• Aucun résultat trouvé

Selection on stability across ecological scales

N/A
N/A
Protected

Academic year: 2021

Partager "Selection on stability across ecological scales"

Copied!
9
0
0

Texte intégral

(1)

Selection

on

stability

across

ecological

scales

Jonathan

J.

Borrelli

1

,

Stefano

Allesina

2

,

Priyanga

Amarasekare

3

,

Roger

Arditi

4

,

Ivan

Chase

1

,

John

Damuth

5

,

Robert

D.

Holt

6

,

Dmitrii

O.

Logofet

7

,

Mark

Novak

8

,

Rudolf

P.

Rohr

4

,

Axel

G.

Rossberg

9

,

Matthew

Spencer

10

,

J.

Khai

Tran

11

,

and

Lev

R.

Ginzburg

1

1StonyBrookUniversity,StonyBrook,NY,USA

2UniversityofChicago,Chicago,IL,USA

3UniversityofCaliforniaLosAngeles,LosAngeles,CA,USA

4DepartmentofBiology,UniversityofFribourg,Fribourg,Switzerland

5UniversityofCaliforniaSantaBarbara,SantaBarbara,CA,USA

6UniversityofFlorida,Gainesville,FL,USA

7LaboratoryofMathematicalEcology,A.M.ObukhovInstituteofAtmosphericPhysics,AcademyofSciences,Moscow,Russia

8OregonStateUniversity,Corvallis,OR,USA

9CentreforEnvironment,Fisheries,andAquacultureScience(CEFAS),Lowestoft,UK

10UniversityofLiverpool,Liverpool,UK

11Syngenta,Greensboro,NC,USA

Muchofthefocusinevolutionarybiologyhasbeenon the adaptive differentiation among organisms. It is equally important to understand the processes that resultinsimilaritiesofstructureamongsystems.Here, wediscussexamplesofsimilaritiesoccurringatdifferent ecological scales, from predator–prey relations (attack ratesand handlingtimes)throughcommunities (food-web structures) to ecosystem properties. Selection among systemic configurations or patterns that differ in their intrinsic stability should lead generally to in-creased representation of relatively stable structures. Such nonadaptive, but selective processes that shape ecologicalcommunitiesofferanenticingmechanismfor generating widely observed similarities, and have sparkednew interest instability properties. This non-adaptivesystemicselectionoperatesnotinopposition to,butinparallelwith,adaptiveevolution.

Anexplanationforecologicalsimilarities

In recent years, there has been a great deal of ferment focusedontheintegrationofecologyandevolution[1]. Evo-lutionaryandecologicalprocessescangenerateavarietyof community configurations,butsome are observed in na-turemoreorlessfrequently thanothers.Notallofthese configurations will be equally feasible (see Glossary) or dynamically stable, such that all member species can persist insufficientlyhighabundances that extinctionof anyoneisunlikely.Wheninterpretingbroadpatternsin ecology, we must account for feasibility and stability. Feasibleandstableconfigurationsshould beobservedin

nature with ahigher frequencythan configurations that arestronglyintrinsicallyunstable.

Ifthereisnowayforagivensetofspeciestocoexist(not feasible), thenthe configuration isdoomed toextinction. For example, in the well-studied intraguild predation module,anintraguildpredatoranditsprey(bothofwhom share a third resource) are unlikely to coexist if both predators are equal competitors for the shared resource and not limited by other factors, such as interference competition (Box 1). Instead, we should only expect to observe thismodule when the intraguild prey isable to outcompeteits predatorforthesharedresource[2–4].In othercases,afeasibleequilibriumdoesexistbutis intrin-sicallyunstable.

Thisexampleillustrateswhatwesuggesttobeamore general principle. Namely, differences in the observed frequencyofalternativecommunitystructuresmighthave

Glossary

Adaptive selection: a selection process (such as neo-Darwinian natural selection)thatcancauseadaptationtoalocalenvironment,becausefitness differencesresultfromaninteractionbetweenphenotypesandthatshared localenvironment.

Environment(ofasystem):alllocalfactorsexternaltothesystem,bioticand/or abiotic(dependinguponthesystemdefinition).

Feasibility:theexistenceof anequilibriumpointorattractorsuchthatall speciesinthesystemcancoexist.

Intrinsicsystemproperties:theattributesandqualitiesofthesystemasa whole,suchaspatternsinandmagnitudesofinteractionsandthedensitiesof participatingspecies.

Nonadaptiveselection:anyselectiveprocessthatdoesnotacttoadaptthe membersofthepopulationonwhichitactstoaspecificlocalenvironment. System: the particular unit of interest, typically involving multispecies interactions but dependent upon the ecological scale of the study. At macroecologicalscales,wetypicallyrefertosystemsasmultispecies interac-tionnetworks(e.g.,foodorplant–pollinatorwebs).

Systemicselection:nonadaptiveselectiononsystemsbasedontheirintrinsic systemproperties.

Correspondingauthor:Borrelli,J.J. (borrejj@gmail.com). Keywords:stability;feasibility;selection;macroecology.

Published in 7UHQGVLQ(FRORJ\ (YROXWLRQ  ± which should be cited to refer to this work.

(2)

littletodowiththeparticular characteristicsofthelocal environmentsinwhichsuchsystemsexist.Instead, intrin-sicsystempropertiesdeterminingfeasibilityandstability underlie the relative success or persistence of different configurations,andtheycando somoreor less indepen-dently of local environmental variation. We expect that suchnonadaptivesystemicselectioncanproducemanyof those recurrent ecological patterns that have been ob-servedinnatureoverlargescalesofspaceandtime.

Systemicselectioncanbeapowerfulyetsimple expla-nation of many ecological patterns, including ecological allometries, species interaction strengths, food-web metrics,andmacroevolutionarypatterns(e.g.,[5,6]).This intellectualprotocolforunderstandingecologicalpatterns has long been implicit in community ecology [7,8], but recentadvancesintheorysuggestthatitistimetomake thisprinciplemoreexplicitandformal.Here,westartwith anoverviewofsystemicselection,inthehopesof generat-inga‘searchimage’forthistypeofprocessinecology.Then, wedivedeeperinto(mostly)communityecologytoexplore the role of systemic selection on stability in connecting localscalestomacroscales.

Systemicselectionisnonadaptive

Biologistsare usedtothinkingof‘selection’asaprocess that explains the adaptation of individuals to local conditions, through a selection regimen based on the

interactions of phenotypes with a shared environment. However,macroscalebiologicalsystems,suchas commu-nities,canalsochangebythepreferentiallossofinternal configurations that are relatively unstable. This elimi-nation of the unstable is a type of long-term selective process,butonewheretheselection regimen,insteadof beingbasedonaninteractionofthebiologicalsystemor its components with local conditions, derives primarily from fundamental properties of the system itself; the processdoesnot‘see’thelocalconditionsandneitherisit activated byenvironmental change(Box 2).

A theory that is based on such a systemic selection process canbe thought ofas ‘nonadaptive’, in the sense thatthe selectionprocessitdescribesdoesnotadaptthe systemtolocalconditions,eventhough(ifworkingalone)it changesthesysteminagiven direction.Weuse ‘adapta-tion’as iscommonlyunderstood,illustratedby Vermeij’s definition(p.364in[9]):‘...asaheritableattributeofan entitythat confersadvantages insurvivaland reproduc-tionofthatentityinagivenenvironment.’Vermeijgoeson tosaythat these‘advantages’ are‘context dependent’.A traitthatisanadaptationinoneenvironmentmightnotbe inadifferentone.Bycontrast,whatwerefertoassystemic selection involves‘advantages’ that are context indepen-dent.

Ofcourse,thepropertiesofthesesystemslikelychange insignificant waysby ordinaryadaptive selectionand/or

Box1.Theintraguildpredationsystem

Toillustratetheideaofnonadaptiveselection,consideranintraguild predationcommunitydepictedinFigureIwithfourslightlydifferent interaction strength configurations. For simplicity, weassume the interactionsmatchthesimpleLotka–Volterramodelassumedin[3]

(e.g.,nointraspecificinterferencecompetitionintheconsumers,etc.). Thickerarrowsindicatestrongerinteractionsasdefined,forexample, by theamount ofenergyflowing froma preypopulationtoeach predator.Wecouldexpecttoobtaineachoftheseconfigurationsin several ways. For example, interaction strengths may change as speciesidentitieschangethroughspeciation,orthecombinationof extinctionandinvasion.Or,theycouldchangefromadaptive coevolu-tionamongthespecies,duetovariationoverspace,time,orwithin populations,ortobehavioralchangesinindividualforagingdecisions. However,whilemanysuchprocessescouldleadtoanyofthefour configurations,feasibilityconstraintsdictatethatwearenonetheless likelytoobserveoneofthesefourconfigurationsmoreofteninnature thantheotherthree[4,75].

Thatis,whentheintraguildpredatorandpreyareequallyefficient competitorsforthesharedresource(FigureIA),weexpectthe intra-guild prey tobe driventowards exclusion because the intraguild predatorhastheadvantageofconsumingitscompetition.Likewise, the intraguild prey will be driven towards exclusion even more strongly when the intraguild predator is the superior competitor (FigureIB), or when theeffects of the intraguild predator on the intraguildpreyisstronger(FigureIC).Althoughdifferencesinmortality ratesandthepresenceofalternativeresourcescanweakenand,to somedegree,counteractthesefeasibilityrequirements,itiswhenthe intraguildpreyisthesuperiorcompetitor(FigureID)thatwearemost likelytoobserveallspeciescoexisting.

Therefore,wecansaythatcommunitiesA–CinFigureIare systemi-callyselectedagainst.Furthermore,becausesuchselectionisaresult ofthepropertiesofthecommunity(i.e.,theconfigurationof interac-tionstrengths)andnotduetoitsparticularenvironment,thisselection isnonadaptive(Box2).

(A) (B) (C) (D)

TRENDS in Ecology & Evolution

FigureI.Fourhypotheticalintraguildpredationcommunities,atthetopistheintraguildpredator,themiddleistheintraguildprey,andthebottomistheshared resource.Arrowspointinthedirectionofenergyflowandtheirwidthrepresentsinteractionstrength.

(3)

coevolutionamongtheirmembers,andbyprocessessuch asmigrationanddrift,tendingtogeneratediversitywithin andamongsystems(e.g.,communities).However,because systemicselectionoperatesonintrinsicsystemproperties that do not vary with the environment, it can, if not significantlyoverwrittenbyotherprocesses,haveamajor role inexplaining the evolution and stable properties of macroscalebiologicalsystems.Suchnonadaptive process-estendtopromotesimilarityratherthandiversityamong ecologicalsystems.Abook-lengthtreatmentthatexplores nonadaptiveselectionmoregenerallyiscurrentlyin prep-arationbyDamuthandGinzburg.

Constraintsonattackratesandhandlingtimes

Nonadaptive systemic selection can act on whole com-munities and ecosystems, but we begin by describing how it can also act on the pairwise interactions of species. Each species in an interacting pair brings with it attributes that may affect the feasibility and stabilityofitsinteraction. Speciespairswithattributes that lead to extinction because they generate highly unstable dynamics are not likely to be observed, com-paredwithspeciespairswhoseattributes permitstable dynamics.

Thewell-studiedRosenzweigandMacArthurmodel[10]

provides aconceptualfoundation for understandinghow consumertraits,suchasattackratesandhandlingtimes, influenceoscillatory dynamicsin abroadarrayof preda-tor–preymodels[11].Inthis model,oscillations increase becausethehandlingtimeinducespositivefeedbackinthe per capita growth rate of the resource species, which enables prey to increase in abundance; the ensuing in-creaseinthepredatorpopulationleadstoprey overexploi-tationandadeclineintheabundanceofthepreyfollowed bythepredators[12].Oscillatorydynamicsaremorelikely to occur when prey are weakly self-limited (e.g., high

carrying capacity) and predatorshave high attack rates andlonghandlingtimes[11].

Oscillationsin populationabundancespredispose spe-cies, andtheinteraction modulesin whichtheyoccur,to stochasticextinctionsduringphasesoflowabundance.The disproportionateextinctionofinteractionsexhibitinglarge amplitudeoscillationsimposesselectionatthepopulation level.Theexpectationthatspecieswithoscillatory dynam-icsshouldthereforebeuncommoninnature[13]isborne out by analyses of time-series data, which show only approximately 30% of species with evidence of consum-er-drivencycles[14].However,suchcyclesareparticularly commonintightlycoupledinteractionsbetweenspecialist predatorsandtheirprey[15].

Given that systemic selection tends to cull predator– prey interactions inwhich oscillations lead toperiodsof low abundances, the attack rates andhandling times of predatorsshouldbeinverselyrelated;thatis,highattack ratesandshorthandlingtimes(greateroverexploitation), lowattackratesandlonghandlingtimes(lowexploitation potential), or low attack rates andshort handling times (short timedelay),whichdampen oscillations.

JohnsonandAmarasekare[12]establishtheveracityof this prediction through analysis of the attack rates and handling timesof57functionalresponse experimentsas well as the functional responses and self-limitation strengthoftwospecialistparasitoidsandtheirherbivorous insect host (Figure 1A) [16]. Likewise, estimating the attackratesandhandlingtimesoftwogeneralistintertidal whelkpredatorsfeedingon7–33differentpreyspecies[4], Novak (PhDthesis, UniversityofChicago,2008) showed that 181pairwise interactionsmeasured across six sites exhibitedcombinationsofattackratesandhandlingtimes consistentwiththepredictedinverserelation(Figure1B). Thus,empiricalevidencesupportsthetheoretical predic-tion that the stability of consumer–resource interactions

Box2.Nonadaptiveoradaptive?

Scientistsusetheterm‘adapt’anditsderivativesinvariousways.For ourpurposes,theprocessof‘adaptation’canbemostusefully con-sideredas‘adaptationtoaspecificlocallysharedenvironment’.Thisis themostcommonusageinevolutionarybiology.Inemphasizingthat, forsomesystems,therearesystemicselectiveprocessesthatimpose thesameselectiveforcesregardlessofvariationacrosslocal environ-ments,wehighlightthefactthattheseprocessesareselective,butfor reasonsthatdonotinvolveadaptationtolocalconditions.

This perspective contrasts witha more conventional approach toward the evolution of macroscale biological systems, accom-plished by expanding hierarchically the theory of adaptation by natural selection by identifying a hierarchy of units of selection

[76]. ‘Individual’ and ‘population’ are replaced with ‘population’ and‘community’(or‘community’and‘population-of-communities’), respectively,andanalogouspropertiesoftheseentitiesthat corre-spondtokeyelementsoforganismicnaturalselection(e.g., repro-duction, heritability, fitness, adaptation, or environment) are identified. Ithas long beenrecognized that such atheory ofthe adaptationofhigher-levelentitiestotheirenvironmentsislogically possible,althoughnotwithoutsignificantissues[76–79](J.KhaiTran, PhDthesis,StonyBrookUniversity,2011).

Inthisview,feasibilityandstabilityserveasanimportant compo-nent ofcommunity fitnessand are consideredto dependonthe environment. For example, the environment can influence the strengthandtypeofinteractionsbetweenspecies.Moreover,overall communityfitnessalsorelieson‘reproduction’intermsofa com-munitycolonizingnewareasorinfluencingthecompositionofother

communitiesthroughpropagulepressure.Althoughtheprocessis more nuanced, in oversimplifiedterms, adaptive selection atthe communityleveleliminates communitytypesthatonaverage do notpersistlongenoughtoproducealikecommunity(i.e.,absolute fitnesslessthan1).Thisislikelythefateofinfeasibleand highly unstableconfigurations,barringareproductiveratehighenoughto compensate.Furthermore,communityselectioncanfavoronestable communitytypeoveranotheraccordingtotheirrelativefitnesses. Similarityamongexistingcommunitiesisexplainedasthe conse-quenceofconvergence(limitedwaystosolveaproblem),withthe evolutionaryprocessbeinghigherleveladaptiveselection.

Despiteitslogicalappeal,aconsensushasnotemergedabouthow toput in practicesuch atheory so thatitboth avoidsconceptual difficultiesandprovidesrewardinginsightsintocommunityevolution. Fromtheperspectiveofnonadaptiveselection,astablecommunityis not necessarilya communitythatis‘better adapted’toitsspecific environment.Exploringnonadaptiveselectiondoesnotrequire resol-vingissuesaboutdefininglocaladaptationatthecommunitylevel.A usefulanalogyfromthephysicalsciencesillustratesthispoint. Pro-tons,thenucleiofhydrogenatoms,haveneverbeenobservedtodecay whilethemoststableisotopeoftheradioactiveelementfranciumis unstable(shorthalf-life).Hydrogenisthemostabundantelementin theuniverse,whereasfranciumisalaboratorycuriosity.Yet,wewould beunwillingtosaythathydrogenisbetteradaptedtotheuniverse. Eventually,afruitfuladaptivetheory ofcommunityevolution,asa counterparttothenonadaptiveprocesseswediscusshere,mightbe possible.

(4)

constrainsattackrateandhandlingtimecombinationstobe eitherlowand/orinverselyrelated.Animportanttaskfor futureworkwillbetoexaminethesimultaneousoperation ofsystemicselectionduetoinstability,andongoingnatural selectionwithineachofthecoevolvedspeciesthatinfluence attackratesandhandlingtimes[4].

Similar results have been found based on models of entire food webs. Nonadaptive systemic selection, throughstabilityandfeasibilityconstraints,canrestrict observedattack rates in a community to values where new consumers invade but do not overexploit their resources.Thepossibilityofsuchselectionamong other-wiseunconstrainedattackratesduringfood-web compo-sition turnover was first demonstrated in a model by Rossberget al. [17].

Community turnover is essential to this mechanism, because this enables species with a lower attack rate comparedwithcurrentresidentstoinvade,atleastwhen residentsandinvaderssufficientlydifferfromeachotherto notstrongly compete throughshared resources and con-sumers.Thiscouldresultfromtheimmigrationof individ-ualsfromalargespeciespool.Variantswithlowerattack ratescanhavehigherchancesofestablishinginafoodweb and persisting compared with those with higher attack rates,even thoughtheirinvasion fitness[18]is lower,if they avoid overexploiting and extinguishing their main resources.

Adetailedanalysisofthisphenomenonmustaccountfor the distribution of trophic interaction strengths among consumer–resource pairs, and trophic niche widths

[19]. Thus,this analysisidentifies an ‘optimal’ degreeof dietarydiversityforconsumers,wheretheriskofresource overexploitationisminimized, matchingwellthedietary diversity found for marine fish [19,20]. Another line of evidence for systemic selection of attack rates is that aquatic size spectra (the distribution of community bio-massoverindividualsofdifferentsizes[21])should theo-reticallyhavetheobservedpower-lawformsonlyifmean attackratesareconstrainedtoappropriatevalues,atleast toanorderofmagnitude[22].

Thus,systemic selection at thecommunity level, over longtimescales,canleadtopredictablechangesofattack ratesandnichewidths,becausethesetraitshavesimilar ecological implications across communities of different composition. Traitswithdynamicalimplicationsthat de-pendmoresensitivelyoncommunitycomposition,suchas somespecializedforagingordefensestrategies[23],might belesslikelytoexhibitpredictablepatternsacrossspaceor time.

Communitymodules

Thestructureofecologicalnetworksstronglydiffersfrom random,particularlyatthelevelofsmall-scalestructures (networkmodulesormotifs),consideredtobethe‘building blocks’ of networks.Network patterns canbe altered by changingthenumberofspeciesthroughinvasion, specia-tion,andextinction,orbychangingthewayspecies inter-act (e.g., by changing trophic relations or interaction strengths).

In food webs, some modules are greatly over-repre-sented(e.g.,thetritrophicchain)[24–26].The preponder-ance of certain motifs could reflect their dynamical properties [25,27,28], andsimulations indeed show that motifprofileshavestronginfluenceonnetworkdynamics. Ifdifferentfoodwebconfigurationsvaryinstability, sys-temic selection should cull unstable configurations

[2,7].Such systemic selection could operatethrough two intertwined processes: network assembly anddynamical pruning[29,30].

The degree to which a community is stable can be determined through simulation [28], given assumptions abouttheequationsgoverningdynamics(e.g.,Box3).The networkmotifsthatareobservedinfoodwebsarealsothe structures with the greatest probability of being stable (Figure2)[25].Aside from motif patterns,food webs ex-hibitapatternofshortfoodchainsthatcanbeexplainedby stability constraints [8,31]. Food webs built with longer chains are less stable than those with shorter chains

[32].These resultsmatchwhat weexpectfrom systemic selectionagainstinstability.

Nonadaptivesystemicselectioncanactonnetworksvia dynamicalpruning,favoringconfigurationsthataremore likelytoleadtosystempersistence [31].Similar nonran-dommotifprofilescould alsoariseby networkassembly, the effectsof whichhavebeenfoundin bothmutualistic andtrophicnetworks[33–37].Only bydevelopingstrong modelsofnetworkassemblycanoneseparatetheeffectof dynamicalpruningfrom that ofnetworkgrowth and de-velopment. Assembly might not only involve systemic selection, but also include other processes (e.g., priority effectsorconstraintsoncolonization).

Limitsoffeasiblecoexistence

Whenmodelinglargenumbersofinteractingspecieswith arbitrary,yetbiologicallyplausible,combinationsoftraits andinteractions,itisdifficulttoachievecoexistenceofall species. During simulations, at least some species will inevitablydeclinetozeroabundance.Oftenthisisbecause there isnoequilibrium whereallspeciescancoexist (in-feasibility) rather than any existing equilibrium point beingunstable. 0 0.0 0.2 0.4 0.6 (A) (B) 8 8 6 4 2 0

0e+00 5e–04 1e–03

6 4 2 0 Handling me 1 2 3 4 0.00 Aack rate 0.05 0.10 0.15

TRENDS in Ecology & Evolution Figure1.The empiricalrelation between handlingtimeand attack rates. (A) Publishedattackrates(day1ind1)andhandlingtimes(day1)for57species;see

[12]fordetails.(B)Empiricalrelationbetweenthespecies-specifichandlingtimes (days)andpercapitaattackrates(preyeatenpred 1prey 1m2day1)oftwo

predatorywhelkspeciesfeedingontheirprey(n=181;M.Novak,PhDthesis, UniversityofChicago,2008).Insetshowstherelationatlowattackrates.

(5)

Feasibility constraints canbe powerful modes of sys-temic selection. Models have shown that the number of speciesthatcancoexistinequilibriumcommunities(with no directcompetition within or between species [38,39]) cannotbegreaterthanthenumberofresourcesmediating indirectexploitativecompetition[40,41].When thereare morespeciesthanresources,somewillinvariably outcom-pete the others, resulting in afinal community with, at most,onespeciesperresource.

Only recentlyhasitbecome clear[19]that these con-straints canbecome tighter when the competing species

targetresourcesselectively,sothatmostspecieshavejust a few, but strong, competitors. In two-level food webs where a community of consumer species feeds on, and competesfor,membersofacommunityofresourcespecies, andsimilarly forhost–parasitecommunities,ithasbeen shown that feasible coexistence of the consumer species becomesunlikelyiftheirnumberexceedshalfthenumber ofresourcespecies[19].Beyondthispoint,smallchanges inmodelparametersleadtolargechangesinabundances. While coexistence ofmoreconsumers mightthenstill be possible,itwouldrequireadegreeoffine-tuningof param-etersthat isunlikely.

When several trophic levels are stacked upon each other, the feasibility constraint tightens even further, andonlyapproximatelyone-thirdofthenumberofspecies atonetrophiclevelarelikelytocoexistinthenexthigher trophiclevel.Thepotentialexplanatorypowerofthismode ofsystemicselectionmatchestheconsistentobservations ofa1:2species-richnessratioinhost–parasite communi-ties [19,42,43]and1:3richnessratiosatadjacenttrophic levelsinmultitrophicfoodwebs[19,44–46](Figure3).

Althoughotherpotentialmechanismsproducing corre-lationsofrichnessacrosstrophiclevelshavebeenproposed

[44,45,47], none to date predict specific values for the richness ratio. For size-structured food webs where the adultbodysizesofconsumersandresourcesarerelatedby acharacteristicpredator–preymassratio(PPMR), system-ic selectionarising from feasibilityconstraints impliesa declineofspeciesrichnesswithbodymassasapowerlaw withexponent log(3)/log(PPMR) 0.2,consistentwith numericalandempiricalobservations[48–51].

Systemicselectionatthecommunitylevelandbeyond Systemic selection at the scale of entire communities should result in patterns in ecological systems that are more feasible and stable than expected at random. One waytocharacterizeacommunityisthespeciesbyspecies communitymatrix,whose off-diagonalelementsquantify interspecificinteractions,specificallyhowfastthe popula-tionofonespecieschangesasaresultofsmalldeviations of another species from its equilibrium abundance. The

0.00 s1 s4 s5 s2 d3 Subgraph d4 s3 d2 d1 d5 d7 d6 d8 0.25 0.50

Mean relave frequency

0.75 1.00

TRENDS in Ecology & Evolution

Figure2.Themeanrelativefrequencyofthe13three-nodesubgraphs(picturedat thetopoftheplot)in50empiricalfoodwebsorderedbytheirstability.Formore detailsonmethodsanddata,see[25].

20 40 60

Number of prey species

Number of predator species

80 100 1:3 0 50 40 30 20 10 0

TRENDS in Ecology & Evolution Figure3.Predator–preyrichnessratiosinfreshwaterinvertebratecommunities after[44],comparedwiththepredictedratioof1:3(brokenline).

Box3.Modelingspeciesinteractions

Usually,interactionswithinfoodwebsaremodeledwithgeneralized Lotka–Volterraequations.However,althoughtheseequationscanbe acceptableinsomeconditions,theydonotapplyuniversally.The Lotka–Volterra functional response model assumes random and homogeneous mixingofprey andpredator individuals, andthat predatorsarerareenoughtoavoidinterference.Empiricalevidence andtheoretical considerationssuggestthatitisnecessarytouse differentmodels,particularlywithincorporationofpredator inter-ference. Extracaremustbetakenwhen usingnon-Lotka–Volterra interactions in food-web models to ensure that the generalized mathematicalexpressionremainslogicallyconsistent[80]

AnalternativetoLotka–Volterrafunctionalresponsemodels,the donor–controlmodel,isasimplecaseofratiodependencethathas oftenbeenobserved.Thistypeofinteractionmightresultnotonly from nonadaptive selection, but also from complexmechanistic models thatincorporateconventionaladaptive selection[81]. We can generalize the donor–control model to a multispecies case, whereseveralpredatorand/orpreyspeciesinteract.Fortwoprey specieshavingacommonpredator,onepreyspeciescanleadto indirectexclusionoftheotherspecies(apparentcompetition).Inthe caseoftwopredatorsalonecompetingforasinglepreyspecies,one speciesisalwaysexcludedbytheother,andthisistrueoftenevenin thepresenceofatoppredator.Thatis,akeystoneeffectisnever observedandtheconfigurationcollapsestoathree-levelfoodchain. Givendonorcontrol,simplefoodchainswillpersistornotbecauseof basalproduction,notbecauseoftop-downeffects.Intraguild preda-tioncan,insomeinstances,helpmaintainmorecomplexstructures.

(6)

diagonal entries describe the strengths of intraspecific densitydependencies.

Evenwithoutknowingthemagnitudeofthese interac-tions,onecanstilladdressthequestionofwhichkindsof structurehaveaselectiveadvantage(i.e.,aremorestable), by comparing structures of interactions formalized as signeddirectedgraphs.Such agraph describesthe com-munitymatrixinamagnitude-independent way;thatis, onlybythepatternofpluses,minuses,andzeroswithinthe matrix. Patternsof interactions that are sign stable (as magnitude-independentcommunitymatrices)are robust, inthatenvironmentalchangesaffectingstrengths(butnot signs)ofinteractionscannotflipasystemfromstabilityto instability.Thus,mathematicalresultsoncriteriaforsign stability (which are known, [52–55]) provide qualitative predictions about patterns in community structure that shouldresult.

Sign-stable configurations in nature are rare: simple trophicchains(withoutomnivory)orafewchainslinkedby amensalisticorcommensalisticlinkswithnocycles. Hori-zontally structured communities (i.e.,those without tro-phicinteractions)cannotbesignstable,butcanbestable dependingonthestrengthofinteractions.Theutilityofa particularconceptofstabilityofasystemdependsonthe levelofdetailinthesystemdescription.Whenafoodchain isused torepresentaseriesofstable,horizontally struc-tured aggregates of species, then the chain will be sign stable ifand onlyif omnivory isabsent. In a sense,one shouldexpectasign-stablecommunityofthiskindtobe

selectedbecauseitwillremainfeasibledespitevariationin parametervalues.

However,omnivorouslinksare frequentlyobserved in trophicnetworks[56–58].Therefore,onemustlookmore closely toidentify incommunity matrices a signature of nonadaptive systemic selection through stability con-straints.Giventwo networkswithomnivorouslinksthat arebothstable(i.e.,willreturntoequilibriumfollowinga smallperturbation)thematrixflower(Box4)canbeused todeterminewhichismorelikelytobeeliminatedbecause ofinstability.

Wecanalsotrytodeterminehowlargethefeasibility domain(parameterspacecompatiblewith coexistence)is andhowthisdomainismodulatedbynetworkarchitecture and interaction strengths. In a competition system, for instance,wecanshowthatthelowerthelevelof interspe-cific competition, relative to intraspecific, the larger the domain of feasibility [59]. For mutualistic interactions, with a given number of species, links, and distribution ofinteractionstrengths,feasibilitydomainsincreasewith network nestedness [60]. A community pattern with a larger tolerance to perturbations in biotic and abiotic factors is, by definition, more structurally stable and, underthehypothesisofsystemicselection,shouldbemore frequentlyobserved.Aspredicted,nestednessiscommonly found in plant–frugivore and plant–pollinator networks (bothmutualistic)[61].

Theideathatsomethinganalogoustonaturalselection actsonecosystemshasbeenaroundforalmostaslongas

Box4.Thematrixflower

InadditiontothefamousconceptofLyapunovstabilitywithits well-knownmatrixcriterion,thereareseveralother,lesswell-known sta-bility concepts defined in matrix terms: D- and aD-stability, sign-stability,Volterradissipativeness,andothers.Thesestabilityconcepts dealwithstabilitydespitevariouskindsofuncertaintyorperturbation. However,fewsuchconceptshaveclearcharacterizationsviathematrix structureand/orelements,andsomejusthavedefinitions,withonly necessaryorsufficientconditionsfortheirverificationknown.Logical inclusionrelations(Venndiagrams)amongthespecialstability sub-sets ina generalspace ofrealn3nmatrices helpverify particular propertiesofagiven matrix.Addinga fewmoreconventionstoa standardVenndiagramturnsitintoa3Dmatrixflower[82],whose ‘petals’ represent the subsets of matrices with particular stability properties(FigureI).

Two,relativelysmall,petalsofsign-stablematricesarelocatedinthe very‘core’oftheflower,whiletheotherstabilitypetalssignifythe lowerlevelsinnonadaptiveselection.

We should keepin mindthathaving themoststable patternin interspecificinteractionsisonlyonesideoftheproblem.Theother sideisthefeasibilityofthecommunity,thatis,theexistenceofan equilibriumpointwhereallspecieshavestrictlypositiveabundances. Illustrating that feasibility is as crucial as the stability constraint, considerthesimpleexample given bya setofspeciescompeting for resources. Moreover, assume that the interspecific interaction matrix has been derived from species overlap in a niche space

[83].In this case,thematrix belongs automaticallytothepetalof beingVolterradissipative.Thisimpliesthatthecommunityis auto-maticallygloballystableaslongasthereexistsafeasibleequilibrium point.Therefore,theonlyremainingquestioniswhetherthesystem willbefeasible.Wecanshowthatthereexistsaspecificdomaininthe spaceofcarryingcapacities(orintrinsicgrowthrates),inwhichthe communityisfeasible[55,84].Anopenquestionishowtheseideas translateintosystemswherecoexistencearisesbecauseofnonlinear feedbacks(e.g.,Armstrong–McGeheeeffects[85,86]).

Stable D-stable D-stable Stable Sign-

Dissipa-ve dominant

Quasi- M-Quasi-recessive Quasi-recessive Stable Normal -stable Totally stable

TRENDS in Ecology & Evolution FigureI.Logicalrelationsamongdifferenttypesofmatrixstability.Adapted from[82].

(7)

theideathatnaturalselectionactsonspecies.For exam-ple, Lotka[62]claimedthatnatural selectionmaximizes thetotalenergyfluxthroughanecosystem.Lotka’s argu-mentwasbasedonBoltzmann’s[63]statementthat entro-py, and not raw materials, is the limiting factor for all organisms. This intuition provided the foundation for a distinctiveschoolofecosystemecology(e.g.,[64,65]),whose ideasarenotcurrentlywidelyaccepted(althoughthisdoes notimplythattheyarewrong).

Takingadifferentapproach,Tansley[66]arguedthat‘a kind of natural selection’ will tend to favor more stable ecosystems.Thisviewhasremainedwidespreadin ecologi-caltheory.However,empiricallyevaluatingthedegreeto whichaparticularselectivemechanismmighthaveshaped ecosystem properties requires knowledge of transient states that have been selected against. Our sample of observed ecosystemsisunfortunately ‘length biased’: be-cause most observations come from single time points, ecosystemsthatare morepersistent arelikelytobe sys-tematicallyover-represented,relativetothetrue distribu-tionofhistoricalpersistencetimes.Ifecosystemstructure is shaped over time by stability constraints, we should expect unbiased samples (taken through time at fixed points ofspace) todiffer systematically from extant eco-systems,whichwouldrepresentthestableendproductsof historicalprocesses.

Therehaveoccasionallybeenclaimsthatnatural selec-tioncanoperatebetweenadjacent‘meta-ecosystems’,such thatthemoststableunitsleavethemostdescendants(e.g.,

[67]).However,itseemslikelythatsuchmechanismswill onlyworkifecosystemsreplicatethemselvesintheir en-tiretybyoccupyingnewunitsofspace.Nonadaptive selec-tiondoesnotrequireananalogofreproductionathigher levelsoforganizationthantheindividual,butdoesdepend upon persistence of definable configurations of species acrosstime.

Socialsystems

Here,wehavemainlyfocusedoncommunityecology.Yet, processesofnonadaptivesystemicselectionmightalsobe relevantinexplainingmanyotherbiologicalpatterns. Con-sider,forinstance,structurewithinpopulations,in particu-lar,theformationofanimalsocialsystems.Insmallgroups inmanyspecies(fromwaspstohumanchildren),dominance hierarchiesoftenreveallinearstructures.Inalinear hier-archy,oneanimal dominates allothers,being aggressive towardthemwithoutreceivingaggressioninturn.Asecond dominatesallbutthetop,andsoon.Allpossiblesubgroups ofthreeindividuals(triads)inagroupmusthavetransitive configurationsofattack(AattacksB,B attacksC,andA attacksC)forahierarchytobelinear.Ifahierarchyisnot linear,thenatleastonetriadhasintransitiveattack con-figurations(AattacksB,BattacksC,andCattacksA).

Traditionally,researchershaveexplained thispattern oforganization usingindividual-based, adaptive models. They have proposed that differences in individual attri-butes (e.g.,size,weaponry, or aggressiveness)determine ranks in the hierarchy [68,69]. Or, they have suggested thatfeedbackfromwinningorlosingcontestsduringgroup formationdeterminesindividualranks[70,71]:an individ-ualwinningacontestincreasesitsprobabilityofwinning

anothercontestwithanewindividual,andanindividual losingacontestincreasesitsprobabilityoflosing. Howev-er,bothexperimentalandanalyticalwork[72,73] demon-strate that these simple biological mechanisms of differences in attributes,orwinner andloser effects, are unableaccountfortheobservedstructureoflinear hierar-chies.Instead,theyarebetterexplainedbythedifferential stabilityratesofthebuildingblocksofthestructures.

Inanalysesofdynamical,peck-by-peckrecordsof chick-ensforminghierarchies,ChaseandLindquist[74] discov-ered that intransitive configurations of attacks were unstable, usually lasting only for brief periods of time beforechangingtotransitiveones.Bycontrast,transitive configurationslastedover20timesaslongasintransitive onesonaverage.Theyhypothesizedthatlinearhierarchies arecommonacrossmanyspeciesbecause,asinchickens, when intransitive configurationsof attacksappear, they convertquicklytotransitiveones,ensuringthathierarchy structuresarealmostalwayslinear.Thisrule(transitive configurationsaremorestablethanintransitiveones),plus therule thatallindividualsinteract,sufficestogenerate hierarchiesthatarealmostalwayslinear.

Concludingremarks

Amajorfocusofevolutionarybiologyisuponprocessesthat create and maintain diversity: how organisms become adapted to their various local environments (including otherorganisms).However,especiallywithregardto mul-tispecies interaction systems, it is alsoimportant to un-derstand the processes that result in similarity among systems. Here, we have argued that, because of system dynamics,thedeckisstackedinfavorofsome(stableand feasible) configurationsandagainst others,sothat what oneobservesisanonrandomdistributionofsystem archi-tectures, basedonintrinsicproperties sharedacross sys-tems. There is a resurgence of interest in stability and selectiveprocessesinshapingecologicalcommunitiesand theircomponentstructures(food webs,foodchains,etc.). Newtheoreticalapproachesandcomputationalresources revealthepotentialsignificanceof‘nonadaptive’systemic selectionprocessesandhighlightkeyattributespromoting stability. At the same time, stability and feasibility are themselves complex concepts that have not been fully explored. Identificationofstabilitycriteria for communi-tiesandcommunitymodulesmightdependsignificantlyon how researchersmodel smaller-scaleconsumer–resource interactions.Nevertheless,itislikelythatsystemic selec-tionprocesses(processesofpruningawayunstable config-urations) will increasingly be seen to underlie many recurrentstructuralfeaturesofbiologicalsystems,within which the more familiar processes of local adaptation operate.

Acknowledgments

Thisworkistheoutcomeofaworkshopgatheringalloftheauthorsatthe CentreInterfacultaireBernoullioftheEcolePolytechniqueFe´de´ralede Lausanne inSwitzerland (EPFL),with fundingof theSwiss National ScienceFoundation(http://cib.epfl.ch/prog.php?id=%271000000027%27).

References

1 Schoener, T.W. (2011) The newest synthesis: understanding the interplayofevolutionaryandecologicaldynamics.Science331,426–429

(8)

2 Kondoh,M.(2008)Buildingtrophicmodulesintoapersistentfoodweb. Proc.Natl.Acad.Sci.U.S.A.105,16631–16635

3 Holt,R.D.andPolis,G.A.(1997)Atheoreticalframeworkforintraguild predation.Am.Nat.149,745–764

4 Novak, M.(2013) Trophicomnivory acrossa productivitygradient: intraguildpredationtheoryandthestructureandstrengthofspecies interactions.Proc.Biol.Sci.280,20131415

5 Damuth, J. (2007) A macroevolutionary explanation for energy equivalenceinthescalingofbodysizeandpopulationdensity.Am. Nat.169,621–631

6 Ginzburg, L.R. et al. (2010) The May threshold and life-history allometry.Biol.Lett.6,850–853

7 Pimm,S.L.(1982)FoodWebs,UniversityofChicagoPress

8 Pimm, S.L. and Lawton, J.H. (1977) Number of trophic levels in ecologicalcommunities.Nature268,329–331

9 Vermeij,G.J.(1996)Adaptationsofclades:resistanceandresponse.In Adaptation (Rose,M.andLauder, G.,eds),pp.363–380, Academic Press

10 Rosenzweig, M.L. and MacArthur, R.H. (1963) Graphical representation and stability conditions of predator–prey interactions.Am.Nat.97,209–223

11 Rosenzweig, M.L.(1971) Paradoxof enrichment: destabilization of exploitationecosystemsinecologicaltime.Science171,385–387

12 Johnson,C.A.andAmarasekare,P.(2015)Ametricforquantifyingthe oscillatorytendencyofconsumer-resourceinteractions.Am.Nat.185, 87–99

13 Gilpin,M.E.(1975)GroupSelectionin Predator-PreyCommunities, PrincetonUniversityPress

14 Kendall,B.E.etal.(1998)Themacroecologyofpopulationdynamics: taxonomicandbiogeographicpatternsinpopulationcycles.Ecol.Lett. 1,160–164

15 Murdoch,W.W.etal.(2002)Single-speciesmodelsformany-species foodwebs.Nature417,541–543

16 Kidd,D.andAmarasekare,P.(2012)Theroleoftransientdynamicsin biologicalpestcontrol:insightsfromahost-parasitoidcommunity.J. Anim.Ecol.81,47–57

17 Rossberg,A.G.etal.(2008)Thetop-downmechanismforbody-mass– abundancescaling.Ecology89,567–580

18 Metz,J.(2008)Fitness.InEncyclopediaofEcology(Vol.2)(Jørgensen, S.E.andFath,B.D.,eds)pp.1599–1612,Elsevier

19 Rossberg, A.G. (2013) Food Webs and Biodiversity: Foundations, Models,Data,Wiley

20 Rossberg,A.G.etal.(2011)Universalpower-lawdietpartitioningby marinefishandsquidwithsurprisingstability-diversityimplications. Proc.R.Soc.B278,1617–1625

21 Sheldon,R.W.andParsons,T.R.(1967)Acontinuoussizespectrumfor particulatematterinthesea.J.Fish.Res.BoardCanada24,909–915

22 Rossberg,A. (2012) A complete analytic theory for structure and dynamicsofpopulationsandcommunitiesspanningwiderangesin bodysize.Adv.Ecol.Res.46,429–522

23 Nagelkerke,L.A.J. and Rossberg, A.G. (2014) Trophic niche-space imaging,usingresourceandconsumertraits.Theor.Ecol.7,423–434

24 Stouffer,D.B.etal.(2007)Evidencefortheexistenceofarobustpattern ofpreyselectioninfoodwebs.Proc.R.Soc.B274,1931–1940

25 Borrelli,J.J.(2015)Selectionagainstinstability:stablesubgraphsare mostfrequentinempiricalfoodwebs.OikosPublishedonlineMarch6, 2015.http://dx.doi.org/10.1111/oik.02176

26 Bascompte,J. and Melia´n, C.J.(2005) Simpletrophic modules for complexfoodwebs.Ecology86,2868–2873

27 Prill,R.J.etal.(2005)Dynamicpropertiesofnetworkmotifscontribute tobiologicalnetworkorganization.PLoSBiol.3,1881–1892

28 Allesina,S.andPascual,M.(2008)Networkstructure,predator–prey modules,andstabilityinlargefoodwebs.Theor.Ecol.1,55–64

29 Sole´,R.V.andValverde,S.(2006)Arenetworkmotifsthespandrelsof cellularcomplexity?TrendsEcol.Evol.21,419–422

30 Camacho,J.etal.(2007)Quantitativeanalysisofthelocalstructureof foodwebs.J.Theor.Biol.246,260–268

31 Ulanowicz,R.E.etal.(2013)Limitsonecosystemtrophiccomplexity: insightsfromecologicalnetworkanalysis.Ecol.Lett.17,127–136

32 Borrelli,J.J.andGinzburg,L.R.(2014)Whytherearesofewtrophic levels:selectionagainstinstabilityexplainsthepattern.FoodWebs1, 10–17

33 Eklo¨f,A.etal.(2012)Relevanceofevolutionaryhistoryforfoodweb structure.Proc.R.Soc.B279,1588–1596

34 Stouffer,D.B.etal.(2012)Evolutionaryconservationofspecies’rolesin foodwebs.Science335,1489–1492

35 Rezende, E.L. et al. (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928

36 Cattin, M. et al. (2004) Phylogenetic constraints and adaptation explainfood-webstructure.Nature427,835–839

37 Rossberg,A.G.etal.(2006)Foodwebs:expertsconsumingfamiliesof experts.J.Theor.Biol.241,552–563

38 Mcpeek,M.A.(2012)Intraspecificdensitydependenceandaguildof consumerscoexistingononeresource.Ecology93,2728–2735

39 McPeek,M.A.(2014)Keystoneandintraguildpredation,intraspecific densitydependence,andaguildofcoexistingconsumers.Am.Nat.183, E1–E16

40 MacArthur,R.andLevins,R.(1964)Competition,habitatselection, andcharacterdisplacementinapatchyenvironment.Proc.Natl.Acad. Sci.U.S.A.51,1207–1210

41 Rescigno,A.andRichardson,I.W.(1965)Onthecompetitiveexclusion principle.Bull.Math.Biophys.27,85–89

42 SantosdeArau´jo,W.(2011) Canhostplantrichnessbeusedasa surrogateforgallinginsectdiversity.Trop.Conserv.Sci.4,420–427

43 Wright, M.G. and Samways, M.J. (1998) Insect species richness trackingplantspeciesrichnessinadiverseflora:gall-insectsinthe CapeFloristicRegion,SouthAfrica.Oecologia115,427–433

44 Jeffries, M.J. and Lawton, J.H. (1985) Predator-prey ratios in communities of freshwater invertebrates: the role of enemy free space.Freshw.Biol.15,105–112

45 Warren,P.H.andGaston,K.J.(1992)Predator-preyratios:aspecial caseofageneralpattern?Philos.Trans.R.Soc.B338,113–130

46 Jennings, S.et al. (2002)Use of size-basedproduction and stable isotopeanalysestopredicttrophictransferefficienciesand predator-preybodymassratiosinfoodwebs.Mar.Ecol.Prog.Ser.240,11–20

47 Spencer,M.(2000)Arepredatorsrare?Oikos89,115–122

48 Jonsson,T.etal.(2005)Foodwebs,bodysize,andspeciesabundancein ecologicalcommunitydescription.Adv.Ecol.Res.36,1–84

49 ICES(2013)ReportoftheWorkingG-roupontheEcosystemEffectsof FishingActivities(WGECO),ICES

50 ICES(2014)ReportoftheWorkingG-roupontheEcosystemEffectsof FishingActivities(WGECO),ICES

51 Reuman,D.C.etal.(2014)Themarinediversityspectrum.J.Anim. Ecol.83,963–979

52 May,R.M.(1973)Qualitativestabilityinmodelecosystems.Ecology 54,638–641

53 Jeffries, C. (1974) Qualitative stability and digraphs in model ecosystems.Ecology55,1415–1419

54 Jeffries,C.etal.(1987)Qualitativestabilityoflinearsystems.Linear AlgebraAppl.87,1–48

55 Logofet,D.(1993)MatricesandGraphs,CRCPress

56 Thompson,R.M.etal.(2007)Trophiclevelsandtrophictangles:the prevalenceofomnivoryinrealfoodwebs.Ecology88,612–617

57 Williams,R.J.andMartinez,N.D.(2004)Limitstotrophiclevelsand omnivoryincomplexfoodwebs:theoryanddata.Am.Nat.163,458– 468

58 Arim,M.andMarquet,P.A.(2004)Intraguildpredation:awidespread interactionrelatedtospeciesbiology.Ecol.Lett.7,557–564

59 Saavedra, S. et al. (2014) How structurally stable are global socioeconomicsystems?J.R.Soc.Interface11,20140693

60 Rohr, R.P. et al. (2014) On the structural stabilityof mutualistic systems.Science345,1253497

61 Bascompte, J. et al. (2003) The nested assembly of plant-animal mutualisticnetworks.Proc.Natl.Acad.Sci.U.S.A.100,9383–9387

62 Lotka,A.(1922)Contributiontotheenergeticsofevolution.Proc.Natl. Acad.Sci.U.S.A.8,147–151

63 Boltzmann,L.(1974)TheoreticalPhysicsandPhilosophicalProblems: SelectedWritings,ReidelPublishingCompany

64 Odum, H. and Pinkerton, R. (1955) Time’s speed regulator: the optimum efficiency for maximum power output in physical and biologicalsystems.Am.Sci.43,331–343

65 Ulanowicz, R. (1986) Growth and Development: Ecosystems Phenomenology,iUniverse

(9)

66 Tansley,A.G.(1935)Theuseandabuseofvegetationalconceptsand terms.Ecology16,284

67 Dunbar,M.(1972)Theecosystemasunitofnaturalselection.Trans. Connect.Acad.ArtsSci.44,111–130

68 Jackson,W.M.andWinnegrad,R.L.(1988)Linearity indominance hierarchies:asecondlookattheindividualattributesmodel.Anim. Behav.36,1237–1240

69 Holekamp,K.E.andSmale,L.(1993)Ontogenyofdominancein free-livingspottedhyaenas:juvenilerankrelationswithotherimmature individuals.Anim.Behav.46,451–466

70 Beaugrand, J.P. and Cotnoir, P-A. (1996) The role of individual differences in the formation of triadic dominance orders of male green swordtail fish (Xiphophorus helleri). Behav. Processes 38, 287–296

71 Hsu,Y.Y.andWolf,L.L.(1999)Thewinnerandlosereffect:integrating multipleexperiences.Anim.Behav.57,903–910

72 Chase,I.D.etal.(2002)Individualdifferencesversussocialdynamics intheformationofanimaldominancehierarchies.Proc.Natl.Acad. Sci.U.S.A.99,5744–5749

73 Lindquist,W.B.andChase,I.D.(2009)Data-basedanalysisof winner-losermodelsofhierarchyformationinanimals.Bull.Math.Biol.71, 556–584

74 Chase,I.D.andLindquist,W.B.(2009)Dominancehierarchies.InThe OxfordHandbookofAnalyticalSociology(Hedstro¨m,P.andBearman, P.,eds),pp.566–591,OxfordUniversityPress

75 Kondoh,M.(2003)Foragingadaptationandtherelationshipbetween food-webcomplexityandstability.Science299,1388–1391

76 Lewontin,R.C.(1970)Theunitsofselection.Annu.Rev.Ecol.Syst.1, 1–18

77 Hull,D.L.(1980)Individualityandselection.Annu.Rev.Ecol.Syst.11, 311–332

78 Damuth,J.(1985)Selectionamong‘species’:aformulationintermsof naturalfunctionalunits.Evolution39,1132–1146

79 Brandon,R.(1990)AdaptationandEnvironment,PrincetonUniversity Press

80 Arditi,R.andMichalski,J.(1996)Nonlinearfoodwebmodelsandtheir responsestoincreasedbasalproductivity.InFoodWebs:Integrationof PatternsandDynamics(Polis,G.A.andWinemiller,K.O.,eds),pp. 122–133,Chapman&Hall

81 Arditi,R.andGinzburg,L.R.(2012)HowSpeciesInteract:Alteringthe StandardViewonTrophicEcology,OxfordUniversityPress

82 Logofet, D.O. (2005) Stronger-than-Lyapunov notions of matrix stability, or how ‘flowers’ help solve problems in mathematical ecology.LinearAlgebraAppl.398,75–100

83 MacArthur, R. and Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385

84 Svirezhev, Y. and Logofet, D. (1983) Stability of Biological Communities,MIRPublisher

85 Armstrong,R.A.andMcgehee,R.(1980)Competitiveexclusion.Am. Nat.115,151–170

86 Abrams,P.A.andHolt,R.D.(2002)Theimpactofconsumer-resource cyclesonthecoexistenceofcompetingconsumers.Theor.Popul.Biol. 62,281–295

Figure

Figure I. Four hypothetical intraguild predation communities, at the top is the intraguild predator, the middle is the intraguild prey, and the bottom is the shared resource
Figure 1. The empirical relation between handling time and attack rates. (A) Published attack rates (day 1 ind 1 ) and handling times (day 1 ) for 57 species; see [12] for details
Figure 3. Predator–prey richness ratios in freshwater invertebrate communities after [44], compared with the predicted ratio of 1:3 (broken line).
Figure I. Logical relations among different types of matrix stability. Adapted from [82].

Références

Documents relatifs

Pour notre part, nous allons parler des métabolites secondaires les plus distribués dans les différentes espèces de la famille et qui sont les alcaloïdes, les coumarines, les

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Pour le cas de réparation avec le patch configuré selon le modèle 2, la valeur de la contrainte de Von Mises est maximale dans le cas de la séquence d’empilement est

Country of origin RS # MAF in ExA C/ gnomAD if a vailable Remarks and pathogenic prediction for missense changes Reference of the first report 19 c.2593C > T p.Arg865T rp

Canadian Counsellor 1-143 Education II Building The University of Alberta Edmonton, Alberta T6G 2E1.. The CANADIAN COUNSELLOR is published quarterly by the Canadian Guidance

Inner Detector tracking: total algorithmic execution time for LVL2 single electron reconstruction at inital luminosity; tracking is performed using data from the Pixel and SCT

between gestation length and HEAD CLASS score may be due to the negative genetic relationship between ges- tation length and litter size at the maternal level, with larger

Then, we used whole‑ genome sequence data from three pig lines to calculate: a variant intolerance score that measures the tolerance of genes to protein coding variation; an