• Aucun résultat trouvé

Multivariate integration of functions depending explicitly on the extrema of the variables

N/A
N/A
Protected

Academic year: 2021

Partager "Multivariate integration of functions depending explicitly on the extrema of the variables"

Copied!
16
0
0

Texte intégral

(1)

Multivariate integration of functions depending explicitly on the extrema of the variables

Calculating orness values of aggregation functions

Jean-Luc Marichal

University of Luxembourg

(2)

Introduction

Let F : [a,b]n→Rbe an aggregation function.

If F is integrable, itsaverage value over the domain [a,b]n is

F = 1

(b−a)n Z

[a,b]n

F(x)dx

When F isinternal, that is,

Min(x)6F(x)6Max(x), then

Min6F6Max

(3)

Example : Geometric mean on [0, 1]

n

GM(x) =

n

Y

i=1

xi1/n

We have

GM = Z

[0,1]n

GM(x)dx = n n+ 1

n

Min = Z

[0,1]n

Min(x)dx = 1 n+ 1 Max =

Z

[0,1]n

Max(x)dx = n n+ 1

and 1

n+ 1 6 n n+ 1

n

6 n n+ 1

(4)

Relative position of F within the interval [Min, Max]

Global orness value(Dujmovi´c, 1974) ornessF= F−Min

Max−Min ∈[0,1]

Example : Geometric mean on [0,1]n ornessGM=− 1

n−1+n+ 1 n−1

n n+ 1

n

20 40 60 80 100

0.362 0.364 0.366

(5)

Alternative definition

Let F : [a,b]n→Rbe integrable and internal

Orness distribution function associated with F(Dujmovi´c, 1973) odfF(x) = F(x)−Min(x)

Max(x)−Min(x) ∈[0,1]

Orness average value of F(Dujmovi´c, 1973) odfF = 1

(b−a)n Z

[a,b]n

odfF(x)dx

(6)

Example : Geometric mean on [0, 1]

n

GM(x) =

n

Y

i=1

xi1/n

odfGM= Z

[0,1]n

GM(x)−Min(x) Max(x)−Min(x)dx

Intractable integral ?

We will see how to evaluate exactly such an integral...

(7)

Questions

Which definition is the best ? ornessF or odfF?

Should we integrate first and then normalize or normalize first and then integrate ?

Answer : It depends on the interpretation

Which are the functions F such that ornessF=odfF? (Open question)

How to calculate exactly odfF? Answer : See next result...

(8)

Main results

Let G : [a,b]n+1 →R be integrable

Z

[a,b]n

G(x1, . . . ,xn,Min(x))dx

=

n

X

j=1

Z b a

du Z

[u,b]n−1

G(x1, . . . ,(ju), . . . ,xn,u)dx1· · ·[dxj]· · ·dxn

Z

[a,b]n

G(x1, . . . ,xn,Max(x))dx

=

n

X

j=1

Z b a

dv Z

[a,v]n−1

G(x1, . . . ,(jv), . . . ,xn,v)dx1· · ·[dxj]· · ·dxn

(9)

Main results

Let G : [a,b]n+2 →R be integrable

Z

[a,b]n

G(x1, . . . ,xn,Min(x),Max(x))dx

=

n

X

j,k=1 j6=k

Z b a

dv Z v

a

du Z

[u,v]n−2

G(x1, . . . ,(ju), . . . ,(kv), . . . ,xn,u,v)

× dx1· · ·[dxj]· · ·[dxk]· · ·dxn

(10)

Example : Geometric mean on [0, 1]

n

GM(x) =

n

Y

i=1

xi1/n

odfGM=

−1 + ln 4, ifn= 2

n(n1) n n+ 1

n−2Z 1 0

xn(1xn+1)n−2

1xn dx 1

n2, ifn>2

20 40 60 80 100

0.362 0.364 0.366 0.368

(11)

Example : Discrete Choquet integral on [0, 1]

n

Ca(x) = X

S⊆{1,...,n}

a(S) min

i∈S xi

The set functiona: 2{1,...,n}→R is chosen such that Ca(x) is nondecreasing and Ca(0) = 0 and Ca(1) = 1

Theorem

ornessCa =odfCa = 1 n−1

X

S⊆{1,...,n}

a(S)n− |S|

|S|+ 1

(12)

Conjunctive functions

A function F : [a,b]n→Ris conjunctiveif a6F(x)6Min(x) If F is integrable then

a6F6Min

Global idempotency value(Koles´arov´a, 2006)

idempF = F−a

Min−a ∈[0,1]

(13)

Example : Product on [0, 1]

n

P(x) =

n

Y

i=1

xi

idempP= (n+ 1) Z

[0,1]n

P(x)dx = n+ 1 2n

20 40 60 80 100

0.00001 0.00002 0.00003 0.00004 0.00005

(14)

Alternative definition

Let F : [a,b]n→Rbe integrable and conjunctive

Idempotency distribution function associated with F

idfF(x) = F(x)−a

Min(x)−a ∈[0,1]

Idempotency average value of F idfF = 1

(b−a)n Z

[a,b]n

idfF(x)dx

(15)

Example : Product on [0, 1]

n

P(x) =

n

Y

i=1

xi

idfP = Z

[0,1]n

P(x)

Min(x)dx = 2n−1

2n−1 n

20 40 60 80 100

5·10-6 0.00001 0.000015 0.00002 0.000025 0.00003 0.000035

(16)

Conclusion

We have provided an alternative expression of Z

[a,b]n

G(x1, . . . ,xn,Min(x),Max(x))dx

Applications :

Aggregation functions

Example :Orness average valuesandidempotency average values

Integration in probability theory

Example : Average value of thevariance-to-rangeratio function 1

(ba)n Z

[a,b]n

s2(x)

Max(x)Min(x)dx = n+ 2 12n (ba) wheres2(x) = n−11 P

i(xin1P

ixi)2

Références

Documents relatifs

Structure of this paper. In Section 1, we recall some results about the Jacobian derivative and Darboux polynomials. In Section 2, we describe a reduction step which eases

In this short note we introduce and discuss the following alternative generalization of the concept of metric space by considering the underlying distance as a function of n >

It can be shown that this ball always exist, is unique, and can be determined in linear time.. (1) The radius of B(x

(4) Remark 2 We note that, for bounded and continuous functions f, Lemma 1 can also be derived from the classical Crofton formula, well known in integral geometry (see for

We now apply our main result to the computation of orness and andness average values of internal functions and to the computation of idempotency average values of conjunctive

In this section we first recall the concepts of power and interaction indexes intro- duced in cooperative game theory and how the Banzhaf index can be obtained from the solution of

Measuring the interactions among variables of functions over [ 0, 1 ] n.. Jean-Luc Marichal and

natural extension of the Banzhaf interaction index (null and