• Aucun résultat trouvé

Central and non-central limit theorems for weighted power variations of fractional Brownian motion

N/A
N/A
Protected

Academic year: 2021

Partager "Central and non-central limit theorems for weighted power variations of fractional Brownian motion"

Copied!
30
0
0
En savoir plus ( Page)

Texte intégral

(1)

arXiv:0710.5639v3 [math.PR] 22 Aug 2009

fra tional Brownian motion IvanNourdin

,David Nualart

†‡

and Ciprian A.Tudor

§

Abstra t: In this paper, we prove some entral and non- entral limit theorems for renormalized weighted power variations of order

q ≥ 2

of the fra tional Brownian motion with Hurst parameter

H ∈ (0, 1)

, where

q

is an integer. The entral limit holds for

1

2q

< H ≤ 1 −

2q

1

, the limit being a onditionally Gaussian distribution. If

H <

1

2q

weshowthe onvergen e in

L

2

to alimit whi h only depends on the fra tional Brownian motion, and if

H > 1 −

1

2q

we show the onvergen e in

L

2

to a sto hasti integralwithrespe ttotheHermitepro essoforder

q

.

Key words: fra tional Brownian motion, entral limittheorem, non- entral limit theorem, Hermite pro ess.

2000Mathemati sSubje t Classi ation: 60F05,60H05,60G15,60H07. Thisversion: August2009.

1 Introdu tion

The study of single path behaviorof sto hasti pro esses is often basedon thestudy of their powervariations,andthereexistsaveryextensiveliteratureonthesubje t. Re allthat,areal

q > 0

beinggiven,the

q

-powervariationofasto hasti pro ess

X

,withrespe ttoasubdivision

π

n

= {0 = t

n,0

< t

n,1

< . . . < t

n,κ(n)

= 1}

of

[0, 1]

,isdened to bethesum

κ(n)

X

k=1

|X

t

n,k

− X

t

n,k−1

|

q

.

For simpli ity, onsider from now on the ase where

t

n,k

= k2

−n

for

n ∈ {1, 2, 3, . . .}

and

k ∈ {0, . . . , 2

n

}

. In thepresent paperwe wish to point out some interesting phenomena when

X = B

is a fra tional Brownian motion of Hurst index

H ∈ (0, 1)

, and when

q ≥ 2

is an

integer. In fa t, we will also drop the absolute value (when

q

is odd) and we will introdu e

LaboratoiredeProbabilitésetModèlesAléatoires, UniversitéPierre etMarieCurie,Boîte ourrier188, 4 Pla eJussieu,75252 ParisCedex5,Fran e,ivan.nourdinupm .fr

Department of Mathemati s,University of Kansas, 405 Snow Hall, Lawren e, Kansas 66045-2142, USA, nualartmath.ku.edu

TheworkofD.NualartissupportedbytheNSFGrantDMS-0604207

§

(2)

2

n

X

k=1

f (B

(k−1)2

−n

)(∆B

k2

−n

)

q

,

q ∈ {2, 3, 4, . . .},

(1.1)

where the fun tion

f : R → R

is assumed to be smooth enough and where

∆B

k2

−n

denotes, hereandinall the paper,thein rement

B

k2

−n

− B

(k−1)2

−n

.

The analysis of the asymptoti behavior of quantities of type (1.1 ) is motivated, for instan e, by the study of the exa t rates of onvergen e of some approximation s hemes of s alar sto hasti dierential equations driven by

B

(see [7℄, [12 ℄ and [13 ℄) besides, of ourse, thetraditional appli ationsof quadrati variations to parameter estimation problems.

Now,letusre allsomeknownresults on erning

q

-powervariations(for

q = 2, 3, 4, . . .

), whi h aretodaymoreor less lassi al. First,assumethat theHurst indexis

H =

1

2

,thatis

B

isastandardBrownianmotion. Let

µ

q

denotethe

q

thmomentofastandardGaussianrandom variable

G ∼ N (0, 1)

. By the s aling property of the Brownian motionand using the entral limittheorem, itis immediatethat, as

n → ∞

:

2

−n/2

2

n

X

k=1

h

(2

n/2

∆B

k2

−n

)

q

− µ

q

i

Law

−→ N (0, µ

2q

− µ

2

q

).

(1.2)

Whenweightsareintrodu ed,aninterestingphenomenonappears: insteadofGaussianrandom variables, we rather obtain mixing random variables aslimit in (1.2 ). Indeed, when

q

iseven

and

f : R → R

is ontinuous andhaspolynomialgrowth, itisa veryparti ular ase ofa more

general resultbyJa od [10℄ (seealso Se tion 2inNourdin andPe ati[16 ℄ forrelatedresults) thatwe have, as

n → ∞

:

2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)

h

(2

n/2

∆B

k2

−n

)

q

− µ

q

i

Law

−→

q

µ

2q

− µ

2

q

Z

1

0

f (B

s

)dW

s

.

(1.3)

Here,

W

denotes another standard Brownian motion, independent of

B

. When

q

is odd, still

for

f : R → R

ontinuous withpolynomial growth,we have,this time,as

n → ∞

:

2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)(2

n/2

∆B

k2

−n

)

q Law

−→

Z

1

0

f (B

s

)

q

µ

2q

− µ

2

q+1

dW

s

+ µ

q+1

dB

s



,

(1.4)

seefor instan e[16 ℄.

Se ondly,assumethat

H 6=

1

2

,thatisthe asewherethefra tional Brownianmotion

B

hasnot independent in rementsanymore. Then(1.2 ) hasbeenextendedbyBreuerand Major [1℄,Dobrushin and Major [5℄,Giraitis and Surgailis [6℄ or Taqqu [21 ℄. Pre isely,ve ases are onsidered, a ordingto the evenness of

q

and thevalue of

H

:

(3)

if

q

iseven and if

H =

3

4

,as

n → ∞

,

1

n

2

−n/2

2

n

X

k=1



(2

3

4

n

∆B

k2

−n

)

q

− µ

q



−→ N (0, e

Law

σ

2

3

4

,q

).

(1.6)

if

q

iseven and if

H ∈ (

3

4

, 1)

, as

n → ∞

,

2

n−2nH

2

n

X

k=1



(2

nH

∆B

k2

−n

)

q

− µ

q



Law

−→

Hermiter.v.. (1.7)

if

q

isoddand if

H ∈ (0,

1

2

]

,as

n → ∞

,

2

−n/2

2

n

X

k=1

(2

nH

∆B

k2

−n

)

q Law

−→ N (0, e

σ

2

H,q

).

(1.8)

if

q

isoddand if

H ∈ (

1

2

, 1)

, as

n → ∞

,

2

−nH

2

n

X

k=1

(2

nH

∆B

k2

−n

)

q Law

−→ N (0, e

σ

2

H,q

).

(1.9)

Here,

e

σ

H,q

> 0

denotesome onstant depending only on

H

and

q

. The term Hermite r.v. denotes a randomvariablewhose distributionisthesame asthatof

Z

(2)

at timeone,for

Z

(2)

dened inDenition 7 below.

Now, let us pro eed with the results on erning the weighted power variations in the asewhere

H 6=

1

2

. Consider the following ondition on a fun tion

f : R → R

,where

q ≥ 2

is aninteger:

(H

q

) f

belongs to

C

2q

and, for any

p ∈ (0, ∞)

and

0 ≤ i ≤ 2q

:

sup

t∈[0,1]

E



|f

(i)

(B

t

)|

p

< ∞

.

Suppose that

f

satises

(H

q

)

. If

q

is even and

H ∈ (

1

2

,

3

4

)

, then by Theorem 2 in León and Ludeña [11℄ (see also Cor uera et al [4℄ for related results on theasymptoti behavior of the

p

-variationof sto hasti integrals withrespe t to

B

)wehave,as

n → ∞

:

2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

q

− µ

q



Law

−→ e

σ

H,q

Z

1

0

f (B

s

)dW

s

,

(1.10)

(4)

thisdire tionhasbeenobservedbyGradinaruetal [9℄. Namely,if

q ≥ 3

isoddand

H ∈ (0,

1

2

)

, wehave,as

n → ∞

:

2

nH−n

2

n

X

k=1

f (B

(k−1)2

−n

)(2

nH

∆B

k2

−n

)

q

L

2

−→ −

µ

q+1

2

Z

1

0

f

(B

s

)ds.

(1.11)

Also,when

q = 2

and

H ∈ (0,

1

4

)

,Nourdin [14 ℄ proved thatwe have, as

n → ∞

:

2

2Hn−n

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

2

− 1



L

2

−→

1

4

Z

1

0

f

′′

(B

s

)ds.

(1.12)

In view of (1.3 ), (1.4 ), (1.10 ), (1.11 ) and (1.12 ), we observe that the asymptoti be-haviors of the power variations of fra tional Brownian motion (1.1 ) an be really dierent, depending onthe valuesof

q

and

H

. The aimof thepresent paperisto investigate what hap-pensinthewholegeneralitywithrespe tto

q

and

H

. Ourmain toolistheMalliavin al ulus thatappeared, inseveralre ent papers, to be very useful inthestudy of thepower variations for sto hasti pro esses. As we will see, the Hermite polynomials play a ru ial role in this analysis. In the sequel, for an integer

q ≥ 2

, we write

H

q

for the Hermite polynomial with degree

q

dened by

H

q

(x) =

(−1)

q

q!

e

x2

2

d

q

dx

q



e

x2

2



,

andwe onsider,when

f : R → R

isadeterministi fun tion,thesequen eofweighted Hermite variationof order

q

dened by

V

n

(q)

(f ) :=

2

n

X

k=1

f B

(k−1)2

−n



H

q

2

nH

∆B

k2

−n



.

(1.13)

Thefollowing isthe main resultofthis paper.

Theorem 1 Fix an integer

q ≥ 2

, andsuppose that

f

satises

(H

q

)

. 1. Assume that

0 < H <

1

2q

. Then, as

n → ∞

, it holds

2

nqH−n

V

n

(q)

(f )

−→

L

2

(−1)

q

2

q

q!

Z

1

0

f

(q)

(B

s

)ds.

(1.14) 2. Assume that

1

2q

< H < 1 −

2q

1

. Then, as

n → ∞

, it holds

B, 2

−n/2

V

n

(q)

(f )



−→ B, σ

Law

H,q

Z

1

0

f (B

s

)dW

s



,

(1.15)

where

W

isa standard Brownianmotion independent of

B

and

(5)

3. Assume that

H = 1 −

1

2q

. Then, as

n → ∞

, it holds

B,

1

n

2

−n/2

V

(q)

n

(f )



Law

−→ B, σ

1−1/(2q),q

Z

1

0

f (B

s

)dW

s



,

(1.17)

where

W

isa standard Brownianmotion independent of

B

and

σ

1−1/(2q),q

=

2 log 2

q!

1 −

1

2q



q

1 −

1

q



q

.

(1.18) 4. Assume that

H > 1 −

1

2q

. Then, as

n → ∞

, it holds

2

nq(1−H)−n

V

n

(q)

(f )

−→

L

2

Z

1

0

f (B

s

)dZ

s

(q)

,

(1.19) where

Z

(q)

denotes the Hermite pro ess of order

q

introdu ed in Denition7 below. Remark 1. When

q = 1

, we have

V

(1)

n

(f ) = 2

−nH

P

2

n

k=1

f B

(k−1)2

−n



∆B

k2

−n

. For

H =

1

2

,

2

nH

V

(1)

n

(f )

onverges in

L

2

to the It sto hasti integral

R

1

0

f (B

s

)dB

s

. For

H >

1

2

,

2

nH

V

n

(1)

(f )

onverges in

L

2

andalmost surelyto theYoung integral

R

1

0

f (B

s

)dB

s

. For

H <

1

2

,

2

3nH−n

V

n

(1)

(f )

onverges in

L

2

to

1

2

R

1

0

f

(B

s

)ds

. Remark 2. In the riti al ase

H =

1

2q

(

q ≥ 2

), we onje ture the following asymptoti

behavior: as

n → ∞

,

B, 2

−n/2

V

n

(q)

(f )



−→ B, σ

Law

1/(2q),q

Z

1

0

f (B

s

)dW

s

+

(−1)

q

2

q

q!

Z

1

0

f

(q)

(B

s

)ds



,

(1.20)

for

W

a standard Brownian motion independent of

B

and

σ

1/(2q),q

the onstant dened by (1.16 ). A tually,(1.20 )for

q = 2

and

H =

1

4

hasbeen proved in[2, 15 ,17℄ afterthat therst draftofthe urrentpaperhavebeensubmitted. Thereaderisalsoreferredto [16 ℄for thestudy ofthe weighted variationsasso iated withiterated Brownian motion, whi h is anon-Gaussian self-similarpro ess of order

1

4

. When

H

is between

1

4

and

3

4

,one an renepoint 2 ofTheorem 1asfollows:

Proposition 2 Let

q ≥ 2

be an integer,

f : R → R

be a fun tion su h that

(H

q

)

holds and assumethat

H ∈ (

1

4

,

3

4

)

. Then



B, 2

−n/2

V

n

(2)

(f ), . . . , 2

−n/2

V

n

(q)

(f )



(1.21)

Law

−→



B, σ

H,2

Z

1

0

f (B

s

)dW

s

(2)

, . . . , σ

H,q

Z

1

0

f (B

s

)dW

s

(q)



,

where

(W

(2)

, . . . , W

(q)

)

is a

(q − 1)

-dimensional standard Brownian motion independent of

B

(6)

understandingof the asymptoti behaviorofweightedpower variations offra tional Brownian motion:

Corollary 3 Let

q ≥ 2

be aninteger,and

f : R → R

beafun tionsu hthat

(H

q

)

holds. Then,

as

n → ∞

: 1. When

H >

1

2

and

q

isodd,

2

−nH

2

n

X

k=1

f (B

(k−1)2

−n

)(2

nH

∆B

k2

−n

)

q L

2

−→ qµ

q−1

Z

1

0

f (B

s

)dB

s

= qµ

q−1

Z

B

1

0

f (x)dx.

(1.22) 2. When

H <

1

4

and

q

iseven,

2

2nH−n

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

q

− µ

q



L

2

−→

1

4



q

2



µ

q−2

Z

1

0

f

′′

(B

s

)ds.

(1.23)

(We re over (1.12) by hoosing

q = 2

). 3. When

H =

1

4

and

q

iseven,

B, 2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

n/4

∆B

k2

−n

)

q

− µ

q



!

Law

−→



B,

1

4



q

2



µ

q−2

Z

1

0

f

′′

(B

s

)ds

+e

σ

1/4,q

Z

1

0

f (B

s

)dW

s



,

(1.24)

where

W

isastandardBrownianmotionindependentof

B

and

e

σ

1/4,q

isthe onstantgiven by (1.26) justbelow. 4. When

1

4

< H <

3

4

and

q

iseven,

B, 2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

q

− µ

q



!

Law

−→



B, e

σ

H,q

Z

1

0

f (B

s

)dW

s



,

(1.25) for

W

a standard Brownian motionindependentof

B

and

(7)

5. When

H =

3

4

and

q

iseven,

B,

1

n

2

−n/2

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

q

− µ

q



!

Law

−→



B, e

σ

3

4

,q

Z

1

0

f (B

s

)dW

s



,

(1.27) for

W

a standard Brownian motionindependentof

B

and

e

σ

3

4

,q

=

v

u

u

t

q

X

p=2

2 log 2 p!



q

p



2

µ

2

q−p

1 −

1

2q



q

1 −

1

q



q

.

6. When

H >

3

4

and

q

iseven,

2

n−2Hn

2

n

X

k=1

f (B

(k−1)2

−n

)



(2

nH

∆B

k2

−n

)

q

− µ

q



L

2

−→ 2µ

q−2



q

2

 Z

1

0

f (B

s

)dZ

s

(2)

,

(1.28) for

Z

(2)

the Hermite pro ess introdu ed in Denition 7.

Finally, we an also give a new proof of the following result, stated and proved by Gradinaruet al. [8℄and Cheriditoand Nualart[3℄in a ontinuous setting:

Theorem 4 Assume that

H >

1

6

, and that

f : R → R

veries (

H

6

). Then the limit in

probability, as

n → ∞

, of the symmetri Riemannsums

1

2

2

n

X

k=1

f

(B

k2

−n

) + f

(B

(k−1)2

−n

)



∆B

k2

−n

(1.29)

existsand isgiven by

f (B

1

) − f(0)

. Remark 3 When

H ≤

1

6

, quantity (1.29) does not onverge in probability in general. As a ounterexample, one an onsider the ase where

f (x) = x

3

, see Gradinaru et al. [8 ℄ or CheriditoandNualart [3 ℄.

2 Preliminaries and notation

Webrieyre allsomebasi fa tsaboutsto hasti al uluswithrespe ttoafra tionalBrownian motion. One refers to [19 ℄ for further details. Let

B = (B

t

)

t∈[0,1]

be a fra tional Brownian motionwithHurst parameter

H ∈ (0, 1)

. That is,

B

is azero meanGaussian pro ess,dened ona ompleteprobabilityspa e

(Ω, A, P )

,withthe ovarian e fun tion

R

H

(t, s) = E(B

t

B

s

) =

1

2

s

2H

+ t

2H

(8)

We suppose that

A

is the sigma-eld generated by

B

. Let

E

be the set of step fun tions on

[0, T ]

,and

H

bethe Hilbertspa edened asthe losureof

E

withrespe tto theinner produ t

h1

[0,t]

, 1

[0,s]

i

H

= R

H

(t, s).

The mapping

1

[0,t]

7→ B

t

an be extendedto an isometry between

H

and theGaussian spa e

H

1

asso iatedwith

B

. Wewill denote thisisometry by

ϕ 7→ B(ϕ)

.

Let

S

be the setof allsmooth ylindri al randomvariables,i.e. ofthe form

F = φ(B

t

1

, . . . , B

t

m

)

where

m ≥ 1

,

φ : R

m

→ R ∈ C

b

and

0 ≤ t

1

< . . . < t

m

≤ 1

. Thederivative of

F

withrespe t

to

B

istheelement of

L

2

(Ω, H)

dened by

D

s

F =

m

X

i=1

∂φ

∂x

i

(B

t

1

, . . . , B

t

m

)1

[0,t

i

]

(s),

s ∈ [0, 1].

Inparti ular

D

s

B

t

= 1

[0,t]

(s)

. For any integer

k ≥ 1

, we denoteby

D

k,2

the losure of theset ofsmooth randomvariables withrespe tto thenorm

kF k

2

k,2

= E(F

2

) +

k

X

j=1

E



kD

j

F k

2

H

⊗j



.

TheMalliavin derivative

D

satisesthe hain rule. If

ϕ : R

n

→ R

is

C

1

b

and if

(F

i

)

i=1,...,n

isa sequen eofelements of

D

1,2

,then

ϕ(F

1

, . . . , F

n

) ∈ D

1,2

and we have

D ϕ(F

1

, . . . , F

n

) =

n

X

i=1

∂ϕ

∂x

i

(F

1

, . . . , F

n

)DF

i

.

Wealsohavethefollowingformula,whi h aneasilybeprovedbyindu tionon

q

. Let

ϕ, ψ ∈ C

q

b

(

q ≥ 1

),and x

0 ≤ u < v ≤ 1

and

0 ≤ s < t ≤ 1

. Then

ϕ(B

t

− B

s

)ψ(B

v

− B

u

) ∈ D

q,2

and

D

q

ϕ(B

t

− B

s

)ψ(B

v

− B

u

)



=

q

X

a=0



q

a



ϕ

(a)

(B

t

− B

s

(q−a)

(B

v

− B

u

)1

⊗a

[s,t]

⊗1

e

⊗(q−a)

[u,v]

,

(2.30)

where

e

meansthe symmetri tensor produ t.

The divergen e operator

I

is the adjoint of the derivative operator

D

. If a random variable

u ∈ L

2

(Ω, H)

belongs to thedomain of thedivergen e operator,that is, ifitsatises

|EhDF, ui

H

| ≤ c

u

p

E(F

2

)

for any

F ∈ S ,

then

I(u)

isdened bythe duality relationship

E F I(u)



= E hDF, ui

H

(9)

forevery

F ∈ D

1,2

.

For every

n ≥ 1

, let

H

n

be the

n

th Wiener haos of

B,

that is, the losed linear subspa e of

L

2

(Ω, A, P )

generated by the random variables

{H

n

(B (h)) , h ∈ H, khk

H

= 1}

, where

H

n

is the

n

th Hermite polynomial. The mapping

I

n

(h

⊗n

) = n!H

n

(B (h))

provides a linearisometrybetween thesymmetri tensor produ t

H

⊙n

(equipped withthemodiednorm

k · k

H

⊙n

=

1

n!

k · k

H

⊗n

) and

H

n

. For

H =

1

2

,

I

n

oin ideswiththemultipleWiener-Itintegral oforder

n

. Thefollowing dualityformulaholds

E (F I

n

(h)) = E hD

n

F, hi

H

⊗n



,

(2.31)

foranyelement

h ∈ H

⊙n

and any randomvariable

F ∈ D

n,2

.

Let

{e

k

, k ≥ 1}

bea ompleteorthonormal systemin

H

. Given

f ∈ H

⊙n

and

g ∈ H

⊙m

,

forevery

r = 0, . . . , n ∧ m

,the ontra tion of

f

and

g

oforder

r

is theelement of

H

⊗(n+m−2r)

dened by

f ⊗

r

g =

X

k

1

,...,k

r

=1

hf, e

k

1

⊗ . . . ⊗ e

k

r

i

H

⊗r

⊗ hg, e

k

1

⊗ . . . ⊗ e

k

r

i

H

⊗r

.

Noti e that

f ⊗

r

g

is not ne essarily symmetri : we denote its symmetrization by

f e

r

g ∈

H

⊙(n+m−2r)

. We have the following produ tformula: if

f ∈ H

⊙n

and

g ∈ H

⊙m

then

I

n

(f )I

m

(g) =

n∧m

X

r=0

r!



n

r



m

r



I

n+m−2r

(f e

r

g).

(2.32)

Were all the following simpleformulafor any

s < t

and

u < v

:

E ((B

t

− B

s

)(B

v

− B

u

)) =

1

2

|t − v|

2H

+ |s − u|

2H

− |t − u|

2H

− |s − v|

2H



.

(2.33)

Wewill also need the following lemmas:

Lemma 5 1. Let

s < t

belong to

[0, 1]

. Then,if

H < 1/2

, one has

E B

u

(B

t

− B

s

)



≤ (t − s)

2H

(2.34) for all

u ∈ [0, 1]

. 2. For all

H ∈ (0, 1)

,

2

n

X

k,l=1

E B

(k−1)2

−n

∆B

l2

−n

 = O(2

n

).

(2.35)

3. For any

r ≥ 1

,we have, if

H < 1 −

(10)

4. For any

r ≥ 1

,we have, if

H = 1 −

1

2r

,

2

n

X

k,l=1

|E (∆B

k2

−n

∆B

l2

−n

)|

r

= O(n2

2n−2rn

).

(2.37)

Proof: Toprove inequality (2.34),we justwrite

E(B

u

(B

t

− B

s

)) =

1

2

(t

2H

− s

2H

) +

1

2

|s − u|

2H

− |t − u|

2H



,

andobservethatwe have

|b

2H

− a

2H

| ≤ |b − a|

2H

for any

a, b ∈ [0, 1]

,be ause

H <

1

2

. Toshow (2.35 )using(2.33 ), we write

2

n

X

k,l=1

E B

(k−1)2

−n

∆B

l2

−n

 = 2

−2Hn−1

2

n

X

k,l=1

|l − 1|

2H

− l

2H

− |l − k + 1|

2H

+ |l − k|

2H

≤ C2

n

,

thelast bound oming from a teles oping sum argument. Finally, to show (2.36 ) and (2.37), wewrite

2

n

X

k,l=1

|E (∆B

k2

−n

∆B

l2

−n

)|

r

= 2

−2nrH−r

2

n

X

k,l=1

|k − l + 1|

2H

+ |k − l − 1|

2H

− 2|k − l|

2H

r

≤ 2

n−2nrH−r

X

p=−∞

|p + 1|

2H

+ |p − 1|

2H

− 2|p|

2H

r

,

and observe that, sin e the fun tion

|p + 1|

2H

+ |p − 1|

2H

− 2|p|

2H

behavesas

C

H

p

2H−2

for large

p

,theseries intheright-handside is onvergent be ause

H < 1 −

1

2r

. Inthe riti al ase

H = 1 −

2r

1

,this series isdivergent,and

2

n

X

p=−2

n

|p + 1|

2H

+ |p − 1|

2H

− 2|p|

2H

r

behavesasa onstant time

n

. Lemma 6 Assume that

H >

1

2

.

1. Let

s < t

belong to

[0, 1]

. Then

E B

u

(B

t

− B

s

)

 ≤ 2H(t − s)

(2.38)

(11)

2. Assume that

H > 1 −

1

2l

for some

l ≥ 1

. Let

u < v

and

s < t

belong to

[0, 1]

. Then

|E(B

u

− B

v

)(B

t

− B

s

)| ≤ H(2H − 1)



2

2Hl + 1 − 2l



1

l

(u − v)

l−1

l

(t − s).

(2.39) 3. Assume that

H > 1 −

1

2l

for some

l ≥ 1

. Then

2

n

X

i,j=1

E ∆B

i2

−n

∆B

j2

−n



l

= O(2

2n−2ln

).

(2.40) Proof: We have

E B

u

(B

t

− B

s

)



=

1

2

t

2H

− s

2H



+

1

2

|s − u|

2H

− |t − u|

2H



.

But,when

0 ≤ a < b ≤ 1

:

b

2H

− a

2H

= 2H

Z

b−a

0

(u + a)

2H−1

du ≤ 2H b

2H−1

(b − a) ≤ 2H(b − a).

Thus,

|b

2H

− a

2H

| ≤ 2H|b − a|

and therstpoint follows.

Con erningthe se ond point, using Hölderinequality,we an write

|E(B

u

− B

v

)(B

t

− B

s

)| = H(2H − 1)

Z

v

u

Z

t

s

|y − x|

2H−2

dydx

≤ H(2H − 1)|u − v|

l−1

l

Z

1

0

Z

t

s

|y − x|

2H−2

dy



l

dx

!

1

l

≤ H(2H − 1)|u − v|

l−1

l

|t − s|

l−1

l

Z

1

0

Z

t

s

|y − x|

(2H−2)l

dydx



1

l

.

Denoteby

H

= 1 + (H − 1)l

andobserve that

H

>

1

2

(be ause

H > 1 −

1

2l

). Sin e

2H

− 2 =

(2H − 2)l

,we anwrite

H

(2H

− 1)

Z

1

0

Z

t

s

|y − x|

(2H−2)l

dydx = E

B

H

1

(B

H

t

− B

H

s

)

≤ 2H

|t − s|

bytherst point of thislemma. Thisgivesthedesired bound. Weprove nowthethird point. We have

(12)

andthefun tion

|k +1|

2H

+ |k −1|

2H

−2|k|

2H

behavesas

|k|

2H−2

forlarge

k

. Asa onsequen e, sin e

H > 1 −

1

2l

,thesum

2

n

−1

X

k=−2

n

+1

|k + 1|

2H

+ |k − 1|

2H

− 2|k|

2H

l

behavesas

2

(2H−2)ln+n

andthethird pointfollows.

Now, let us introdu e the Hermite pro ess of order

q ≥ 2

appearing in (1.19 ). Fix

H > 1/2

and

t ∈ [0, 1]

. The sequen e

ϕ

n

(t)



n≥1

,dened as

ϕ

n

(t) = 2

nq−n

1

q!

[2

n

t]

X

j=1

1

⊗q

[(j−1)2

−n

,j2

−n

]

,

isaCau hy sequen einthe spa e

H

⊗q

. Indeed,sin e

H > 1/2

,wehave

h1

[a,b]

, 1

[u,v]

i

H

= E (B

b

− B

a

)(B

v

− B

u

)



= H(2H − 1)

Z

b

a

Z

v

u

|s − s

|

2H−2

dsds

,

sothat,for any

m ≥ n

(13)

Denition 7 Fix

q ≥ 2

and

H > 1/2

. The Hermite pro ess

Z

(q)

= (Z

(q)

t

)

t∈[0,1]

of order

q

is dened by

Z

(q)

t

= I

q

(q)

t

)

for

t ∈ [0, 1]

. Let

Z

(q)

n

be thepro ess dened by

Z

(q)

n

(t) = I

q

n

(t))

for

t ∈ [0, 1]

. By onstru tion,it is lear that

Z

(q)

n

(t)

L

2

−→ Z

(q)

(t)

as

n → ∞

,forallxed

t ∈ [0, 1]

. Ontheotherhand,itfollows,

from Taqqu [21 ℄ and Dobrushin and Major [5℄, that

Z

(q)

n

onverges in law to the standard and histori al

q

th Hermite pro ess, dened through its moving average representation as a multiple integral with respe t to a Wiener pro ess with time horizon

R

. In parti ular, the pro essintrodu edinDenition7hasthesamenitedimensionaldistributionsasthehistori al Hermitepro ess.

Letusnallymentionthatit anbeeasilyseenthat

Z

(q)

is

q(H −1)+1

self-similar,has

stationary in rements and admits moments of all orders. Moreover, it has Hölder ontinuous pathsoforder stri tly lessthan

q(H − 1) + 1

. For further results,werefer to Tudor [22 ℄.

3 Proof of the main results

Inthisse tionwewill providethe proofsofthemain results. Fornotational onvenien e,from now on, we write

ε

(k−1)2

−n

(resp.

δ

k2

−n

) insteadof

1

[0,(k−1)2

−n

]

(resp.

1

[(k−1)2

−n

,k2

−n

]

). The following proposition provides information on the asymptoti behaviorof

E



V

n

(q)

(f )

2



,as

n

tendsto innity, for

H ≤ 1 −

1

2q

.

Proposition 8 Fix an integer

q ≥ 2

. Suppose that

f

satises (

H

q

). Then,if

H ≤

1

2q

, then

E



V

n

(q)

(f )

2



= O(2

n(−2Hq+2)

).

(3.41) If

1

2q

≤ H < 1 −

2q

1

, then

E



V

n

(q)

(f )

2



= O(2

n

).

(3.42) Finally,if

H = 1 −

1

2q

, then

E



V

n

(q)

(f )

2



= O(n2

n

).

(3.43)

Proof. Using the relation between Hermite polynomials and multiple sto hasti integrals, we have

H

q

2

nH

∆B

k2

−n



=

q!

1

2

qnH

I

q



δ

k2

⊗q

−n



. Inthis waywe obtain

(14)

tionship(2.31 )between themultiplesto hasti integral

I

N

andtheiteratedderivativeoperator

D

N

,obtaining

E



V

n

(q)

(f )

2



=

2

2Hqn

q!

2

2

n

X

k,l=1

q

X

r=0

r!



q

r



2

×E

n

f (B

(k−1)2

−n

) f (B

(l−1)2

−n

) I

2q−2r



δ

⊗q−r

k2

−n

⊗δ

e

l2

⊗q−r

−n

o

k2

−n

, δ

l2

−n

i

r

H

= 2

2Hqn

2

n

X

k,l=1

q

X

r=0

1

r!(q − r)!

2

×E

nD

D

2q−2r

f (B

(k−1)2

−n

) f (B

(l−1)2

−n

)



, δ

k2

⊗q−r

−n

⊗δ

e

⊗q−r

l2

−n

E

H

⊗(2q−2r)

o

k2

−n

, δ

l2

−n

i

r

H

,

where

e

denotes the symmetrization of the tensor produ t. By (2.30 ), the derivative of the produ t

D

2q−2r

f (B

(k−1)2

−n

) f (B

(l−1)2

−n

)



isequal to a sumof derivatives:

D

2q−2r

f (B

(k−1)2

−n

) f (B

(l−1)2

−n

)



=

X

a+b=2q−2r

f

(a)

(B

(k−1)2

−n

) f

(b)

(B

(l−1)2

−n

)

×

(2q − 2r)!

a!b!



ε

⊗a

(k−1)2

−n

⊗ε

e

⊗b

(l−1)2

−n



.

Wemake thede omposition

(15)

D

n

= 2

2Hqn

q

X

r=1

X

a+b=2q−2r

2

n

X

k,l=1

E

n

f

(a)

(B

(k−1)2

−n

) f

(b)

(B

(l−1)2

−n

)

o

(2q − 2r)!

r!(q − r)!

2

a!b!

×hε

⊗a

(k−1)2

−n

⊗ε

e

⊗b

(l−1)2

−n

, δ

k2

⊗q−r

−n

⊗δ

e

⊗q−r

l2

−n

i

H

⊗(2q−2r)

k2

−n

, δ

l2

−n

i

r

H

,

for some ombinatorial onstants

α(c, d, e, f )

. That is,

A

n

and

B

n

ontain all thetermswith

r = 0

and

(a, b) = (q, q)

;

C

n

ontains thetermswith

r = 0

and

(a, b) 6= (q, q)

;and

D

n

ontains

theremaining terms.

For anyinteger

r ≥ 1

,we set

α

n

=

sup

k,l=1,...,2

n

(k−1)2

−n

, δ

l2

−n

i

H

,

(3.45)

β

r,n

=

2

n

X

k,l=1

k2

−n

, δ

l2

−n

i

H

r

,

(3.46)

γ

n

=

2

n

X

k,l=1

(k−1)2

−n

, δ

l2

−n

i

H

.

(3.47)

Then, underassumption (

H

q

), wehave the following estimates:

|A

n

| ≤ C2

2Hqn+2n

n

)

2q

,

|B

n

| + |C

n

| ≤ C2

2Hqn

n

)

2q−1

γ

n

,

|D

n

| ≤ C2

2Hqn

q

X

r=1

n

)

2q−2r

β

r,n

,

where

C

isa onstantdependingonlyon

q

andthefun tion

f

. Noti ethatthese ondinequality follows from the fa tthat when

(a, b) 6= (q, q)

, or

(a, b) = (q, q)

and

c + d + e + f = 2q

with

d ≥ 1

or

e ≥ 1

,there will be at least a fa tor of theform

(k−1)2

−n

, δ

l2

−n

i

H

intheexpression of

B

n

or

C

n

.

Inthe ase

H <

1

2

,wehaveby(2.34 )that

α

n

≤ 2

−2nH

,by(2.36 )that

β

r,n

≤ C2

n−2rHn

, andby(2.35 )that

γ

n

≤ C2

n

. Asa onsequen e,we obtain

|A

n

| ≤ C2

n(−2Hq+2)

,

(3.48)

|B

n

| + |C

n

| ≤ C2

n(−2Hq+2H+1)

,

(3.49)

|D

n

| ≤ C

q

X

r=1

2

n(−2(q−r)H+1)

,

(3.50)

(16)

In the ase

1

2

≤ H < 1 −

2q

1

, we have by (2.38 ) that

α

n

≤ C2

−n

, by (2.36 ) that

β

r,n

≤ C2

n−2rHn

,andby(2.35 )that

γ

n

≤ C2

n

. Asa onsequen e,we obtain

|A

n

| + |B

n

| + |C

n

| ≤ C2

n(2q(H−1)+2)

,

|D

n

| ≤ C

q

X

r=1

2

n((2q−2r)(H−1)+1)

,

whi h also implies(3.42). Finally, if

H = 1 −

1

2q

, we have by (2.38 ) that

α

n

≤ C2

−n

, by (2.37 ) that

β

r,n

Cn2

2n−2rn

,and by(2.35 )that

γ

n

≤ C2

n

. Asa onsequen e, we obtain

|A

n

| + |B

n

| + |C

n

| ≤ C2

n

,

|D

n

| ≤ C

q

X

r=1

n2

n

q

r

,

whi h implies(3.43 ).

3.1 Proof of Theorem 1 in the ase

0

< H <

1

2q

Inthis subse tion we aregoing to prove the rst point of Theorem 1. The proof will be done in three steps. Set

V

(q)

1,n

(f ) = 2

n(qH−1)

V

(q)

n

(f )

. We rst study the asymptoti behavior of

E



V

1,n

(q)

(f )

2



,using Proposition8.

Step 1. Thede omposition(3.44 )leads to

E



V

1,n

(q)

(f )

2



= 2

2n(qH−1)

(A

n

+ B

n

+ C

n

+ D

n

) .

From the estimate (3.49 ) we obtain

2

2n(qH−1)

(|B

n

| + |C

n

|) ≤ C2

n(2H−1)

,

whi h onverges to

zeroas

n

goesto innitysin e

H <

1

2q

<

1

2

. Ontheother hand(3.50 )yields

2

2n(qH−1)

|D

n

| ≤ C

q

X

r=1

2

n(2rH−1)

,

(17)

2

4Hqn−2n

q!

2

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

(k−1)2

−n

, δ

k2

−n

i

q

H

(l−1)2

−n

, δ

l2

−n

i

q

H

2

−2n−2q

q!

2

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

≤ C2

2Hn−n

,

whi h implies, as

n → ∞

:

E V

1,n

(q)

(f )

2



=

2

−2n−2q

q!

2

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

+ o(1).

(3.52)

Step 2: Weneed theasymptoti behaviorof thedoubleprodu t

J

n

:= E

V

1,n

(q)

(f ) × 2

−n

2

n

X

l=1

f

(q)

(B

(l−1)2

−n

)

!

.

Usingthesame argumentsasinStep1 we obtain

J

n

= 2

Hqn−2n

2

n

X

k,l=1

E

n

f (B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

) H

q

2

nH

∆B

k2

−n

o

=

1

q!

2

2Hqn−2n

2

n

X

k,l=1

E

n

f (B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

) I

q

δ

⊗q

k2

−n

o

=

1

q!

2

2Hqn−2n

2

n

X

k,l=1

E

nD

D

q

f (B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)



, δ

k2

⊗q

−n

E

H

⊗q

o

= 2

2Hqn−2n

2

n

X

k,l=1

q

X

a=0

1

a!(q − a)!

E

n

f

(a)

(B

(k−1)2

−n

) f

(2q−a)

(B

(l−1)2

−n

)

o

×hε

(k−1)2

−n

, δ

k2

−n

i

H

a

(l−1)2

−n

, δ

k2

−n

i

q−a

H

.

It turns out thatonly the term with

a = q

will ontribute to the limit as

n

tends to innity. For thisreason we make thede omposition

(18)

|S

n

| ≤ C2

2Hn−n

,

whi h tends tozero as

n

goesto innity. Moreover, by(3.51 ), we have

2

2Hqn−2n

q!

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

(k−1)2

−n

, δ

k2

−n

i

q

H

−(−1)

q

2

−2n−q

q!

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

≤ C 2

2Hn−n

,

whi h also tendsto zeroas

n

goesto innity. Thus,nally, as

n → ∞

:

J

n

= (−1)

q

2

−2n−q

q!

2

n

X

k,l=1

E

n

f

(q)

(B

(k−1)2

−n

) f

(q)

(B

(l−1)2

−n

)

o

+ o(1).

(3.53)

Step 3: By ombining (3.52 )and (3.53 ),weobtain that

E

V

(q)

1,n

(f ) −

(−1)

q

2

q

q!

2

−n

2

n

X

k=1

f

(q)

(B

(k−1)2

−n

)

2

= o(1),

as

n → ∞

. Thus, the proof of the rst point of Theorem 1 is done using a Riemann sum

argument.

3.2 Proof of Theorem 1 in the ase

H > 1

1

2q

: the weighted non- entral limit theorem

Weprove here thatthesequen e

V

3,n

(f )

,given by

V

3,n

(q)

(f ) = 2

n(1−H)q−n

V

n

(q)

(f ) = 2

qn−n

1

q!

2

n

X

k=1

f B

(k−1)2

−n



I

q



δ

k2

⊗q

−n



,

onverges in

L

2

as

n → ∞

to the pathwiseintegral

R

1

0

f (B

s

)dZ

(q)

s

withrespe tto theHermite pro ess of order

q

introdu ed inDenition 7.

Observerstthat,by onstru tionof

Z

(q)

(pre isely,seethedis ussionbeforeDenition 7 in Se tion 2), the desired result is in order when the fun tion

f

is identi ally one. More pre isely:

Lemma 9 For ea h xed

t ∈ [0, 1]

, the sequen e

2

qn−n 1

q!

P

[2

n

t]

k=1

I

q



δ

k2

⊗q

−n



onverges in

L

2

to the Hermite random variable

Z

(19)

Now, onsider the ase of a general fun tion

f

. We x two integers

m ≥ n

, and de omposethe sequen e

V

(q)

3,m

(f )

asfollows:

V

3,m

(q)

(f ) = A

(m,n)

+ B

(m,n)

,

where

A

(m,n)

=

1

q!

2

m(q−1)

2

n

X

j=1

f B

(j−1)2

−n



j2

X

m−n

i=(j−1)2

m−n

+1

I

q



δ

i2

⊗q

−m



,

and

B

(m,n)

=

1

q!

2

m(q−1)

2

n

X

j=1

j2

m−n

X

i=(j−1)2

m−n

+1

m,n

i,j

f (B) I

q



δ

i2

⊗q

−m



,

withthenotation

m,n

i,j

f (B) = f (B

(i−1)2

−m

) − f(B

(j−1)2

−n

)

. Weshallstudy

A

(m,n)

and

B

(m,n)

separately. Study of

A

(m,n)

. When

n

isxed, Lemma 9 yields thattherandom ve tor

1

q!

2

m(q−1)

j2

m−n

X

i=(j−1)2

m−n

+1

I

q



δ

i2

⊗q

−m



; j = 1, . . . , 2

n

onverges in

L

2

,as

m → ∞

,tothe ve tor



Z

j2

(q)

−n

− Z

(q)

(j−1)2

−n

; j = 1, . . . , 2

n



.

Then, as

m → ∞

,

A

(m,n) L

→ A

2

(∞,n)

,where

A

(∞,n)

:=

2

n

X

j=1

f (B

(j−1)2

−n

)



Z

j2

(q)

−n

− Z

(q)

(j−1)2

−n



.

Finally, we laim that when

n

tends to innity,

A

(∞,n)

onverges in

L

2

to

R

1

0

f (B

s

) dZ

(q)

s

. Indeed, observe that the sto hasti integral

R

1

0

f (B

s

) dZ

(q)

s

is a pathwise Young integral. So, to getthe onvergen e in

L

2

itsu es to showthat the sequen e

A

(∞,n)

isbounded in

L

p

for

some

p ≥ 2

. The integral

R

1

0

f (B

s

) dZ

(q)

s

hasmomentsof allorders, be ause for all

p ≥ 2

(20)

if

γ < q(H − 1) + 1

and

β < H

. Onthe other hand,Young's inequalityimplies

A

(∞,n)

Z

1

0

f (B

s

) dZ

s

(q)

≤ c

ρ,ν

Var

ρ

f (B)



Var

ν

Z

(q)



,

where

Var

ρ

denotes the variation of order

ρ

,andwith

ρ, ν > 1

su hthat

1

ρ

+

1

ν

> 1

. Choosing

ρ >

H

1

and

ν >

1

q(H−1)+1

,theresultfollows.

This proves that, by letting

m

and then

n

go to innity,

A

(m,n)

onverges in

L

2

to

R

1

0

f (B

s

) dZ

(q)

s

.

Study of the term

B

(m,n)

: We provethat

lim

n→∞

sup

m

E

B

(m,n)

2

= 0.

(3.54)

Wehave, usingthe produ tformula(2.32) for multiplesto hasti integrals,

E

B

(m,n)

2

= 2

2m(q−1)

2

n

X

j=1

j2

m−n

X

i=(j−1)2

m−n

+1

2

n

X

j

=1

j

2

m−n

X

i

=(j

−1)2

m−n

+1

q

X

l=0

l!

q!

2



q

l



2

×b

(m,n)

l

i2

−m

, δ

i

2

−m

i

l

H

,

(3.55) where

b

(m,n)

l

= E



m,n

i,j

f (B)∆

m,n

i

,j

f (B)I

2(q−l)



δ

i2

⊗(q−l)

−m

⊗δ

e

i

⊗(q−l)

2

−m



.

(3.56)

By(2.31) and (2.30 ),we obtain that

b

(m,n)

l

isequal to

E

D

D

2(q−l)



m,n

i,j

f (B)∆

m,n

i

,j

f (B)



, δ

i2

⊗(q−l)

−m

⊗δ

e

i

⊗(q−l)

2

−m

E

H

⊗2(q−l)

=

2q−2l

X

a=0



2q − 2l

a

 D

E



f

(a)

(B

(i−1)2

−m

⊗a

(i−1)2

−m

− f

(a)

(B

(j−1)2

−n

⊗a

(j−1)2

−n



e



f

(2q−2l−a)

(B

(i

−1)2

−m

⊗b

(i

−1)2

−m

− f

(2q−2l−a)

(B

(j

−1)2

−n

⊗b

(j

−1)2

−m



, δ

i2

⊗(q−l)

−m

⊗δ

e

i

⊗(q−l)

2

−m

E

H

⊗2(q−l)

.

Theterm in(3.55 ) orrespondingto

l = q

anbe estimatedby

1

q!

2

2m(q−1)

sup

|x−y|≤2

−n

E |f(B

x

) − f(B

y

)|

2

β

q,m

,

where

β

q,m

hasbeenintrodu edin(3.46 ). Soit onvergestozeroas

n

tendstoinnity,uniformly in

m

,be ause, by(2.40 )and usingthat

H > 1 −

(21)

Inorderto handle thetermswith

0 ≤ l ≤ q − 1

,we makethe de omposition

b

(m,n)

l

2q−2l

X

a=0



2q − 2l

a



X

4

h=1

B

h

,

(3.57) where

B

1

= E

m,n

i,j

f (B)∆

m,n

i

,j

f (B)

D

ε

⊗a

(i−1)2

−m

⊗ε

e

⊗(2q−2l−a)

(i

−1)2

−m

, δ

i2

⊗(q−l)

−m

⊗δ

e

i

⊗(q−l)

2

−m

E

H

⊗2(q−l)

,

B

2

= E

f

(a)

(B

(j−1)2

−n

)∆

m,n

i

,j

f (B)

×

D

ε

⊗a

(i−1)2

−m

− ε

⊗a

(j−1)2

−n



e

⊗ε

⊗(2q−2l−a)

(i

−1)2

−m

, δ

i2

⊗(q−l)

−m

⊗δ

e

⊗(q−l)

i

2

−m

E

H

⊗2(q−l)

,

B

3

= E

m,n

i,j

f (B)f

(2q−2l−a)

(B

(j

−1)2

−n

)

×

D

ε

⊗a

(i−1)2

−m

e



ε

⊗(2q−2l−a)

(i

−1)2

−m

− ε

⊗(2q−2l−a)

(j

−1)2

−n



, δ

⊗(q−l)

i2

−m

⊗δ

e

i

⊗(q−l)

2

−m

E

H

⊗2(q−l)

,

B

4

= E

f

(a)

(B

(j−1)2

−n

)f

(2q−2l−a)

(B

(j

−1)2

−n

)

×

D

ε

⊗a

(i−1)2

−m

− ε

⊗a

(j−1)2

−n



e



ε

⊗(2q−2l−a)

(i

−1)2

−m

− ε

⊗(2q−2l−a)

(j

−1)2

−n



, δ

i2

⊗(q−l)

−m

⊗δ

e

i

⊗(q−l)

2

−m

E

H

⊗2(q−l)

.

(3.58) By using (2.38 ) and the onditions imposed on the fun tion

f

,one an bound the terms

B

1

,

B

2

and

B

3

asfollows:

|B

1

| ≤ c(q, f, H)

sup

|x−y|≤

2n

1

,0≤a≤2q

E

f

(a)

(B

x

) − f

(a)

(B

y

)

2

2

−2m(q−l)

,

|B

2

| + |B

3

| ≤ c(q, f, H)

sup

|x−y|≤

2n

1

,0≤a≤2q

E

f

(2q−2l−a)

(B

x

) − f

(2q−2l−a)

(B

y

)

2

−2m(q−l)

,

and,byusing (2.39 ),weobtain that

(22)

E

B

(m,n)

2

≤ R

n

+ c(H, f, q)2

2m(q−1)

sup

|x−y|≤

1

2n

,0≤a≤2q

f

(2q−2l−a)

(B

x

) − f

(2q−2l−a)

(B

y

)

+ (2

−n

)

q−1

q

!

×

2

n

X

j=1

j2

m−n

X

i=(j−1)2

m−n

+1

2

n

X

j

=1

j

2

m−n

X

i

=(j

−1)2

m−n

+1

q−1

X

l=0

2

−2m(q−l)

i2

−m

, δ

i

2

−m

i

l

H

≤ R

n

+ c(H, f, q)2

2m(q−1)

sup

|x−y|≤

1

2n

,0≤a≤2q

f

(2q−2l−a)

(B

x

) − f

(2q−2l−a)

(B

y

)

+ (2

−n

)

q−1

q

!

×

q−1

X

l=0

2

−2m(q−l)

2

m

X

i,j=0

i2

−m

, δ

i

2

−m

i

l

H

≤ R

n

+ c(H, f, q)

sup

|x−y|≤

2n

1

,0≤a≤2q

f

(2q−2l−a)

(B

x

) − f

(2q−2l−a)

(B

y

)

+ (2

−n

)

q−1

q

!

andthis onverges to zerodue to the ontinuity of

B

andsin e

q > 1

. 3.3 Proof of Theorem 1 in the ase

1

2q

< H

≤ 1 −

1

2q

: the weighted entral limit theorem

Suppose rst that

1

2q

< H < 1 −

2q

1

. We study the onvergen e in law of the sequen e

V

2,n

(q)

(f ) = 2

n

2

V

n

(q)

(f )

. We xtwo integers

m ≥ n

,and de omposethis sequen e asfollows:

V

2,m

(q)

(f ) = A

(m,n)

+ B

(m,n)

,

where

A

(m,n)

= 2

m

2

2

n

X

j=1

f B

(j−1)2

−n



j2

X

m−n

i=(j−1)2

m−n

+1

H

q

2

mH

∆B

i2

−m



,

and

B

(m,n)

=

1

q!

2

m(Hq−

1

2

)

2

n

X

j=1

j2

m−n

X

i=(j−1)2

m−n

+1

m,n

i,j

f (B)I

q



δ

⊗q

i2

−m



,

andwhere asbeforewe makeuseof thenotation

m,n

i,j

f (B) = f (B

(i−1)2

−m

) − f(B

(j−1)2

−n

)

.

Letus rst onsider the term

A

(m,n)

. From Theorem 1 in Breuer and Major [1℄, and takinginto a ount that

H < 1 −

1

2q

,itfollows thattherandom ve tor

Références

Documents relatifs

Effets dominos Changements climatiques Changements des surcharges environnementales sur les bâtiments et

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE ةعماج سيداب نب ديمحلا دبع مناغتسم ةيلك مولع ةايحلا و ةعيبطلا. Effet

It would be of interest to measure the magnetic moments of the other6 mono- capped octahedral molydenurn( ~ v ) complex which has longer molybdenum-ligand bond

At the end of the protocol, blood was removed and serum collected to quantify (B) total IgG1 and IgE as well as (C) Der f-specific and OVA-specific IgE by ELISA in controls (CTRL,

The observation times are possibly random, and we try to find conditions on those times, allowing for limit theorems when the number of observations increases (the “high

Central and non-central limit theorems for weighted power variations of fractional Brownian motion.. Ivan Nourdin a , David Nualart b,1 and

Keywords: Mean central limit theorem; Wasserstein distance; Minimal distance; Martingale difference sequences; Strong mixing; Stationary sequences; Weak dependence; Rates

Motivated by this result, we shall show in the present note that the convergence (1.2) still holds in the case of a more general process, namely the bi-fractional Brownian motion

The existence of these three asymptotic regimes can be explained by the fact that the unitary Brownian motion is the “wrapping”, on the unitary group, of a Brownian motion on

The CLTs in the space of lattices are in turn deduced from an abstract Central Limit Theorem (Theorem 4.2) for weakly dependent random variables which is formulated and proven

than {100} and crystal orientation dependency is roughly consistent with the Schmid law [9]. As ½&lt;110&gt;{111} slip systems are not observed under single mode conditions, no CRSS

Cette clinique (SAC) fournit des soins aux adolescents et aux jeunes adultes atteints d'une infection par le VIH (soins médicaux, thérapie in- dividuelle/en groupe, éduca-

Comme nous l’avons mentionné dans l’introduction, nous avons choisi de travailler sur le thème de Noël ; c’est un effet un sujet qui convient

The present article is devoted to a fine study of the convergence of renor- malized weighted quadratic and cubic variations of a fractional Brownian mo- tion B with Hurst index H..

Central and noncentral limit theorems for weighted power variations of fractional Brownian motion.. Weighted power variations of iterated Brownian

Keywords and phrases: Central limit theorem; Non-central limit theorem; Convergence in distribution; Fractional Brownian motion; Free Brownian motion; Free probability;

We let S m,p (Γ\G) be the space of m times continuously differentiable functions on Γ\G such that the L p (Γ\G) norms of all derivatives of order less or equal to m are finite.. We

Q13/9 sensibilisation a la lecture professionnelle/types d'informations du BBF -2eme choix- N... Q13/10 sensibilisation a la lecture professionnelle/types d'informations du

We prove functional central and non-central limit theorems for generalized varia- tions of the anisotropic d-parameter fractional Brownian sheet (fBs) for any natural number d..

Furthermore, because the process has evolved for a long time, we expect the density of particles at time t to follow approximately (2.10). The key to proving Theorem 1.5 is to

We give two main results, which are necessary tools for the study of stability in section 3: we prove uniqueness, up to an additive constant, of the optimal transport

Key words: Fractional Brownian motion; quartic process; change of variable formula; weighted quadratic variations; Malliavin calculus; weak convergence.. Present version:

The CLTs in the space of lattices are in turn deduced from an abstract Central Limit Theorem (Theorem 4.2) for weakly dependent random variables which is formulated and proven