in Total «Fluid» program):

Reposition Sulfuric Acid Speleogenesis (SAS) in the continuum of fluid-rock interactions in the foothills.

Biodegradation

Top gasTop oil

Foothills

Deep exotic fluids (H, He,

CO2, CH4) H2S, CO2, H2O from TSR

Sedimentary brines

Modified from TOTAL 1km

Meteoric fluids N 500 500 m 0 Apoura Lechara Aussurucq NNE SSW Albian-Ceno.: conglomerates

Up. Triassic/Lo. Lias: limestones and dolomites

Lias/Dogger: marls and limestones

Kimmeridgian: limestones Oxfordian: Hosta Marls

Supposed hypogenic caves and thermo-mineral springs

Lo. Aptian: Ste Suzanne marls Aptian: Urgonian limestones Up. Aptian/Albian: black schistose marls

Up. Triassic: gypsum-rich marls

H

2

S

TSR ? Meteoric water

Meteoric water Nébélé cave

Cross section of the Arbailles Massif (modified from Viaud, 1991)

Albian Aptian Jurassic Up. Triassic Thermo-mineral springs Oxygenated water TSR

H2S-rich fluids (derived from TSR) Meteoric fluids

Perspectives

Preliminary conceptual model

NW SE

Paleokarst cavities

Carbonate veins

NW SE

Calcite Pyrite + Pyrrhotite

SD2 Hydrothermal saddle dolomite SD1 Calcite PPL 500 µm Garaybie spring

Modified from Bauer, 1998

Thermochemical sulfate reduction: CH4 + SO42- => H

2S + CO2 + 2OH

-Oxidation of H2S:

H2S + 2O2 <=> H2SO4 (SO42- + 2H+ in solution)

Sulfate precipitation in replacement of carbonate:

SO42- + 2H+ + CaCO

3 + 2H2O

=> CaSO4-2H2O (gypsum) + CO2 + H2O

D.Laurent (Grotte du Chat)

Gypsum crust

Iron oxides

The Arbailles Massif, a good candidate for SAS...

-> Numerous caves in Aptian and Dogger limestones

-> Caves located close to regional faults connected to Triassic evaporites

-> Current thermo-mineral springs = sulfate/sulfur-rich deep fluids circulation -> Gypsum precipitation in karst systems

-> Relative proximity with oil seeps and hydrocarbon fields

... But several processes may be responsible for cave sulfate precipitation:

-> SAS

-> Pyrite oxidation

-> Leaching of sulfate-rich sediments (evaporite, carbonate...) -> Decomposition of organic matter (guano...)

Nébélé cave Garaybie spr. Landanoby cave Arbailles massif Camou Cross section Bexanka cave Aussurucq Azalegui cave Maddalen cave Camou spr. Mainaltea spr.

Cave gypsum Sulfur- & sulfate-rich springs

Compatible SAS morphologies

Ω Ω Ω Ω Ω Ω Hibou cave Cents sources spr. 1km Compac tion (M+ , H 2O) TSR and hy drocarbon cr acking (H 2S, CO 2, HC, H 2O) Crustal (M+, CH 4, CO 2) Marine 1 5 9 Depth (km) Meteoric B asin burial +

-Source SO 4 2-TransportH 2S H2SO4 Condensation-corrosion Corrosion-replacement Font Estramar Arbailles Massif Pierre St Martin Massif St-Pé-de-Bigorre Massif Esparros Labastide Cigalère Bagnères-de-Bigorre Massif NPF NPFT Ermite Vapeur France

Supposed SAS (cave gypsum) Oil/gas fields with H2S

Ariège Massif Lacq 15-20% H2S Meillon-Saint Faust 4-7% H 2S Andouins 11% H2S Cassourat 15% H2S Sulfuric thermal springs Sarrance Massif Ossau Valley

Modified after Clerc, 2013

-> Main questions:

- Timing of karst formation

(hyper-extension, compression…)? - Controlling factors of karst

development (structural, geochemical...)? - Nature and origin of fluids involved in the dissolution (CO2, H2S, meteoric...)? - Link with petroleum and ore deposits?

D ogger limest one Gypsum Replacement pocket 20 cm

Plan view: collectif Nébélé (in Vanara, 1998) Entrance

Salle du pendule Salle du Parpaing Le Bain (riv.) Grande faille Tubes est (riv.) La Flemme Galerie du Scrouitch Tubes ouest

Les Herses Sablier

Damoclès La Roume (riv.) Aval de l’Oasis (riv.) Méandre de l’Oasis (riv.) Noël Spirales 0 100 200 m -159 -160 -152 -99 -100 -150 -127 -104 -147 Regional fault Fossil level Scrouitch

High δ34S fractionation between Triassic evaporites and cave sulfates

-> Evidence of TSR and H2S-rich fluid migration

200

500 m 0

A typical example of SAS: Grotte du Chat (Alpes-Maritimes) Mean temp. = 15°C Cond. = 550µS/cm In Vanara, 1998 10 cm Geological map

of the Arbailles Massif

Potential sources of sulfur in the sedimentary basin

Notch and corrosion table

Replacement pocket

H2S-rich hydrothermal carbonate veins in Aptian limestones Pyrite in veins Diagenetic pyrite Sulfate/sulfur-rich thermo-mineral springs

N120-80N diaclases coated by gypsum crust

Convection niches, sulfuric karren and corrosion table Mirabilite flower (Na2SO4-10H2O)

S isotopes on gypsum & water

O isotopes on gypsum & water

C isotopes on water & veins Fluid inclusions in veins U/Th on gypsum H2S-rich veins S species & origin Conditions during SAS Organic matter involved in TSR P/T of fluids & S species Absolute dating of SAS

Methods

Lessons

(i) TSR of Triassic evaporites starting during Cretaceous extension (ii) Migration of H2S-rich fluids towards basin margins (timing?)

(iii) Mixing between deep fluids and oxygen source -> SAS

Convective hot air

Corrosion table with gypsum

Convection niches Gypsum crusts 1m Notch Gypsum + mir abilite

Ancient sulfuric river? Convective hot air

Condensa

tion sur face

Projected cross section of the Nébélé cave (Collectif Nébélé) Entrance

Vertical scale x1.5

0 100 200 m Regional faults: pathways for fluids

Fossil level: -85 to -120m

50m 0

Typical morphologies and mineral markers of SAS

observed along a fossil level (-85 to -120m)

W E Liassic limestones Aptian limestones Condensa tion sur face

Example of the Nébélé Cave

SAS

SAS

SAS

Cave sulfates are not linked to evaporite leaching or pyrite oxidation:

- such processes do not involve significant δ34S fractionation

- very few pyrites in sediments

Semi-active level (-145 to -177m)

Ascending flux?

Condensation

Corrosion table

Sulfuric river or feeders

Replacement pocket & gypsum

Isotherms in host rocks

H2S H2SO4 Fluid inclusion 15µm TSR Δ33S (‰) δ34S CDT (‰) -0.2 -0.1 +0.1 +0.2 -30 -20 -10 0 +10 +20 +30 Nébélé Cave

Gypsum & mirabilite

Azalegui Cave

Gypsum

Liassic limestones

Diagenetic pyrite

Aptian limestones

Pyrite & Pyrrhotite

Triassic evaporites

Liassic limestones

Pyrite in veins

Garaybie spr. (SO42-) Cents sources spr. (SO42-) Mainaltea spr. (SO42-) Oxidation of pyrite S N *dimitri.laurent@univ-lorraine.fr error <0.02‰ (0.2‰ for springs) H2S H2SO4 H2S H2SO4 H2SO4 H2S Mainaltea spring Mean temp. = 12°C Cond. = 655µS/cm Gas Liq.

Références

Documents relatifs

En effet on observe des incrustations de fils d’argent sur les diagonales [DB] et [AC] encore bien présentes, tandis qu’hélas celles d’or sur [RU]et [EH], parallèles aux

Je ne peux cependant m’empêcher de faire aussi un peu de maths… J’ai remarqué que les incrustations d’or seraient partagées en trois segments égaux : EF = FG = GH et RS = ST =

Le tronc veineux brachio-céphalique droit résulte de l’union de la veine jugulaire interne droite et la veine subclavière droite, en regard de l’extrémité interne de la

La veine cave inférieure est le tronc collecteur des veines de la partie sous-diaphragmatique du corps, elle est formée par la réunion des deux veines iliaques primitives, droite

la veine surrénales droite se jette dans la veine cave inférieure ,alors que la gauche dans la veine rénale gauche. 5-Les veines hépatiques (ou les veines sus-hépatiques) :

La veine cave supérieure est une grosse veine , nait de la réunion des veines : brachio- céphaliques droite et gauche , elle ramène le sang veineux des

- les signes indirects associés au hot spot sign sont également visibles à la phase précoce avec augmentation de calibre et rehaussement majeur des voies de dérivation

- les signes indirects associés au hot spot sign sont également visibles à la phase précoce avec augmentation de calibre et rehaussement majeur des voies de dérivation