• Aucun résultat trouvé

Generalized Courant algebroids

N/A
N/A
Protected

Academic year: 2021

Partager "Generalized Courant algebroids"

Copied!
39
0
0

Texte intégral

(1)

Generalized Courant Algebroids

Norbert Poncin

University of Luxembourg

Glances@Manifolds II

(2)

Outline*

1 The supergeometry of Loday algebroids (J. Geo. Mech., 2013)

2 Free Courant and derived Leibniz algebroids (J. Geo. Mech., 2016)

3 Infinity category of homotopy Leibniz algebras (Theo. Appl. Cat., 2014)

4 A tale of three homotopies (Appl. Cat. Struct., 2016)

*Joint with V. Dotsenko, J. Grabowski, B. Jubin, D. Khudaverdian, J. Qiu, K. Uchino

(3)

The supergeometry of Loday algebroids

(J. Geo. Mech., 2013)

(4)

Motivations

Double of a Lie bialgebragis a Lie algebra: g⊕g

Double of a Lie bialgebroid is aCourant algebroid:TM ⊕TM,E Leibniz bracket –derived brackets

[X, f Y] =f[X, Y] +λ(X)f Y classical Leibniz algebroids: wrong!

(5)

Loday algebroids: first attempt

‘Definition’: ALoday algebroidis a Leibniz bracket[−,−]on sections of a vb Etogether with aleft and right anchor

Ifrk(E) = 1,[−,−]is AS and 1st order Ifrk(E)>1,[−,−]is ‘locally’ aLAD bracket

‘No’ new examples modify ‘definition’

(6)

Loday algebroids: second attempt

[X, f Y] =f[X, Y] +λ(X)f Y

[Xiei, f Yjej] =Xiaijkf Yjek+Xiλaiaf Yjej+Xiλai f ∂aYj ej−YiλaiaXjej

λ(X)(df⊗Y) =Xiλakijaf Yjek

Derivation inf,C(M)-linear inX andY, valued in sections λ: Γ(E)C

(M)−lin

−→ Γ(T M)⊗C(M)EndC(M)Γ(E) λ:E→T M ⊗EndE generalized anchor Cohomology theory traditional left anchorλ

(7)

Definition [Grabowski, Khudaverdian, P, ’13]

Definition

ALoday algebroid(LodAD) is a Leibniz bracket on sections of a vbE→Mtogether with two bundle mapsλ:E→T Mandρ:E→T M⊗EndEsuch that

[X, f Y] =f[X, Y] +λ(X)f Y and

[f X, Y] =f[X, Y] +ρ(Y)(df⊗X).

(8)

Examples

Leibniz algebra

(twisted) Courant-Dorfman (TM ⊕TM)

Grassmann-Dorfman (TM⊕ ∧TM orE⊕ ∧E)

classical Leibniz algebroid associated to a Nambu-Poisson structure Courant algebroid

...

Courant:f ∈ C(M), X, Y ∈Γ(E)

D∈Der(C(M),Γ(E)): (Df|Y) = 12λ(Y)f

D(f X|Y) = [f X, Y] + [Y, f X] ρ(Y)(df⊗X) =D(f)(X|Y) Derivation inf,C(M)-linear inX andY, valued in sections

(9)

Supergeometric interpretation

(E,[−,−], λ)(Γ(∧E),d) d∈Der1(Γ(∧E),∧),d2= 0

Lie algebroidshomological vfs on supermfds Loday algebroids?

Lie operator restricted to∧C(M)(Γ(E),C(M)) = Γ(∧E) Leibniz operator restricted to

LinC(M)D(Γ(E),C(M)) = Γ(⊗E)=:D(E)

(Dt∆)(X1, . . . , Xp+q)

= X

σ∈sh(p,q)

sign(σ)D(Xσ1, . . . , Xσp) ∆(Xσp+1, . . . , Xσp+q)

(10)

Supergeometric interpretation

(E,[−,−], λ)(Γ(∧E),d) d∈Der1(Γ(∧E),∧),d2= 0

Lie algebroidshomological vfs on supermfds Loday algebroids?

Lie operator restricted to∧C(M)(Γ(E),C(M)) = Γ(∧E) Leibniz operator restricted to

LinC(M)D(Γ(E),C(M))= Γ(⊗E)=:D(E)

(Dt∆)(X1, . . . , Xp+q)

= X

σ∈sh(p,q)

sign(σ)D(Xσ1, . . . , Xσp) ∆(Xσp+1, . . . , Xσp+q)

(11)

Supergeometric interpretation

(E,[−,−], λ)(Γ(∧E),d) d∈Der1(Γ(∧E),∧),d2= 0

Lie algebroidshomological vfs on supermfds Loday algebroids?

Lie operator restricted to∧C(M)(Γ(E),C(M)) = Γ(∧E) Leibniz operator restricted to

LinC(M)D(Γ(E),C(M))= Γ(⊗E)=:D(E)

(Dt∆)(X1, . . . , Xp+q)

= X

σ∈sh(p,q)

sign(σ)D(Xσ1, . . . , Xσp) ∆(Xσp+1, . . . , Xσp+q)

(12)

LodADs as hom vfs [Grabowski, Khudaverdian, P, ’13]

Theorem

There is a 1-to-1 correspondence between LodAD structures(E,[−,−], λ, ρ) and equivalence classes of homological vfs

d∈ Der1(D(E),t),d2= 0 of the supercommutative space(D(E),t).

Cartan calculus

(13)

Free Courant and derived Leibniz algebroids

(J. Geo. Mech., ’16)

(14)

Koszul duality for operads

Ginzburg-Kapranov, ’94:

P-algebra onV d∈Der1(FP!(sV)),d2= 0 Example:

L-algebra onV homological vf on theformal smfdV Geometric extensions:

L-algebroidhomological vf on aN-smfd(Bonavolontà, P, ’12) LADhomological vf on asmfd

LodADhomological vf on asupercommutative space Derived bracketsinduced by the homological vf

(15)

Courant algebroid

Classical LeiAD(E,[−,−], λ)with a scalar product(−|−) Invariance relations:

λ(X)(Y|Z) = ([X, Y]|Z) + (Y|[X, Z])

λ(X)(Y|Z) = (X|[Y, Z] + [Z, Y]) Compatibility condition:

([X, Y]|Z) + (Y|[X, Z]) = (X|[Y, Z] + [Z, Y])

Γ(E):C(M)-module,C(M): commutativeR-algebra,R: field E:A-module,A: commutativeR-algebra;R: commutative ring

(16)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(17)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(18)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(19)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(20)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(21)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(22)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(23)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(24)

Free Courant algebroid

FreeCourant ADover ananchoredA-module(E, λ)? Free Leibniz algebra over theR-moduleE:(F(E),[−,−]ULB) Free LeiAD over(E, λ):(F(E),[−,−]ULB,F(λ)) (−|−)USP ? (E0,[−,−]0, λ0,(−|−)0),f :E → E0,f1:F(E)→ E0,X, Y ∈ F(E)

‘(X|Y)USP=’(f1(X)|f1(Y))0=f2(XY)

(−|−)USP:F(E)× F(E)→F(E) F(E)/Compatibility=:Q(F(E)) Invariance Q(F(E))must haveF(E)-actionsµ`andµr

(F(E),[−,−]ULB,F(λ),Q(F(E)), µ`, µr,(−|−)USP)

Well-DefNess ofµ`andµronQ(F(E)) 2 SymConds on[−,−]ULB

(25)

Symmetric Leibniz algebroid [Jubin, P, Uchino, ’16]

Definition

Asymmetric LeiADis a classical LeiAD(E,[−,−], λ)s.th.

X◦f Y −(f X)◦Y = 0,

([f X, Y]−f[X, Y])◦Z+Y ◦([f X, Z]−f[X, Z]) = 0,

whereX◦Y := [X, Y] + [Y, X].

(26)

Examples

Leibniz algebra

(twisted) Courant-Dorfman Grassmann-Dorfman Courant algebroid

A LeiAD associated to Nambu-Poisson structure is NOT a symmetric LeiAD ! The free symmetric LeiAD over an anchored module is NOT Loday !

(27)

Generalized Courant AD [Jubin, P, Uchino, ’16]

(SF(E),[−,−]ULB,F(λ),Q(SF(E)), µ`, µr,(−|−)USP)

Definition

Generalized Courant AD: (E1,[−,−], λ,E2, µ`, µr,(−|−)) Invariance relations:

µ`(X)(Y|Z) = ([X, Y]|Z) + (Y|[X, Z])

−µr(X)(Y|Z) = ([Y, Z] + [Z, Y]|X) Compatibility condition:

([X, Y]|Z) + (Y|[X, Z]) = ([Y, Z] + [Z, Y]|X) Non-degeneracy⇒symmetry AND (C(M), λ,−λ)⇒(E2, µ`, µr)

(28)

Generalized Courant AD [Jubin, P, Uchino, ’16]

(SF(E),[−,−]ULB,F(λ),Q(SF(E)), µ`, µr,(−|−)USP)

Definition

Generalized Courant AD: (E1,[−,−], λ,E2, µ`, µr,(−|−)) Invariance relations:

µ`(X)(Y|Z) = ([X, Y]|Z) + (Y|[X, Z])

−µr(X)(Y|Z) = ([Y, Z] + [Z, Y]|X) Compatibility condition:

([X, Y]|Z) + (Y|[X, Z]) = ([Y, Z] + [Z, Y]|X) Non-degeneracy⇒symmetry AND (C(M), λ,−λ)⇒(E2, µ`, µr)

(29)

Generalized Courant AD [Jubin, P, Uchino, ’16]

(SF(E),[−,−]ULB,F(λ),Q(SF(E)), µ`, µr,(−|−)USP)

Definition

Generalized Courant AD: (E1,[−,−], λ,E2, µ`, µr,(−|−)) Invariance relations:

µ`(X)(Y|Z) = ([X, Y]|Z) + (Y|[X, Z])

−µr(X)(Y|Z) = ([Y, Z] + [Z, Y]|X) Compatibility condition:

([X, Y]|Z) + (Y|[X, Z]) = ([Y, Z] + [Z, Y]|X) Non-degeneracy⇒symmetry AND (C(M), λ,−λ)⇒(E2, µ`, µr)

(30)

Application

Question:

Which LeiAD bracketscan berepresented by a derived bracket? Answer:

Any symmetric LeiAD brackethas auniversal derived bracket representation.

(31)

Application

Question:

Which LeiAD bracketscan berepresented by a derived bracket? Answer:

Any symmetric LeiAD brackethas auniversal derived bracket representation.

(32)

Summary

Classical Leibniz AD Loday AD

Symmetric Leibniz AD Generalized Courant AD

Free generalized Courant AD

Universal derived bracket representation

(33)

Infinity category of homotopy Leibniz algebras

(Theo. Appl. Cat., ’14)

(34)

∞-Homotopies

HomP(V, W)'HomDGP¡C(FP¡(V),FP¡(W)) 'MC(HomR(FP¡(V), W)) =:MC(C) (s−1omitted)

QuillenHo of MC(C): MC(C ⊗Ω1) GaugeHo of MC(C): “IC of specific VF”

P-Ho: MC(C ⊗Ω1)

(35)

∞-Cat of P

-Alg [Khudaverdian, P, Qiu, ’14]

P- Ho =P- 2 - Mor:MC(C ⊗Ω1) P- Mor =P- 1 - Mor:MC(C ⊗Ω0)

Definition

P-(n+ 1)-Mor : MC(C ⊗Ωn), n≥0 Getzler, ’09:

Z

C−→ MC(C ⊗Ω) :∞-GD

Theorem

P-Alg: ∞-Cat

(36)

Application [Khudaverdian, P, Qiu, ’14]

Lei-Alg:∞-Cat

2Lei-Alg: 2-Cat(badly understood)

Theorem

∞-CatinLei-Alg2-Catin2Lei-Alg

Application of Getzler’s integration technique

(37)

A tale of three homotopies

(Appl. Cat. Struct., ’16)

(38)

Equivalence of all ∞-homotopies [Dotsenko, P, ’16]

Homotopy transfer theorem for homotopy cooperads

Explicit recipe to write a definition of operadic homotopy (nested trees)

Theorem

Concordances, Quillen, gauge, cylinder, and operadic homotopies are'

(39)

T HANK YOU

Références

Documents relatifs

Positive quadratic enhanced Leibniz algebras, as needed for the def- inition of a Yang-Mills type action functional, turn out to be rather restrictive on the underlying Leibniz

If one thinks about a generalization of a concept of Lie algebroid as operations on sections of a vector bundle including operations (brackets) which are non-antisymmetric or which

Keywords : Lie n-algebroids, split NQ-manifolds, morphisms, Chevalley-Eilenberg complex, graded symmet- ric tensor coalgebra, higher derived brackets, Lie infinity

We show that composition of ∞-homotopies in the nerve-∞-groupoid, which is defined and associative only up to higher ∞-homotopy, projects to a well-defined and asso- ciative

Whereas Courant algebroids are Leibniz algebroids endowed with a scalar product, such that some invariance conditions are satised, generalized Courant pseudoalgebras are symmet-

Symmetric Leibniz algebroids are the underlying object of generalized Courant al- gebroids, a new category that contains standard Courant algebroids and has free objects over

Classical rational homotopy theory relies in the equivalence of the usual homotopy category of simply connected, or more generally, nilpotent rational CW-complexes with the