• Aucun résultat trouvé

STUDY ON N2/CO2 MIXING GASDYNAMIC LASER BY MEANS OF SYNCHRONIZED OPERATION OF TWO SHOCK TUBES

N/A
N/A
Protected

Academic year: 2021

Partager "STUDY ON N2/CO2 MIXING GASDYNAMIC LASER BY MEANS OF SYNCHRONIZED OPERATION OF TWO SHOCK TUBES"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00220581

https://hal.archives-ouvertes.fr/jpa-00220581

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

STUDY ON N2/CO2 MIXING GASDYNAMIC LASER

BY MEANS OF SYNCHRONIZED OPERATION OF

TWO SHOCK TUBES

K. Maeno, H. Oguchi

To cite this version:

(2)

JOURNAL DE PHYSIQUE Col2oqv.e C3, suppl6ment au n O 1 l , Tome 41, novembre 1980, page C9-209

STUDY ON N 2 / c o 2 MIXING GASDYNAMIC LASER BY MEANS OF SYNCHRONIZED OPERATION OF TWO SHOCK TUBES

K. Maeno and H. oguchi*

+Tokyo Metropolitan College o f Aeronautical Engineering, Tokyo, Japan,

I n s t i t u t e o f Space and Aeronautical Science, U n i v e r s i t y o f Tokyo, Tokyo, Japan.

R6sumS.- On exp6rimente l'obtention de GDL par mglange de N2 et de CO B l'aide d'un bec B 6cran con- 2

qu pour u n m6lange supersonique aval, par utilisation synchronis6e de deux tubes de choc s6par6s. Les distributions de gain mesurdes sont compar6es B une estimation fond6e sur une analyse simplifi6e quasi uni-dimensionnelle.

Abstract.- The experiment o n N2/C02 mixing GDL is conducted using a screen nozzle, contrived to make supersonic downstream mixing, by means of a synchronized operation of two separate shock tubes. The measured gain distributions are compared with a n estimate based on simplified, quasi one-dimensional analysis.

I n t r o d u c t i o n

I n t h i s paper we concern a N2/C02 mixing GDL experiment. I t has a l r e a d y been demonstrated by p r e v i o u s i n s e ~ t i ~ a t o r s ~ - ~ l t h a t a m i x i n g GDL i s one o f the promising and powerful methods transcending a gain l i m i t p e r t i n e n t t o a conventional premixed GDL; notably, comprehensive reviews should be r e f - e r r e d t o Refs. 9 and 11. So f a r as thermal e x c i t a - t i o n o f t h e donor gas N2 i s concerned, t h e shock tube i s one o f t h e most u s e f u l means, because o f t h e f e a s i b i l i t y t o cover a wide range o f f l o w con- d i ti o n s .

Regarding t h e m i x i n g o f C02 (+ He) w i t h a do- nor gas

N2,

various schemes f o r t h e i n j e c t i o n o f C02 i n t o a supersonic nozzle o f N2 have been n o t i - ced and/or. contrived; f o r example, a normal t h - r o a t i n j e c t i o n from w a l l o r s l o t t e d tube v e r t i c a l l y mounted a t t h e nozzle a downstream s c r - een nozzle i n j e c t i o n w i t h sonic nozzle o f

and

f u r t h e r a supersonic downstream i n j e c t i o n by screen n o ~ z l e . ~ I n any scheme, however, t h e gasdynamics p e r t i n e n t €0 m i x i n g processes above mentioned i s so i n t r i c a t e t h a t s i m p l i f i e d assumptions c o u l d be i n v o l v e d i n any analysis; otherwise, t h e descrip-

t i o n o f t h e r e l e v a n t f l o w phenomena must l a r g e l y r e l y on t h e experimental evidences.

As a m i x i n g scheme o f our experiment i s cho- sen a screen nozzle which proved t o y i e l d h i g h gain. This screen nozzle enabled us t o make a supersonic downstream m i x i n g o f a donor gas w i t h C02 w i t h o r w i t h o u t c a t a l y s t He. The screen nozzle i s r a t h e r f i x e d i n c o n f i g u r a t i o n and designed t o comprise o f simple c o n i c a l nozzles, because o p t i m i z a t i o n o f t h e nozzle c o n f i g u r a t i o n i s n o t our primary purpose. This paper aimes t o c l a r i f y some o f fundamental c h a r a c t e r i s t i c s o f N2/C02 m i x i n g GDL, associated w i t h supersonic downstream m i x i n g over a wide range o f stagnation c o n d i t i o n s o f t h e component gases.

Experimental Apparatus

This experiment was conducted by a synchroni- zed o p e r a t i o n o f two shock tubes, which produce separate stagnant c o n d i t i o n s f o r each gas. These two tubes have q u i t e t h e same d r i v i n g mechanism, which i s i l l u s t r a t e d i n Fig. 1. The diaphragm o f an o r d i n a r y shock tube i s replaced by a f r e e p i s t o n which i s c o n t r i v e d t o q u i c k l y move back and f o r t h

(3)

C9-210 JOURNAL DE PHYSIQUE

f o l l o w i n g t h e movement o f an a u x i l i a r y f r e e p i s t o n The a u x i l i a r y p i s t o n can be moved by o n - o f f s w i t c h i - ng o f small magnetic valve, equipped o u t s i d e o f t h e compression chambers. Consequently, t h e o p e r a t i o n o f each tube can be made simply by a snap a c t i o n . Both f e a s i b i l i t y and r e p r o d u c i b i l i t y o f t h e opera- t i o n i s q u i t e s a t i s f a c t o r y , as p r e v i o u s l y r e p o r t e d i n Refs 12, 13. Thus, t h e synchronized o p e r a t i o n of these two tubes was e a s i l y achieved by e l e c t r i c c o n t r o l o f t h e r e s p e c t i v e magnetic valves.

Start S w ~ t c h Delay

C02(or+ He)

Fig. 1 Schematic diagram o f d r i v e r sections. The shock tubes are d i f f e r e n t from each o t h e r i n dimension; t h e tube f o r a donor gas N2 has a

d r i v e n s e c t i o n o f 50 mm i n i n n e r diam. and 5,500 mm i n l e n g t h w i t h t h e f o l l o w i n g 20x80 mm square cross section, and t h e o t h e r f o r C02 has a d r i v e n s e c t i o n o f 20 m i n i n n e r diam. and 5,000

mm

i n length. The t e r m i n a l s e c t i o n o f the C02 tube i s connected w i t h t h e screen nozzle through a s t r a i g h t tube, and i n i t i a l l y separated by i n s e r t i o n o f a polyethy- l e n diaphragm, t h i n enough t o break a t a r r i v a l o f t h e shock wave, i n a p o r t o f t h e connection tube ( F i g . 2).

The screen nozzle i s i n s t a l l e d w i t h i n t h e squa- r e cross s e c t i o n (20x80

nun)

and t h e l a s e r c a v i t y i s f o l l o w e d w i t h t h e same cross s e c t i o n downstream o f t h e nozzle e x i t . The windows f o r o p t i c a l observa- t i o n as w e l l as g a i n measurement a r e mounted f l u s h w i t h t h e s i d e w a l l s o f the c a v i t y . I n Fig. 3 i s

screen nozzle Windows Fig. 2. Test s e c t i o n .

shown t h e schematics o f t h e screen nozzle. Since

,

i n t h e experiment, t h e o p t i m i z a t i o n o f the nozzle c o n f i g u r a t i o n was n o t aimed, a simple geometry which c o n s i s t s of c o n i c a l supersonic nozzles was chosen; t h a t i s , one row o f 6 nozzles f o r C02 sand- wiched w i t h tworrows of 8 nozzles f o r N2. NO sepa- r a t i o n diaphragm was used, because o f t h e small area r a t i o o f t h r o a t t o cross s e c t i o n 5 %; t h i s assured f u r t h e r f e a s i b i l i t y o f t h e operation, thou- gh a s l i g h t l o s s i n f l o w d u r a t i o n was incurred.

C02(+ He)

1

CO,(+He)

(+H" e ( o r 4.7) Half Angle : 6.1' Fig. 3. Screen nozzle.

(4)

a pressure from 20 t o 50 Torr, while the C02 was f i l l e d a t a pressure from 200 t o 400 Torr.

The pressure was measured by means of piezo- e l e c t r i c pressure gauges mounted a t appropriate locations close t o the end wall ( o r the f r o n t face of screen nozzle). The incident shock speed was recorded on the time counters detecting shock a r r i - val by pressure gauges. In Fig. 4 i s shown an example of pressure records, e i t h e r of which i s t h a t f o r a donor gas j u s t ahead of the f r o n t face of screen nozzle or t h a t f o r C02 j u s t ahead of the end wall. We can see from t h i s figure t h a t a s a t i - sfactory synchronization of two shock tubes i s achieved. In f a c t , the operation was capable of making the difference in a r r i v a l times of both in-

2 cident shock waves l e s s than about 2 ~ 3 x 1 0 psec. Since the flow duration estimated from the pressure history were about 2 msec f o r a donor gas N2 and about 4 msec f o r C O Z Y the achieved synchroniza- tion was t o l e r a b l e f o r the measurement of any l a s - ing performance. Apparently, t h i s must be further improved i f longer driven tubes a r e available t o use.

Fig. 4. Pressure record a t shock tube ends. The stagnation temperatures were estimated from the ideal reflected shock r e l a t i o n using the measured incident shock speeds. The experimental conditions regarding the stagnation pressure and temperature a r e summarized as follows:

2 atrn < p? < 6 atm, 500°K < TE < 2400°K 2 atrn < pzH< 5 atm, 700°K < T&< 2300°K 5 atrn < p i <10 atm, 1800°K <

~i

< 3500°K where pS and

T'

a r e pressure and temperature a t stagnation, respectively, and the subscripts N , C , and CH r e f e r t o the t e s t gases

N2,

Cop,

and mixture of C02/He, respectively. I t i s noted t h a t no dissociation occurs f o r e i t h e r C02 or N2 over t h i s experimental condition.

Measurement of Small Signal Gain Coefficient The small signal gain G was determined from the i n t e n s i t y increment of the beam which was pro- duced by an e l e c t r i c a l l y pumped CW C02 l a s e r . The beam homogeneously scattered by reflection upon a diffusive alminium mirror was s e t t o pass throu- gh Ge windows, so t h a t the beam i n t e n s i t y was mea- sured by a dewer-type Hg-Cd-Te photoconductive in- frared detector. The measurement scheme f o r small signal gain i s i l l u s t r a t e d i n Fig. 5. Care was

Hg-a-Te I R Detector Partial Transmitter

Test Sect ion Nozzle

CE

CW

Probe

7

p l e d o r Fig. 5. Arrangement of gain measurement.

taken f o r protection of the Hg-Cd-Te infrared dete- c t o r ; f o r example, a shutter was inserted in a beam path t o avoid unnecessary exposer of the dete- c t o r t o the continuous beam, and also

a

Ge trans- mitter was inserted in front of the detector i n order t o attenuate the beam i n t e n s i t y .

(5)

C9-212 JOURNAL DE PHYSIQUE

t h e beam i n t e n s i t y p r i o r t o t h e f l o w s t a r t o r non- a r r i v a l o f t h e l a s i n g media i n d i c a t e d no appreci- a b l e change d u r i n g t h e t e s t time. Therefore, t h i s i n i t i a l i n t e n s i t y was a b l e t o regard as t h e undis- t u r b e d beam i n t e n s i t y IO. I n F i g . 6 an example o f t h e beam s i g n a l i s shown together w i t h t h e pressure h i s t o r y a t the end o f the C02 tube. The f l o w i n a c a v i t y i s estimated t o s t a r t a f t e r a t most a few hundreds microseconds from a r r i v a l o f t h e i n c i d e n t shock wave a t t h e end o f t h e C02 tube ( t h e i n i t i a l r i s e o f t h e pressure i n Fig. 6). I t i s noted t h a t t h e maximum o f g a i n i s achieved w i t h some delay from the f l o w s t a r t . This was a i s o confirmed n o t t o be caused by mismatch i n o p e r a t i o n o f t h e two tubes. The g a i n d i s t r i b u t i o n s along the c e n t e r ax- i s as w e l l as l i n e s normal t o t h e a x i s were measur- ed a t window l o c a t i o n s downstream o f t h e nozzle e x i t .

Fig. 6. Gain s i g n a l and pressure o f C02 tube.

Simple Estimate by Quasi One-Dimensional Analysis

-

f o r Comparison w i t h Experiment

-

So f a r t h e r e have been worked o u t many i n v e s t i - g a t i o n s on t h e screen nozzle o f a s i n g l e gas from a viewpoint o f t h e a p p l i c a t i o n t o wind tunnel o r o t h e r f l u i d machinery. Recently, f o r gasdynamic l a s e r a p p l i c a t i o n Russel e t a l l 4 developed an e l a -

b o r a t e a n a l y s i s o f t h e screen nozzle f l o w , t a k i n g i n t o account o f t h e viscous e f f e c t s . Cassady e t a l l 1 e x t e n s i v e l y a p p l i e d i t t o an estimate o f the l a s e r performance f o r the m i x i n g GDL u s i n g a screen nozzle s i m i l a r t o t h e present one, and showed a reasonable agreement o f the estimate w i t h t h e i r experiment. Even i n these elaborate analyses, t h e f l o w behavior i n t h e m i x i n g r e g i o n i s n o t d e a l t w i t h . This i s mainly because the m i x i n g processes o f viscous f l o w s mismatched i n v e l o c i t y and tempe- r a t u r e are much i n t r i c a t e f o r the s t r a i g h t f o r w a r d analysis. l5 I n a d d i t i o n , t h e outgoing disturbances from the nozzle e x i t a r e a l s o u n t r a c t a b l e w i t h o u t any semi-empirical considerations.

Regarding the mixing GDL f l o w a n a l y s i s , more 9 simple a n a l y s i s was done by Soloukhin e t a1 f o r t h e mixing nozzle scheme, i n which the secondary sonic j e t i s i n j e c t e d a t t h e t h r o a t o r from t h e s i d e w a l l o f a primary nozzle f l o w o f a donor gas. I n t h e i r a n a l y s i s , one o f t h e most s i m p l i f i n g ass- umptions i s t h a t o f an instataneous mixing. Despite such a simple analysis, t h e estimate was shown t o be i n a reasonable agreement w i t h t h e i r own e x p e r i - ment.

(6)

Once t h e s t a g n a t i o n c o n d i t i o n o f each compone- n t gas N2 o r C02 (+ He) and t h e geometry o f nozzles a r e prescribed, a s e t o f governing equations can be i n t e g r a t e d from t h e t h r o a t t o the e x i t , separately f o r each nozzle. Since t h e instantaneous m i x i n g j u s t a t t h e nozzle e x i t i s assumed, t h e f l o w p r o - p e r t i e s a t t h e nozzle e x i t a f t e r m i x i n g a r e d e t e r - mined from t h e a l g e b r a i c conservation equations, i n which a l l t h e v i b r a t i o n a l temperatures p e r t i n e n t t o each mode a r e assumed t o remain unchanged across t h e m i x i n g l a y e r . With t h e f l o w p r o p e r t i e s a f t e r mixing, thus obtained a t t h e e x i t , t h e governing equatipns a r e a l s o i n t e g r a t e d through t h e c a v i t y from the e x i t toward downstream. The estimate o f small s i g n a l g a i n obtained by the above a n a l y s i s wi 11 be compared w i t h t h e present experiment.

Results and Discussion

I n F i g . 7 i s shown the d i s t r i b u t i o n o f small s i g n a l g a i n c o e f f i c i e n t G (l/m), measured a t seve- r a l l o c a t i o n s along t h e c e n t e r a x i s from t h e nozzle e x i t toward downstream. Two kinds o f measurement data are p l o t t e d f o r a f i x e d stagnation c o n d i t i o n o f a donor gas N2; namely, one i s f o r t h e case o f m i x i n g w i t h pure C02 and t h e o t h e r f o r t h e case o f m i x i n g w i t h a m i x t u r e C02/He. For comparison, the estimates, obtained by t h e simple a n a l y s i s i n t h e previous section, a r e a l s o p l o t t e d i n t h e same f i g u r e . It f o l l o w s from t h e f i g u r e t h a t the e f f e c t o f c a t a l y s t He i s n o t so appreciable on an achieved maximum g a i n b u t the decrease i n g a i n toward down-

stream i s suppressed by a d d i t i o n o f t h e c a t a l y s t . F u r t h e r , f o r cases o f a m i x t u r e C02/He, the simple estimate o f G i s r a t h e r lower than t h e measured data. T h i s i s l i k e l y t o be m a i n l y due t o the f a c t t h a t , as shown l a t e r , t h e g a i n G on t h e a x i s takes t h e maximum i n t h e d i s t r i b u t i o n along a l i n e normal t o t h e axis. I t a l s o f o l l o w s from t h e f i g u r e t h a t 0 , ---; T:=65O0K, pt=6.4 ATM A , -; ~!=720'K. @:4.9 ATM (

l/m

(T:=2000% , p ~ z 5 . 6 ~ ~ ~ ) F i g . 7. Gain d i s t r i b u t i o n along c e n t e r o f c a v i t y . the g a i n d i s t r i b u t i o n o f a q u a l i t a t i v e behavior i s reasonably s i m i l a r t o t h a t from t h e simple analysis.

For t h e case o f pure

C02, however t h e r e appears

a g r e a t discrepancy o f t h e estimate from the data. As p r e v i o u s l y mentioned, the present estimate i s based upon the n e g l e c t i o n o f l o s s due t o the v i s c o - s i t y as w e l l as disturbances, along w i t h an i d e a l mixing. Therefore, t h e estimate thus obtained must l e a d an overestimate o f the gain. Nevertheless, f o r the case o f pure C02, t h e data i n d i c a t e t h e g a i n much g r e a t e r than t h e estimate. Physical explana- t i o n on t h i s discrepancy must remain i n f u t u r e study.

The g a i n d i s t r i b u t i o n s over l i n e s normal t o the a x i s were measured a t several s t a t i o n s from t h e nozzle e x i t toward downstream. The data are shown i n Fig. 8, where x i s measured along the nozzle e x i t toward downstream and y normal t o it. As ex-

Y l 0 1 FLOW

Fig. 8. Gain d i s t r i b u t i o n s normal t o flow.

(7)

C9-214 JOURNAL DE PHYSIQUE

pected, t h e maximum gains occur on the a x i s y = 0 and a steeper p r o f i l e a t t h e s t a t i o n c l o s e r t o the nozzle e x i t becomes p l a t e a u toward downstream. The experimental c o n d i t i o n f o r t h e data shown i n Fig. 8 was the same as t h a t shown i n F i g . 7. I n these measurements, t h e area r a t i o o f C02 nozzle was 1.8 w i t h the t h r o a t o f 3 mm i n diam. (see Fig. 3), so t h a t the mole f r a c t i o n o f C02 was comparatively l a r g e r ; e q u i v a l e n t mole f r a c t i o n was 56N2/44C02 o r 5;N2/19C02/28He, r e s p e c t i v e l y , f o r pure C02 o r C02/ He i n j e c t i o n .

I n o r d e r t o e l u c i d a t e t h e e f f e c t o f t h e stag- n a t i o n c o n d i t i o n s on t h e achieved gain, t h e g a i n measurement was conducted a t a f i x e d reference s t a t i o n which i s l o c a t e d on t h e c e n t e r a x i s o f 97 mm downstream from t h e nozzle e x i t , i n v a r i a t i o n o f N2 s t a g n a t i o n c o n d i t i o n f o r a f i x e d C02/He stagna- t i o n c o n d i t i o n , and v i c e versa. The r e s u l t s a r e summarized i n Figs. 9 and 10, t o g e t h e r w i t h t h e estimate obtained by t h e simple a n a l y s i s p r e v i o u s l y mentioned. A s t a g n a t i o n c o n d i t i o n i s s p e c i f i e d by a s e t o f temperature and pressure. I n v a r i a t i o n o f s t a g n a t i o n c o n d i t i o n o f N2 ( o r CO*), n o t o n l y temperature b u t pressure varied, so t h a t t h e equi- v a l e n t mole f r a c t i o n a f t e r the mixing a l s o varied. Thus t h e e q u i v a l e n t mole f r a c t i o n YN o f N2 i s p l o t - t e d vs t h e s t a g n a t i o n temperature TS. The optimum g a i n appears t o depend s e n s i t i v e l y on t h e C02/He s t a g n a t i o n c o n d i t i o n than on t h e N2 s t a g n a t i o n con- d i t i o n , except h i g h e r temperature r e g i o n

(T;

> 2.5

3

xlo3, T t H > 1 . 5 ~ 1 0 ). I t can a l s o be seen t h a t t h e present estimate provides a good agreement w i t h the experiment.

F i n a l l y , i n t h i s experiment an advantage o f

this t y p e o f m i x i n g

GDL was confirmed i n comparison w i t h a conventional premixed

GDL,

though t h e geo- metry o f the nozzle was n o t n e c e s s a r i l y an o p t i m i - zed one. The simple estimate based on t h e assump-

t i o n s o f quasi one-dimensionality, instantaneous mixing, and n e g l e c t i o n o f v i s c o s i t y as w e l l as disturbances i s shown t o simulate a t l e a s t q u a l i t a - t i v e behavior o f small s i g n a l gain, so f a r as t h e c a t a l y s t He i s contained i n l a s i n g media C02- For cases o f no c a t a l y s t , however t h e r e appears a g r e a t discrepancy o f t h e simple estimate from t h e data. Physical e x p l a n a t i o n on t h i s discrepancy remains i n f u t u r e study.

F i g . 9. E f f e c t o f N2 s t a g n a t i o n c o n d i t i o n on g a i n f o r f i x e d CO2

~ta~nation;~~.=720~~.

ptH=4.8 atm, C02:He=2:3, Ac/AI = 4.

T&

(X 1

o3

--K )

Fig. 10. E f f e c t o f C02 s t a g n a t i o n c o n d i t i o n on

(8)

Acknowledgement thanks t o Mr. K. FunabS k i o f ISAS, U n i v e r s i t y of The authors are g r a t e f u l t o express t h e i r Tokyo f o r h i s h e l p f u l t e c h n i c a l assistances.

References

N. G. Basov, A. N. Oraevskii, V. A. Scheglov, S o v i e t Phys., Tech. Phys.,

15,

126 (1970). J. P. E. Taran, M. Charpenel, R. Borghi, AIAA Paper, No. 73-622 (1973).

V.

N. Croshko, R. I. Soloukhin, N. A. Fomin, Combustion, Explosion, and Shock Waves,

10,

410

(1 974).

V. N. Croshko, N. A. Fomin, R. I. Soloukhin, Acta Astronautics,

2,

929 ( 1 975).

W. Schall, P, Hoffmann, H,

el,

J. Appl, Phys., 48, 688 (1977).

-

P. E. Cassady, J. Newton, P. Rose, AIAA J.

16,

305 (1976).

A. V. K r a u k l i s , V. N. Croshko, R. I. Soloukhin, N. A. Fomin, Combustion, Explosion, and Shock Waves,

12,

709 (1977).

R. B a i l l y , M. Pealat, J. P. E. Taran, Revue de Physique Appliquee,

12,

1705 (1977).

R. I. Soloukhin, i n Shock Tube and Shock Wave Research, Proc. 1 1 t h I n t e r n . Symposium on Shock

Tubes and Waves ( U n i v e r s i t y o f Washington Press, S e a t t l e , 1978) p.629.

lop. E. Cassady, A. L, Pindroh, J. F. Newton, A I M J.,

11,

845 (1979).

llp. E. Cassady, i n Gas-Flow and Chemical Lasers, Proc. 2nd I n t e r n . Symposium on Gas-Flow and Chemical Lasers (Hemisphere Publ i shi ng Corpora- t i o n , ~ e l j i u m , 1979) p.95.

"11. Oguchi, K. Funabiki, S. Sato, i n Modern Development i n Shock Tube Research, Proc. 1 0 t h I n t e r n . Shock Tube Symposium (Kyoto Univ., Kyoto, 1975) p.387.

1 3 ~ . Oguchi, K. Funabiki, S. Sato, ISAS Research Note, ISAS RN 20, U n i v e r s i t y o f Tokyo (1976). 1 4 ~ . A. Russell, S. E. Neice, P. H.' Rose, AIAA J.

13, 593 (1975).

-

Références

Documents relatifs

We propose in section IV a self- mixing double LD velocimeter and we prove its performance in terms of accuracy and insensitivity to angle variations..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This is confirmed by the fact that the error increases with increasing J (see Table IV). When the detailed balance symmetrization procedure is applied then the fulfillment of the

The calculated (from AES depth profile) and measured (by XTEM) number of atoms can be equaled for a given layer providing the ion current density.. Using this value, we have the

Consequently, ions with different mobilities form different actual starting voltages and finally the laser irradiâtes different optical output energy.. By changing the N2

The distribution of the small-signal gain for the B-2 injector a s a function of the He gas flow rate can be explained by assuming that the electric input energy was

Abstract.- N2/C02 mixing lasers with thermal excitation of the N2 in arc-heaters and with screen noz- zles for the expansion and mixing process are investigated.. Results

Geleitet von der Erklärung des Begriffs Phonetik im Duden-Wörterbuch ist unter dem Terminus Phonetik Folgendes zu verstehen: „Die Wissenschaft von den