• Aucun résultat trouvé

Activating embryonic development in Drosophila

N/A
N/A
Protected

Academic year: 2021

Partager "Activating embryonic development in Drosophila"

Copied!
12
0
0

Texte intégral

(1)

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

Avilés-Pagán, Emir E., and Terry L. Orr-Weaver. “Activating

Embryonic Development in Drosophila.” Seminars in Cell &

Developmental Biology (February 2018).

As Published

http://dx.doi.org/10.1016/J.SEMCDB.2018.02.019

Publisher

Elsevier BV

Version

Final published version

Citable link

http://hdl.handle.net/1721.1/116724

Terms of Use

Creative Commons Attribution-NonCommercial-NoDerivs License

(2)

Contents lists available atScienceDirect

Seminars

in

Cell

&

Developmental

Biology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

Activating

embryonic

development

in

Drosophila

Emir

E.

Avilés-Pagán,

Terry

L.

Orr-Weaver

WhiteheadInstituteandDept.ofBiology,MassachusettsInstituteofTechnology,Cambridge,MA,UnitedStates

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received19June2017 Receivedinrevisedform 21December2017 Accepted11February2018 Availableonlinexxx Keywords: Oocyte-to-embryotransition Oocytematuration Meiosis

MaternalmRNAtranslation Fertilization

a

b

s

t

r

a

c

t

Thetransitionfromoocytetoembryomarkstheonsetofdevelopment.Thisprocessrequirescomplex regulationtolinkdevelopmentalsignalswithprofoundchangesinmRNAtranslation,cellcyclecontrol, andmetabolism.Thiscontrolisbeginningtobeunderstoodformostorganisms,andresearchinthefruit flyDrosophilamelanogasterhasgeneratednewinsights.Recentfindingshaveincreasedour understand-ingoftherolesplayedbyhormoneandCa2+signalingeventsaswellasmetabolicremodelingcrucial forthistransition.Specializedfeaturesofthestructureandassemblyofthemeioticspindlehavebeen identified.Thechangesinproteinlevels,mRNAtranslation,andpolyadenylationthatoccurastheoocyte becomesanembryohavebeenidentifiedtogetherwithkeyaspectsoftheirregulation.Herewehighlight theseimportantdevelopmentsandtheinsightstheyprovideontheintricateregulationofthisdramatic transition.

©2018TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction/overview...00

2. Meiosisduringoocytematuration ... 00

2.1. Meioticprogression...00

2.2. Assemblyoftheoocytemeioticspindle...00

2.3. Regulationofgeneexpressionduringoocytematuration...00

3. Oocytemetabolismpriortoandduringmaturation...00

3.1. Lipidstorage...00

3.2. Glycogenaccumulation...00

3.3. Mitochondriaselectionandquiescence...00

4. Signalingpathwaysaffectinglateoogenesis...00

4.1. Ecdysonesignalingoflateoogenesisevents...00

4.2. Insulinsignaling...00

5. Eggactivation...00

5.1. Calciumsignaling ... 00

5.2. Completionofmeiosis...00

5.3. Changesingeneexpressionateggactivation...00

6. Fertilizationandearlydevelopment ... 00

6.1. Redoxstateandactivationofspermchromatin...00

6.2. Startofembryonicdivisions...00

7. Parallelstootherorganisms...00

8. Conclusions...00

Acknowledgments...00

References...00

∗ Correspondingauthor.

E-mailaddress:weaver@wi.mit.edu(T.L.Orr-Weaver).

https://doi.org/10.1016/j.semcdb.2018.02.019

1084-9521/©2018TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(3)

1. Introduction/overview

Innearlyeveryanimaltheearlyembryonicdivisionsoccurinthe absenceoftranscriptionofthezygoticgenome.Inhumanembryos, transcription is not thoughtto initiateuntil after two or three embryonicdivisions.Inorganismsinwhichtheembryodevelops outsideofthemother,rapidembryogenesisisneededtoproduce motileprogeny, necessitatingan accelerateddivision cycle that precludesgrowthandtranscription.MaternalstockpilesofmRNAs, translationalmachinerycomponents,andnutrientspermitearly embryogenesistooccurintheabsenceofzygotictranscription.

Thisdevelopmentalstrategy requiresthatmaternalstoresbe depositedintotheoocyteduringoogenesis.Thisisaccomplished duringanarrestinmeiosis,whentheimmatureoocyteisarrestedin prophaseIofmeiosis.Releasefromthisarrestandmeiotic progres-sionthenoccurduringoocytematuration,leadingtoasecondary meioticarrest.Inmostvertebrates,theoocytecompletesthefirst meioticdivisionandhasasecondaryarrestatmetaphaseofmeiosis II.Ininsects,thissecondaryarrestisinmetaphaseI.Thesecondary meioticarrestisthoughttofacilitatecouplingofthecompletionof meiosistofertilization,anditisreleasedbyeggactivationand fertil-ization.Thus,developmentalcuesmustimpactmeioticprogression andregulatedepositionofmaternalproductsduringoogenesis.

Thecontroloftheoocyte-to-embryotransitioninDrosophila parallelsthatofotheranimals,butDrosophilaoffersexperimental advantagesasamodeltodeciphertheregulationofthiskey devel-opmentalevent.Inadditiontotheeaseofgeneticanalysisandtools forreversegenetics,thestagesofoocytematurationare morpho-logicallydistinct,permittingsufficientquantitiestobeisolatedfor biochemicalanalysesandimaging.Releaseofthesecondary mei-oticarrestandpromotionofthechangesintheproteomeandmRNA translationcanbetriggeredbyinvitroactivationofmatureoocytes. HerewedetailrecentadvancesfromDrosophilainour under-standingoftheonsetofmeioticdivisioninmeiosis,theformation of thespecialized meiotic spindle, themetabolic and signaling eventsaccompanyingoocytematuration,thecontrolofegg acti-vation by Ca2+ fluxes, and the consequences of fertilization to activateembryogenesis.Globalapproachesarediscussedthathave

defined the changes in protein levels, mRNA translation, and

polyadenylationthataccompanyoocytematurationandegg acti-vation.Ultimatelythe oocyte-to-embryotransition leadstothe activationofexpressionofthezygoticgenome,astepcalledthe

maternal-to-zygotictransition(MZT).Manyadvanceshavebeen

madeindefiningthecontrolofthisdevelopmentalhandoff,but thesehavebeenextensivelyreviewedrecently,sothe maternal-to-zygotictransitionisnotcoveredinthisreview[1–5].

Priortodiscussingoocytematuration,anoverviewofthelate stagesofDrosophilaoogenesisiswarranted.Theoocytedevelops withinaneggchamberinaseriesoffourteenmorphologically dis-tinctstages,andtheeventsofoocytematurationoccurinstages 12–14 (Fig. 1). A single cell out of a group of 16 sister cells, whichremainattachedbyringcanalstosharethesamecytoplasm,

becomes anoocyte, while theother fifteen becomesupporting

nursecells.TheoocytearrestsinprophaseI,afterhomologous chro-mosomeshavepairedandareattachedphysicallybychiasmata(the productofacrossoverrecombinationevent)orheterochromatin links[6,7].Theselockedhomologpairsarecalledbivalents,and theycontainfourDNAduplexes,duetothetwosisterchromatids ofeachhomolog.

2. Meiosisduringoocytematuration

Oocytematurationistheprocessbywhichtheoocyteenters the first meiotic division, releasing the primary meiotic arrest inprophaseI.Duringoocytematuration, meiosisresumes,with

nuclearenvelopebreakdown(alsoreferredtoasgerminalvesicle breakdown,GVBD).Aspecializedmeioticspindleisassembled,and oneachhomologofthebivalentthesister-chromatidkinetochores aremono-orientedtowardsthesamepoleofthemeioticspindle. Becausethetwohomologsareheldtogetherbutareattachedto microtubules(MTs)fromoppositepoles,thisisastable configu-rationpresentatthemetaphaseIarrest inthematurestage14 oocyte.

2.1. Meioticprogression

ProgressionfromtheprophaseIarresttometaphaseIrequires cellcycleregulationtoactivatetheCyclinB/CDK1mitotickinase. TheroleofconservedregulatorsinactivatingCyclinB(CycB)/CDK1

during Drosophila oocyte maturation has been reviewed [8].

Briefly,theonsetofmaturationandGVBDaredictatedbythe tim-ingofCDK1activation,asinvertebrates,inwhichactiveCycB/CDK1 iscritical.InDrosophilatwoothermitoticCyclins,AandB3,also contributetooocytematuration[9].ThisrequirestheCdc25

phos-phataseTWINE,whoseactivationis dependentonPOLOkinase,

whoseactivityisinturninhibitedintheprophaseI-arrestedoocyte byMATRIMONY(MTRM)[10,11].AslevelsofPOLOproteinincrease [12], it is thought that it exceeds thepool of MTRM by stage 13ofoogenesis,thustriggeringmaturation.Consistentwiththis,

mutationsinMtrmdominantlycauseprematureGVBD.Maturation

additionallyiscontrolledbyEndosulfine(ENDOS)andthe Great-wallkinase[11,13].WhenphosphorylatedbyGreatwall,ENDOS caninhibitthePP2Aphosphatase[14,15],andthiscouldpromote theonsetofmeiosis.Infact,mutationsinendosresultindelayed GVBDandfailuretoprogresstometaphaseI.Inotherorganisms Greatwallisactivatedinafeed-forwardmechanismbyCycB/CDK1, butitisnotknownwhetherthisisalsotrueinDrosophilaoocytes. The developmental signals responsible for triggering oocyte

maturationand how these lead to the activation of POLO and

ultimatelyCycB/CDK1remainsunknown.Technicalhurdleshave

hinderedevaluationofknowncellcyclecomponents,asitis dif-ficulttoinactivatefunctionsspecificallyinstage13or14oocytes. Additionally,oncetheeggshellisdepositedinstage13,theoocyte cannotsuccessfullybetreatedwithmanyinhibitors.

2.2. Assemblyoftheoocytemeioticspindle

ThemeioticspindleformsasGVBDoccurs,anditislocalized nearthedorsalsurfaceoftheoocyte.Thisspindleisdistinguished fromthemeioticspindleinspermatocytesorfrommitotic spin-dles.Themicrotubuleorganizingcenter(MTOC),thecentrosome, iscomposedofapairofcentrioles surroundedbypericentriolar material(PCM)[16].Inmostanimaloocytes,however,centrioles arelostandtheoocyteassemblesanacentrosomalspindle,which formsintheabsenceofcentrioles.DuringDrosophilaoogenesis, thecentriolesfromthenursecellsmigrateintotheoocytetoform alargeMTOCwith60centriolesthatorganizestheMTsnecessary forlocalizationofpatterningproteinsandRNAs[17],butallofthese centriolesareultimatelylostasoogenesisproceeds.

Recentadvancesinimagingtechnologies,incombinationwith fluorescentlytaggedproteinfusionsforkeycentrioleandPCM com-ponents,havefacilitatedanalysisoftheeventsleadingtocentriole lossduringDrosophilaoogenesis[17].ThePCMstartsshrinking duringmid-oogenesis(stages7/8),priortooocytematuration,and thiscorrelateswithareductionofPOLOlevelsattheMTOC. Centri-olenumberdecreasesonceoocytematurationbegins,presumably asaconsequenceofPCMloss[17].POLOplaysakeyrolein cen-triolelossinoocytes,asreductionofPOLOproteinlevelsbyRNAi ledtoprematurelossofcentriolemarkersduringstage10,whereas tetheringofPOLOtothecentriolebyfusingittothePACTcentriole proteinledtocentrioleretentioneveninmatureoocytes.Notably,

(4)

Fig.1.OverviewofDrosophilaoogenesisandearlydevelopment.Drosophilahastwoovaries,eachofwhichcontains20–30ovarioles.Eachovarioleislikeaproductionline, wheretheoocytedevelopswithinaneggchamberinaseriesoffourteenmorphologicallydistinctstages.Asinglecelloutofagroupof16sistercells,whichremainattached byringcanalstosharethesamecytoplasm,becomesanoocyte,whiletheotherfifteenbecomesupportingnursecells(NCs).Thedevelopingoocyteissurroundedbyalayer ofpolyploidfolliclecells(FCs),whichplayaroleinpatterninginearlystagesandareresponsiblefordepositingtheeggshellduringlateoogenesis.Theoocytearrestsin prophaseI,andthisarrestisreleaseduponoocytematuration(stages12–14),withmeiosisprogressingtoasecondaryarrestpointinmetaphaseIinmatureoocytes.As oocytematurationproceeds,NCsdumptheircontentintotheoocyteandthenproceedtoundergocelldeath.Uponovulation,thematureoocytedescendsintotheoviduct, wheremechanicalforcesandhydrationinduceeggactivation.Afterfertilizationintheuterus,thematernalandpaternalhaploidnucleifuseandstarttoundergothirteen divisioncycles,characterizedbyrapidS-andMphases,inacommoncytoplasm.Ifeggactivationoccursbuttheeggisnotfertilized,thendevelopmentisarrestedafter completionofmeiosis,andthefourfemalemeioticproductscongregateasapolarbody.Inadditiontocompletionofmeiosis,thechangesintranslationofmaternalmRNAs occurduringeggactivation,independentoffertilization.DNAisrepresentedinblue,spindlesingreen.

Fig.2.Fertilizationandthestartofembryonicdivisions.Theactivatedeggisfertilizedonceitreachestheuterus.Insetsrepresentprogressionofcytoplasmiceventsfollowing fertilization.First,asinglespermenterstheeggthroughthemicropyle,andremainsattheanterioroftheoocyte(darkblue),asfemalemeiosisiscompletedintheegg andfourmeioticproducts(pink)areproduced.Thespermcontributesthecentrosomes(green)andpaternalhaploidgenomiccontent(darkblue)totheembryo.Initially themalepronucleusisinahighly-condensedchromatinstateduetothepresenceofprotamines.Thespermnuclearmembranebreaksdown,andprotaminesareevicted fromthespermDNAandreplacedbyhistonesduringspermnucleusactivation,inaprocessthatrequiresthehistonechaperoneHIRA(notshown)andthematernally providedthioredoxinDHD(shown).Afterwards,thepaternalcentriolesandMTOCs(greendots)initiatetheformationofamitoticaster(brightgreen),whichincreasesin sizeuntilitreachesthefemalemeioticproductintheclosestproximity.Thefemalepronucleusisthenpulledtowardsthemalepronucleusduringpronuclearapposition. Thefirstdivisionfollows,inwhichthereisnointermixingofthematernalchromosomes(lightpink)andpaternalchromosomes(lightblue)untiltelophase.Theremaining femalemeioticproductsundergochromosomecondensationandremainarrestedaspolarbodies(darkpink)atthecortexoftheegg.Subsequentmitoticdivisionsoccurin acommoncytoplasm,orsyncytia,startingatthemiddleoftheembryoandthenexpandingtowardsthesurfacewithincreasednuclearnumber.Thesyncytialdivisionsare drivenbymaternallyprovidedproteinsandmRNAs.

apartfromdemonstratingPOLOprotectscentrioles,thispermitted testingtherequirementofcentriolelossintheoocyte.Retentionof centriolesinmatureoocytesresultedindefectsduringearly embry-onicdivisions[17],supportingtheideathatcentrioleeliminationin

theoocyteiscrucialforensuringthatthereareonlytwocentrioles inthefertilizedembryo,bothderivedfromthesperm(Fig.2).

AsGVBDoccursintheoocyte,thechromosomescanbeobserved tobindMTs,servingasthecenterforspindleorganization.This

(5)

Fig.3.Signalingeventsandmetabolicchangesduringoocytematuration.Lipidsandcarbohydratestoresthatwillserveasenergysourcesaccumulateinastepwisemanner duringlateoogenesis.Attheonsetofmaturation,lipidsarepresentintheformofdroplets(yellowcircles)inthecytoplasm.Thislipidaccumulationispromotedbyecdysone signaling.Theinsulinsignalingpathwayisactiveatthisstage,leadingtotheinactivationofGSK3␤.Asoocytematurationproceeds,insulinsignalingisnolongerpresent,and GSK3␤nowisabletoregulatechangesincarbohydratemetabolism,particularlytheaccumulationofglycogen(greenstars)duringmaturation.Inaddition,GSK3␤mediates theentryofmitochondriaintoaquiescentstate,characterizedbyinactivationoftheelectrontransportchain,mitochondrialmembranedepolarization,andachangein mitochondrialmorphology(depicted).GSK3␤alsoisresponsibleforactivatingphosphorylationofthecalcipressinSRA(notshown),addingalevelofcoordinationbetween insulinandthesubsequentCa2+signalingeventsateggactivation.Ecdysonesignalingactsonceagainonmatureoocytes,thistimetostimulateovulation,whichwillresult

intheoocyteproceedingthrougheggactivation.Thesupportingnursecells(darkgray)alsoprovidestockpilesofmaternalmRNAs,whiletheoocyteprogressesinmeiosis toametaphaseIarrest(spindleingreen,chromosomesinblue).

requiresamechanismtoproduceabipolarspindlewithpolesand toensurebipolarattachmentofthehomologstothespindle.The

ChromosomePassenger Complex(CPC)plays animportant role

inmeioticspindleformationandcorrectchromosomeattachment [18,19],withcomponentsoftheCPClocalizingtothemiddleofthe formingspindle.TheMT-bundlingactivityofthekinesinSUBITO alsoisrequiredforspindleformation[20],anditmayacttorecruit andstabilizeotherMT-bundlingproteinstothespindle.SomePCM proteinspresentatthepolesmayacttotaperthepoles.

Depletion and mutation of kinetochore proteins have

pro-videdcriticalinsightsintokinetochorefunctioninmeioticspindle formation[21]. Although theinitialformation of thespindle is kinetochore-independent,boththecentralspindleandthe kine-tochoresbecomenecessarytostabilizethespindle.Itisproposed thatinitiallateralattachmentsoftheMTstothekinetochoreare followedbyend-onattachmentsashomologsattainstablebipolar kinetochoreattachmentsonthespindle.TheCPCandothercentral spindleproteinsarethoughttofacilitatekinetochore-MTbinding intheprometaphasebeltmodel,whichspeculatesthatthecentral spindleactsasabelttoconcentratetheplusendsofMTsnearthe kinetochores[19].

2.3. Regulationofgeneexpressionduringoocytematuration Oocytematurationoccursintheabsenceoftranscriptionwith stablelevelsofmRNAs[22].Hence,theeventsofmaturationmust beregulatedposttranscriptionally.Theenigmaofhowmaternal mRNAscanbeloadedintotheoocyteandstablymaintainedfor pro-longedperiods,yetnottranslated,wasexplainedbytheproposal thatmaternalmRNAsaremaskedbyshortpoly(A)tails,whichboth stabilizemRNAsandpreventtheirtranslation.Thus,aninitiating eventofoocytematurationwouldbecytoplasmicpolyadenylation

andtranslationofselectedmRNAs.Thisindeedhasbeenshown

tobethecaseinXenopusandmouse,inwhichpolyadenylation

leadstotranslationofmitoticCyclinsthatactivateCyclin/CDKand promotetheonsetofmeiosis[23,24].

Recentglobalanalyseshaveidentifiedthechangesinpoly(A) taillengthandmRNAtranslationduringmaturation,fromstage 11throughstage14oocytes,scoringabout4500mRNAs[22,25].

These studies revealed that regulation of translation in this

developmentalwindowismorecomplexthansimple

polyadeny-lationand unmaskingof maternalmRNAs.Hundredsof mRNAs

aretranslationallyupregulated, buthundredsaretranslationally

downregulated.These changesin translationare dynamic,with

somemRNAs, suchas cyclinB and fizzy(Cdc20) mRNAs,being

progressivelytranslationallyupregulatedinstages11–14,others not upregulated until stage 14, and others being translated in

stages11and12andthendownregulated.Poly(A)taillengthalso dynamicallychangesduringoocytematuration[22,25],withsome mRNAsexhibitingincreasedpoly(A)taillengthbutothers under-goingpoly(A)tailshortening.Ingeneral,forboth upand down regulatedmRNAs,translationalefficiencycorrelateswithpoly(A)

lengthchanges.TheGLD-2likecytoplasmicpoly(A)polymerase

encodedbywispy(wisp)isresponsibleforpoly(A)taillengthening duringoocytematurationandeggactivation[22,25–28].

Acomplementarystudyemployedquantitativemass

spectrom-etrytomeasurechangesinthelevelsofeachproteinbetweenstage 11and14[12].Approximately30%of3400scoredproteins signif-icantlychangeinlevels,withhundredsofproteinsincreasingand

hundredsdecreasing.Theweakconcordancebetweenchangesin

proteinlevelsandchangesintranslationefficiencyfortheirmRNAs indicatedthatproteinlevelsareaffectedbothbymRNA transla-tionandposttranslationally,likelybydegradation.Proteinsthat increaseinabundancearethoseexpectedtoactduringthe mei-oticdivisions, asisthecase for severalMT-associatedproteins. Proteinswhoseactivityisnotrequireduntiltheonsetof embryoge-nesisalsoincreaseduringoocytematuration,whichsuggeststhat itmaybenecessarytostockpiletheseproteinspriortoegg activa-tiontoensuresufficientquantitiesfortherapidearlyembryonic divisions.ComponentsoftheDNAreplicationmachinery, centro-somalproteins,andembryonicpatterningregulatorsareexamples ofproteinsinthisclass.

3. Oocytemetabolismpriortoandduringmaturation

Oogenesisresultsintheoocytebeingstockpilednotonlywith

mRNAsbutalsowithnutrientsandorganelles.Recentadvances

haveshedlightontheregulationofnutrientdepositionand uncov-eredactiveregulationofmitochondriaduringDrosophilaoogenesis (Fig.3).

3.1. Lipidstorage

Accumulationoftriglyceridesandsterolsintheoocytehasbeen observedinotherorganismsaswellasinDrosophila.Theseare storedintheformofcytoplasmiclipiddropletsintheoocyte[29],

andapartfromtheiruseinATPproductionandmembranelipid

biosynthesisduringembryogenesis[30],theselipiddropletscan haveotherroles,suchasanchoringandstoringhistones[31]. Accu-mulationoflipidsstartsasearlyasstage10ofoogenesis,andis regulatedinpartbythetranscriptionfactorSREBP[32].SREBP reg-ulatestheexpressionoftheLDLreceptorhomologLpR2,whichis requiredforlipiduptakeinthegermline[33],inadditiontoother targetgenesinvolvedintheuptakeandstoringoflipids.Thestores

(6)

oflipidsaccumulatedduringoogenesisserveasanenergysource

duringembryonicdevelopment.

3.2. Glycogenaccumulation

Carbohydratereservesalsoareamassedduringoogenesisand

maternally provided to the egg. Together with lipids

accumu-latedearlierinoogenesis,thesecarbohydratestoresaretheenergy sources for embryogenesis [34]. The accumulation of carbohy-dratesoccursintheformofanincreaseinglycogenlevelsduring late oogenesis, coinciding with theonset of oocyte maturation [35].Theincreaseinglycogenisaccompaniedbyincreasesin gly-colyticandcitricacidcycleintermediates[35],suggestingthatflow throughthesecatabolicpathwaysisredirectedtowardsglycogen anabolism.Consistentwiththis,mutanteggchambersforthe glu-coneogenesiscomponentpepckexhibitdecreasedglycogenlevels [35].However,asthemembraneoftheoocytedoesnotbecome impermeabletosmallsolutesuntileggactivation,itremains pos-siblethatextracellularmetabolitesmightbetransportedintothe

oocyte.Thus, remodeling of carbohydrate metabolismcouldbe

accompaniedbythetransportofmetabolitesforproperglycogen accumulation.Theconsequencesofinterferingwiththeglycogen pathwayspecificallyanditseffectsonearlyembryogenesisremain tobedetermined.

3.3. Mitochondriaselectionandquiescence

MitochondriaproducemostoftheATPineukaryoticcellsand are the exclusive site of oxidative phosphorylation in the cell.

Mitochondriacontaintheirown genomeor mitochondrial DNA

(mtDNA), and mutations in mtDNA can lead to mitochondrial

dysfunctionandtodeleteriouseffectsonorganismalhealth[36]. Mitochondria,andthereforemtDNA,areinheritedmaternally[36],

as paternally derived mitochondriaare degradedeither during

spermatogenesisor,suchasinDrosophila,shortlyafter fertiliza-tion[37,38].Therefore,thestate,respiratoryactivityandquality ofmitochondriadepositedduringoogenesisdeterminethe mito-chondriapopulationinheritedbythefutureembryo.

Mitochondrial selection occurs early in oogenesis, so the

mitochondrial diversity inherited by the egg has already been

established in mature oocytes. Competition between different

mtDNAsoccursaftergermlinestemcell(GSC)divisions[39], coin-cidingwithmtDNA replication[40].Althoughthereispurifying selectionagainstdefectivemtDNAviacompetition,some defec-tivegenomesarenotcompletelyeliminated[39],beingpresumably

maintainedbycomplementationwithothermtDNAsinthesame

organelleorinthepopulation.

Anotherstepofselectiondetermineswhichmitochondriaform partofthepolecells,andthusthefuturegermline.Mitochondria accumulateattheposterioroftheoocyte,thefuturesiteof primor-dialgermcell(PGC)formation,followingstage10andcontinuing throughmaturation[41],aprocessthatrequiresthegermplasm componentoskar[41].Mitochondriafromthisposteriorly accumu-latedpoolwillbelater,duringembryogenesis,incorporatedinto theemergingpolecells.Whetherspecificmitochondrialgenomes areselected forthis localization basedonfitnessor iftheyare selectednon-specificallyfromthepopulationsubjectedto purify-ingselectionearlierinoogenesisremainsunclear.

Therespiratoryactivityofmitochondriaalsoissubjectto regula-tion.Itwasobservedthatmitochondriaenterastateofquiescence during late oogenesis, and do not regain activityuntil later in embryonicdevelopment[35].Inearlyoogenesis,whenselection occurs,mitochondriaexhibitaperinuclearlocalizationandhave

astrongmembranepotential,asmeasuredusingthe

mitochon-drialmembranepotentialdyeTMRE.Incontrast,followingstage10, mitochondriabecomedisperse,arestructurallydifferent,andtheir

membranebecomesdepolarized,seeminglythrough

downregula-tionofmostelectrontransportchain(ETC)complexactivityduring lateoogenesis.Theentryofmitochondriaintothisquiescencent stateappearstoberegulatedbyinsulinsignaling[35],and

coin-cideswiththeglycogenaccumulationandmetabolicremodeling

occurringduringoocytematuration.Thus,quiescenceof mitochon-driamaybeameanstomodifythemetabolicoroxidativestateof oocytestosupporttheenergyrequirementsoftheearlyembryo.

4. Signalingpathwaysaffectinglateoogenesis

Althoughthecuesthattriggertheonsetofoocytematuration inDrosophilaremaintobeidentified,steroidandinsulinsignaling havebeendemonstratedtoaffectnutrientdepositioninto matur-ingoocytes.SteroidsignalingplaysaparallelroleinDrosophilaas inmammalsinpromotingruptureofthefolliclecelllayerduring ovulation(Fig.3).

4.1. Ecdysonesignalingoflateoogenesisevents

Signalingthroughtheecdysonereceptor(EcR)anditsligand,the activeformofthesteroidhormoneecdysone,20-hydroxyecdysone (20E),isinvolvedinmultipleprocessesduringlateoogenesis.The ovaryisthemainsourceofecdysoneproduction,with20Ebeing producedbythefolliclecell(FC)layerintheadultovary[42].In additiontoactingearlierin oogenesis,ecdysonepromoteslipid

accumulation beginning at stage 10 of oogenesis by activating

SREBP.Inadditiontothislocalsignaling,geneticanalysisofa dom-inantnegativeEcRgenedriventobeexpressedsolelyinneurons revealedthat20Eproducedbythegermlinemightalsomodulate feedingbehaviorinfemaleflies[43].Thishasbeenproposedtobe

amechanismthroughwhichlocalandsystemicmetabolic

modu-lationbyecdysonecreatesahomeostaticmetabolicstate,whereby

behavioral changes and directed lipid uptake by the germline

ensureoptimallipidstorageintheoocyte[43].

Apartfromthisearlierroleinlipidstorage,ecdysoneactsalso duringovulation.Duringovulation,amatureoocytefromoneofthe ovariolesentersthelateraloviduct,causingtheruptureoftheFC layer[44],andcoincidingwitheggactivation[45].Theruptureof theFClayerrequirestheactionofSHADE,whichconvertsecdysone intothe20E formin theposteriorFCsoftheeggchamber[46]. Theresultingincreasein20Eproductionleadstoautocrine activa-tionofaformofEcR,whichinturnactivatesexpressionofgenes intheposteriorfolliclecellsthatpromoteruptureoftheFClayer [46].Additionalcontrolofthisprocesscomesfromactivationof OAMBinposteriorFCs[47],a receptorfortheneurotransmitter octopamineknowntoregulateovulation,egglayingandresponse tomaleaccessoryproteins[48,49].Together,thesefindingssuggest thatecdysoneandoctopaminesignalingarecoordinatedtocontrol oocytereleaseduringovulation.

4.2. Insulinsignaling

Insulin signaling regulates germline stem cell divisions and manyotheraspectsofeggchamberdevelopment[50,51].Although activethroughoutearlyoogenesis,theinsulinsignalingpathwayis shutoffinmaturingeggchamberstoallowforglycogen accumu-lation.InDrosophila, eightinsulin-likepeptides(dILPs)serveas ligandsfortheinsulinreceptors,InRandLgr3,intargettissues,and theeffectsofthesedILPsvarybetweentissues[52].Intheovary, dilp8and dilp5arereportedly expressed[52], withdilp5mRNA detectedbyinsituhybridizationinFCsduringmid-oogenesis[53]. TheeffectorkinaseAKT,downstreamofInR,initiallyantagonizes Glycogensynthasekinase3(GSK3␤),anotherdownstream com-ponentofinsulinsignalingthatpromotesglycogenaccumulation [35]. Inmaturingoocytes,AKT activityis decreased andGSK3␤

(7)

Fig.4.OverviewofeggactivationinDrosophila.Passageoftheoocytethroughtheoviducttriggerseggactivation.Duringactivation,asinglewaveofcalciummovesthrough thecytoplasm,startingfromthepolesandmovingtowardsthemiddleoftheegg.TheincreaseinintracellularCa2+requiresaninfluxofextracellularCa2+,presumably

viaactivationofmechanosensitivechannelsandareleaseofCa2+fromERstores.TheincreaseinintracellularCa2+leadstoactivationinCa2+signalingcomponentsategg

activation,suchasSRA,calcineurin,andpotentiallyCAMKII,whichthenregulatedownstreamtargets.ThepreparationoftheoocytefortheconsequentCa2+signalingategg

activationappearstobesetupduringoocytematuration,asphosphorylationofSRAbyGSK3␤duringlateoogenesisisrequiredforpropereggactivation.Completionof meiosisislinkedtotheactivationofCa2+signalingintheoocyte,andapotentialtargetofthispathwayistheAPC/C,whoseactivationleadstoadecreaseinCycB/Cdk1activity

andmeioticprogression.AshighCycB/Cdk1inthematureoocyteleadstoinhibitoryphosphorylationofGNU,anactivatingsubunitofthePNGcomplex,thedecreaseof CycB/Cdk1levelsatactivationallowsfordephosphorylationofGNU,whichthenbindsandactivatesthePNGcomplex.ThePNGcomplexthenmediatestranslationalcontrol ofmanymaternalmRNAsduringeggactivation.Atactivation,changestothecytoskeletonandcrosslinkingofthevitellinemembranealsoensue(notdepicted).

Fig.5.DevelopmentallyregulatedproteinlevelchangesduringtheDrosophilaoocyte-to-embryotransition.Theoocyteistranscriptionallysilentduringoocytematuration andeggactivation,socontrolofgeneregulationoccursataposttranscriptionallevel.ChangestotheproteomecanresultfromchangesinmRNAtranslationorprotein degradation.Acomprehensivequantitativeanalysisofproteinlevelchangesduringoocytematurationandeggactivationuncoveredsubsetsofproteinswhosechanges suggestdevelopmentalregulation.421proteins,GroupI(purple),accumulateduringmaturationandremainconstantinlevelsafteractivation.Thisgroupincludesthe translationalregulatorsPNGandPLU,inadditiontomostMCMs(MCM2-3andMCM5-7,withtheexceptionofMCM4)andYA,aproteinnecessaryforthefirstmitosis.A similargroupof43proteins(notshown),whichincludesDNApolymeraseandORCsubunits,accumulatesduringmaturationandshowsafurtherincreaseinlevelsafter eggactivation.Bothofthesegroupssuggestthatthedriversoftheearlymitoticdivisionsaresetupduringoocytematuration.GroupII(red)includes66proteinsthatare upregulatedduringmaturationandthendecreaseinlevelsateggactivation,apatternconsistentwithrolesinlateoogenesis,maturation,oreggactivation.Theseproteins likelyrequiredownregulationateggactivationbecausetheymaybedetrimentaltomitosisandearlyembryogenesis.ThisgroupincludesthePNGcomplexsubunitGNU,the thioredoxinDHDandGEMININ.Anothergroupof117proteins,GroupIII(blue),remainsconstantinlevelsduringmaturationbutisupregulatedateggactivation,implying arolefortheseproteinsineventspost-activation.ThisgroupincludesSTIM,theSCFsubunitLIN19andthetranscriptionfactorSTAT92E.TheY-axisrepresentstherelative proteinlevels,andtheX-axisrepresentsdevelopmentalstageineachrepresentativediagram.Thedottedlineshowswheneggactivationoccurs.

becomesactive.Premature inactivationofinsulin, byInRorakt

RNAi,leadstoprematureglycogenaccumulation,whereasGSK3ˇ

RNAileadstodecreasedglycogenlevelsinmatureoocytes[35], suggestingthatinsulinsignalingisantagonistictoglycogen

accu-mulation.Notsurprisingly, GSK3ˇknockdown duringoogenesis

leadstodefectsinearlyembryogenesis,althoughitremainsunclear whetherthesedefectsareduetoimproperglycogenaccumulation ortoglycogen-independentGSK3␤functions,suchasitsabilityto

(8)

phosphorylateandactivateSRA(seebelow)[54].Insulinsignaling caninteractwithotherendocrinesignalingpathways[55],soit remainspossiblethatthecoordinatedactivitiesofmultiple path-waysareexertingtightcontrolontheeventsunderlyingoocyte maturation.

5. Eggactivation

The mature Drosophila oocyte is arrested at metaphase I.

CycB/CDK1activityishighandnecessaryforthemetaphaseIarrest [9].Matureoocytescanbeheldintheovaryforprolongedperiods ifthefemalehasnotmatedorifenvironmentalconditionsarenot good.Suchheldoocytesbecomedehydrated.Astheoocytepasses intotheoviduct,dramaticchangesoccurthataregroupedunder theheadingofeggactivation[56].Theseincludethereleaseofthe metaphaseIarrestandthecompletionofmeiosis,promotedbythe inactivationofCycB/CDK1throughCycBdestructionbyactivation oftheAPC/C[57,58].Swellingandhydrationoftheegginadditionto changesinthecytoskeletonatthecortexoccur[56].Asegg activa-tionresetstheeggforembryogenesis,itisaccompaniedbymassive changes in gene expression, all controlledposttranscriptionally [59].ThisisassociatedwithdisassemblyoflargecytoplasmicRNP granules[60].Inthenextsections,wefocusonrecentadvancesin ourunderstandingofthemolecularregulationoftheeventsofegg activation(Fig.4).

5.1. Calciumsignaling

Asinotherorganisms,anincreaseinintracellularCa2+occurs duringeggactivationinDrosophilamelanogaster.Manyaspectsof Ca2+signalingandrolesforCa2+effectors,suchasDrosophila cal-cipressinencodedbythesarah (sra)gene,havebeenpreviously reviewed[61],sowefocusourdiscussiononrecentinsightsinto thiseventofeggactivation.Briefly,asinmanyothermetazoans,an intracellularCa2+increaseoccursatactivation,andthisactivates asignalingcascadethatcontrolsmanyaspectsofeggactivation. Aninflux ofexogenousCa2+occursinvivoastheoocytepasses intotheoviductduringovulation[62],coincidingwiththetime when activationis occurring[45]. Invitroactivation of oocytes expressingtheintracellularCa2+sensorGCAMPrevealedthatthis riseinintracellularCa2+occursintheformofasinglewave dur-ingactivation[62,63].Moreover,consistentwithpreviousstudies showingthatmechanicalstimulicanelicitactivationofDrosophila oocytes[64], theinfluxof extracellular Ca2+can beblockedby pharmacologically inhibiting transient receptor potential (TRP) mechanosensitivechannels[62].However,blockingtheCa2+wave byvariousmanipulationsdoesnotimpedeoocyteswelling, sug-gestingthathydrationoftheoocyteiseitherparalleltoorprecedes theCa2+wave.

InternalstoresofCa2+releasedfromtheendoplasmic reticu-lum(ER)andtheactincytoskeletonalsocontributetotheCa2+ wave.ThereleaseofCa2+fromERstoresoccursthroughactivation ofinositoltriphosphatereceptors(IP3R),andseemstobe impor-tantforwavepropagationinsteadofinitiation.IP3RRNAioocytes areabletoinitiatethewavebutareunabletosustainit[62]. Inter-estingly,astudyonthedynamicsoftheERusingaGFP-tagged reporteroftheERresidentproteinPDIfoundthatERorganizationin embryosdiffersfromthatinmatureoocytes[65].Incontrasttothe sheet-likeorganizationinearlyembryos,theERinlateoogenesis exhibitsareticulatedorganizationthatincreasesinvolumeasthe oocytematures.TheprevalenceofdifferentERstructuresinother celltypeshasbeensuggestedtorelatetospecializedfunctionsof thisorganelle[66].WhereasERorganizationhasbeenimplicated increatingCa2+microdomainsduringembryonicmitosis[67],its structuralorganizationduringoogenesismayreflectrolesofthe

ERinproteinsynthesis,metabolism,andapreparationfortheCa2 waveatactivation.

Additionally,arolefortheactincytoskeletonintheCa2+flux alsohasbeenproposed. Treatingoocyteswithcytochalasin-D,a potentactinpolymerizationinhibitor,resultsinastutteredCa2+ increaseduringinvitroactivation[63].Thissuggeststhattheactin cytoskeletonalsocouldacttosustainthepropagatingCa2+wave, althoughthemechanismbywhichthisoccursisstillunclear.It wassuggested,however,thattheactincytoskeletonactsinCa2+ releasethroughinteractionswithTRPorIP3Rs[63],whichcould representawayofcouplingthemechanicalstimulationthatoccurs duringovulationtotheinductionof theCa2+wave.Thisideais consistentwithobservationsthatTRPchannelscanbemodulated bymechanicalsignalsfromthecytoskeletonthroughinteractions withMT-andactin-bindingproteins[68],orthatactininteractions withIP3RsmediateCa2+transientsinmammaliancells[69,70]. 5.2. Completionofmeiosis

Invertebrates,theCa2+fluxatfertilizationleadsto inactiva-tionoftheAPC/CinhibitorEmi2,thuspromotingdegradationof SecurinandCycBtoreleasethemeioticarrest.Althoughtherole ofAPC/CinhibitorsinmeioticarrestintheDrosophilaoocytehas notyetbeenevaluated,onepossibletargetforregulationbyCa2+ isactivationoftheAPC/CviaCORTEX(CORT).CORTisamemberof theCdc20familyofAPC/Cactivatorsthatisoocytespecific[57,58].

Whereas both Cdc20s, FIZZY and CORT, are redundant for the

metaphaseI/anaphaseItransition,onlyCORTisuniquelyrequired forthemetaphaseII/anaphaseIItransition[57].CORTproteinis presentinmatureoocytes,yetapparentlyinactiveuntilegg acti-vation[58].Eggslaidbyfemaleswithamorphicmutationsincort arrestinmetaphaseIIofmeiosisandshowafailuretoreduceCycB levels[58].Thisissimilartothephenotypeobservedinmutantsfor theCa2+effectorsra,indicatingthatCORTcouldindeedbeaCa2+ target.Inadditiontotriggeringthemeioticdivisions,APC/CCORT bindsandtargetsmanyproteinsfordegradation,whichcould con-tribute toregulationof many indirecttargetsbyCa2+ signaling [12,71].

Aftermeioticcompletion,themostinternalof thefour mei-oticproductsbecomesthefemalepronucleus.Theunusedmeiotic products,thepolarbodies,arenotbuddedoffthroughcytokinesis asinvertebrateoocytes(Fig.2).Thus,inDrosophilaan asymmet-ricalpositioningofthemeioticspindlewithrespecttotheoocyte cytoplasmisnotrequired.Thefirstmeioticdivisionoccurs par-alleltotheoocyteplasmamembrane,whereasthesecondoccurs perpendiculartothemembrane.

5.3. Changesingeneexpressionateggactivation

Thechangesinproteinlevels,mRNAtranslation,and

polyadeny-lation during egg activation have been globally mapped by

comparing mature oocytes to laid, activated eggs. Changes in

maternal mRNAtranslation ategg activationwere analyzedby

bothribosomefootprintingandpolysomeanalysis[59], uncover-ingextensivechangesinmRNAtranslation.Thematureoocytewas foundtobetranslationallyactive,notquiescent,andategg activa-tion,hundredsofmRNAsbecometranslationallyrepressed,while hundredsofothermRNAsbecometranslationallyactivated.

Thetranslationofapproximately90%ofthesemRNAsis

con-trolled by the PAN GU (PNG) kinase complex, whose activity

recentlyhasbeenfoundtobelinkedtocompletionofmeiosisinthe oocyte[59,72].ThePNGcomplexiscomposedofaser/thrkinase catalyticsubunitPNGandtwoactivatingsubunits,GIANTNUCLEI

(GNU) and PLUTONIUM (PLU). Although all three subunits are

(9)

andtherebyinhibitedfrombindingandactivatingPNG.Uponegg

activationanddegradationofCycB,GNUbecomes

dephosphory-lated,andactivePNGkinasecomplexassembles.Theactivationis onlytransient,however,asGNUbecomesdegradedafteregg acti-vationinaPNG-dependentmanner[72].PNGphosphorylatesGNU andthismaytargetitfordegradation.Thislevelof developmen-talcontroltemporarilyrestrictsPNGcomplexactivityandpermits

massivetranslationalchangesoveranarrowtimewindow.This

regulationiscoordinatedwithmeioticcompletionviatheinfluence ofCycB/CDK1onPNGcomplexactivation.

Pronouncedchangesinpoly(A)taillengthsalsooccur,andegg activationis thedevelopmentalperiodwhenpoly(A) taillength ismosttightlycoupledtotranslationalefficiency[22]. Coupling persistsduringthefirstthreehoursofembryogenesis,butthetwo processesbecomeunlinkedaszygotictranscriptioninitiatesand geneexpressionisnolongercontrolledposttranscriptionally.

Polyadenylation at egg activation is WISP-dependent, with

nearly everymRNA showing a reduction of poly(A) taillength

inwispmutants[22,25,27]. ExceptionsarethemRNAsfor ribo-somalproteins.Strikingly,therelationshipbetweentranslational efficiencyandpoly(A)taillengthisnotdifferentbetween wild-typeandwispmutantlaideggs,implyingthatselectivepoly(A)-tail shorteningiswhatprimarilyspecifiestranslationalchangesduring eggactivation.Giventhatwispmutanteggshavedefectivemeiotic divisionsandarrestfollowingactivationitcannot,however,bethe casethatpoly(A)taillengtheningiscompletelydispensable[26,28]. Ateggactivation,manyproteinsincreaseinabundance,whereas

many others decrease [59]. Among the proteins whose levels

increasearethoseneededforearlyembryonicpatterning,division, andzygoticgeneexpression.Proteinswhoselevelsdecreasedonot fallintospecificGOclasses,butoneinterestinggroup(Fig.5)is proteinswhoselevelsincreaseatmaturationbutthendecreaseat activation[12].CORTbelongstothisgroupofproteins,pointingto ahand-offofregulatedproteolysistootherAPC/CformsortoSCF. Anotherexampleistheoocyte-specificthioredoxinencodedbythe deadhead(dhd)gene[73],hintingthatchangesinredoxregulation maybecriticalatthis time.LikeDHDandCORT,manyproteins inthisgrouparelikelyneededformeiosisorotheraspectsoflate oogenesis,andcontinuedpresenceoftheseproteinscouldbe detri-mentaltoembryogenesis.Thishasbeenshowntobethecasefor MTRM,thePOLOinhibitor,becauseifMTRMisnotdegradedategg activationdefectsintheembryonicmitoticdivisionsresult[71].

AcomparisonoftheproteomeandmRNAtranslationdatasets

revealedthatincreasedmRNAtranslationcanaccountforincreased proteinlevels,buttranslationalinhibitionfailstoaccountformost decreasesinproteinabundance[59].Thesediscrepanciesbetween

changes in protein levels and mRNA translation highlight the

importanceofposttranslationalcontrolduringeggactivationand pointtoa crucialroleforproteolysis.Astherealsoareproteins thatarerobustlyactivatedfortranslationyetwhoseproteinlevels donotincrease,itappearsthatincreasedtranslationisneededto replaceproteinsthatwerepresentinoocytesbutbecamedegraded ateggactivation,possiblyasamechanismtoresettheproteome.

6. Fertilizationandearlydevelopment

Fertilization marks thefinal phase of the oocyte-to-embryo

transition,as thematernal and paternalDNA contributions are combinedtogenerateadiploidzygoticgenome.Themergerofthe maternalandpaternalchromosomesoccursintelophaseofthefirst mitoticdivision,andthisisfollowedbyrapid,synchronousmitotic divisions.Asexpressionfromthezygoticgenomedoesnotbegin untilthematernal-to-zygotictransition,theearlyembryonic divi-sionsarecontrolledbymaternalstockpilesofmRNAsandproteins.

6.1. Redoxstateandactivationofspermchromatin

The completion of female meiosis and other egg activation

eventsoccurindependentlyofspermentry,buttheonsetof embry-onicdivisionsanddevelopmentisdependentonfertilization.Many aspectsoffertilizationandearlydevelopmenthavebeenpreviously reviewed[74],sowefocusonrecentinsightsintothisintricate pro-cess.Whileeggactivationoccursduringthedescentoftheoocyte throughtheoviduct,fertilization occursin theuterus,withthe releaseofasinglespermfromthespermathecaanditsentryinto theeggcytoplasmthroughthemicropyleattheanterioroftheegg.

Thespermprovidestwoexclusiveelementstothenewembryo:

thepaternalhaploidDNAcontentandasinglecentriole(Fig.2). SpermentryiscoordinatedwithcompletionofmeiosisII,suchthat

themostproximalfemalepronucleusmigratestowardsthemale

pronucleus,leadingtopronuclearappositionandthestartofthe firstmitoticdivision.

Followingspermentry,themalepronucleusisactivated,the

protaminesareevictedfromspermchromatinandexchangedfor

histonesin aprocess thatdepends onmaternally provided fac-tors,suchasthehistonechaperoneHIRA[74]andDHD.Eggslaid bydhdmutantmothersarrestwithspermchromatinthatfailsto decondense[75,76],theresultofadelayinprotamineevictionand exchangefor histones.Additionally, thefemalepronucleus fails

tomigratetowardsthemalepronucleus,andtheembryosbegin

todevelopashaploid[75].Thespermdecondensationphenotype

canberescuedwithwild-typeDHDbutnotwithamutantDHD

in which one of two catalytic cysteines is mutatedto create a substratetrap[75],consistentwithredoxfunctionbeingrequired

forspermdecondensation.Moreover,whereasoxidationof

pro-taminescanleadtotheiroligomerization,addingDHD leadsto protaminereductionandtheirevictionfromDNA[76].Thus,DHD

mayregulatespermchromatindecondensationviareductionof

sulfide-bridgesbetweenprotamines,thoughthisregulationmay

beindirect,eitherbyactivationofadisulfidereductasespecialized forprotaminereductionorregulationofaglobalredoxstateby DHDduringeggactivation.

6.2. Startofembryonicdivisions

Afterfertilizationandpronuclearapposition,theembryoisset tostartdevelopment.DuringDrosophilaearlyembryogenesis,the embryoundergoes13roundsofrapid,synchronizednuclear divi-sioncyclesinacommoncytoplasm,leadingtotheformationof asyncytialblastodermthatcontains∼6000nucleipriorto cellu-larblastodermformation.Theseearlydivisionslackgapphases, insteadbeingcyclesofS-andM-phasesdrivenbyfluctuationsof highCDK1activityandrelyingonmaternalmRNAsandproteins[5]. Thesedivisionsoccurwithoutsignificantzygotictranscription,as theembryoislargelytranscriptionallysilentuntilthefirstwaveof zygotictranscriptionattheonsetofthematernal-to-zygotic tran-sition(MZT)[4].S-phaseisgraduallylengthenedduringcycles11 through13,slowingtheoveralltimeforeachnucleardivision,with apronouncedG2phasebeingaddedduringcellularization,when thezygoticgenomebecomesfullyactivatedfortranscriptionand maternalmRNAsaredegraded.Thefollowingthreedivisionsafter cellularizationoccurinmitoticdomainsregulatedbypatterning genes[5].

Thestartoftheembryonicdivisionsdependsonspecialized reg-ulators,providedmaternallyandactivatedateggactivation.One

exampleis YOUNGARREST(YA),a nuclearproteinofunknown

molecularfunction,whichisactivatedaftereggactivationandis necessaryforthefirstmitoticdivision [77].Anotherexampleis thePNGcomplex.Loss-of-functionmutationsforanyofthe

sub-unitsof thecomplex resultin arrested embryosin which DNA

(10)

requirementforPNGactivitytopromotecycBmRNAtranslation, therebyrestoringCycBproteinlevelsaftermeioticcompletionto restartmitosisintheembryo[79].PNGalsoaffectsthelaterMZT,as itisrequiredfortranslationofsmaugmRNA[80].SMAUGprotein

thenpromotesdeadenylationanddegradationofmaternalmRNAs

aszygotictranscriptioninitiates[59,81]. PNGfunction addition-allyisneededfordegradationattheMZTofseveralmaternally depositedRNA-bindingproteinsthatrepresstranslation,although itisnot knownwhethertheeffectofPNGisdirect[82]. Atthe oocyte-to-embryotransition,thecoordinatedactivityofYA,PNG andotherknownandyettobeuncoveredregulators,togetherwith theirdownstreamtargets,ensureapropertransitioninto embryo-genesis.

Recent work points to the importance of metabolic

regula-tion during early Drosophila development.The SHMT enzyme,

requiredforsynthesis ofpurines,thymidinenucleotides,and S-adenosylmethionine,isnecessaryfordivisionsbeyondcycle13 [83].Itis postulatedthat thisisthetimewhenmaternal

stock-piles of these metabolites become depleted. Analysis of dNTP

levelsinearlyembryos,controlledbyRibonucleotideReductase (RNR),demonstratedthatmaternalstockpilesarenotsufficientto supportaccuratedivisionsbeyondcycle11.ItappearsthatRNR becomesallostericallyactivatedaslevelsofmaternally-provided dNTPsbegintodropasDNAreplicationproceeds,thereby provid-ingthedNTPsneededforadditionaldivisions[84].Futurestudies ofmetabolismduringearlyembryogenesisarelikelytouncover additionalregulatorymechanisms.

7. Parallelstootherorganisms

Hormonesignalingisaconservedfeaturedofoocyte

develop-ment. Gonadotrophinsand sexsteroids inmammals and frogs,

andthesteroidhormoneecdysoneinDrosophilacontrolvarious aspectsofoogenesis.InDrosophila,apartfromactinginearly ooge-nesis[85],ecdysonealsoactslaterinoogenesistocontrolchanges inlipidmetabolism[43,86]andovulation[46].Incontrastto

ver-tebrates,where a surge in luteinizinghormone induces oocyte

maturation,thesignalformaturationinflieshasnotbeen deter-minedandaroleforhormonesignalinginthisprocessisunclear[8]. Similarlytomammalianovulation,Drosophilaovulationrequires theruptureoftheFClayer[46]andgenerationofacorpusluteum [44].Inbothmammalsandflies,hormonesignalingmayserveto modulateoogenesisbyanorganismalregulationofmetabolismand behavior.

Signalingbyinsulinhasbeenproposedasanevolutionary

reg-ulatorof femalereproduction.Components ofthis pathwayare

highlyconserved,andaspectscontrolledbyinsulin,suchasearly germlinestemcelldivisionsandlocalandsystemicmetabolic reg-ulation,aresimilarinbothflyandvertebrateoocytedevelopment [50,86,87].Controlofglycogenaccumulationduringlateoogenesis byinsulinalsowasdescribedinXenopusoocytes[35].

Interest-ingly, in frogs, fish and worms, the ERK branch of the insulin

signalingpathwaycaninduceoocytematurationindependently

ofhormonesignaling[50].ERKisa downstreamtargetofMOS, andalthoughtheflyhomologdmosisnotessentialinDrosophila [88]andtheRAS/ERKbranchdownstreamofinsulinhasnotbeen evaluated in flies[50], it remains possible that components of thisbranchmayacttocontroloocytematuration.Theinsulinand ecdysonepathwayscaninteract,andcooperationbetweeninsulin

andgonadotrophinsignalingtomodulateoocytematurationhas

beendocumentedin mammals[50]. Hence,it remainspossible

thatcooperationbetweeninsulinandecdysone,perhaps synergis-ticallywithanothersignalingpathway,couldbeunderlyingoocyte maturationinDrosophila.

ParallelsbetweenDrosophilaandC.eleganshighlightacrucial roleforproteinkinasesincontrollingmRNAtranslationandthe

proteomeattheoocyte-to-embryotransition.TheMBK-2kinase

inC.eleganscontrolsproteolysisthroughtheSCFE3ubiquitin lig-asetodegradeoocyteproteinsthatcouldimpedeembryogenesis [89].ItalsoaffectsRNPgranuledynamicsandthuscouldinfluence maternalmRNAtranslation[90].Interestingly,activationof MBK-2depends ontheactivationofAPC/Cand isthereforelinkedto thecompletionofmeiosis[91].Theconservedstrategyoflinking alterationsin theproteomenecessaryfor theoocyte-to-embryo transitiontothemeiotic cellcyclevia theactivationofprotein kinasesraisesthequestionofwhethersuchamechanismmayalso beemployedinvertebrates.

8. Conclusions

Theadvancesinresearchontheoocyte-to-embryotransition inDrosophilainthepastfewyears havesignificantlyenhanced

ourunderstandingwhile openingnewareasand questionsthat

meritfurtherinvestigation.Themechanismsofnutrient deposi-tionduringDrosophilaoogenesisandtheinfluenceofinsulinand ecdysonesignalingnowaremorefullyunderstood.Recent

stud-ieshaveuncoveredbothselectionmechanismsformitochondria

and regulationof mitochondrial activity.The discoveriesof the dependenceofactivationandmeioticcompletiononaCa2+wave andsignalingpathwayareamajoradvanceinourunderstanding oftheoocyte-to-embryotransitioninDrosophila.Theglobal delin-eationofmRNAtranslationchangesaccompanyingeggactivation revealedthecentralrolethatthePNGcomplexplaysincontrolling mRNAtranslationandhowdevelopmentalcontrolofthiscomplex restrictsthisregulationofmRNAtranslation toa narrow

devel-opmentalwindow.Comparisonoftheproteomeandtranslatome

changesatmaturationandactivationimplicateamajorrolefor proteolysisininfluencingthesedevelopmentalevents.

Importantareasstilltobeexploredinclude:1)findingthe sig-nalsthatleadtooocytematurationandtheonsetofthemeiotic divisions;2)definingtherole,regulationandmRNAcomponents ofRNPgranulesduringmaturationandeggactivation;3) identify-ingthekeytargetsofCa2+signalingresponsibleforthemyriadof eventsoccurringateggactivation;4)elucidatingthemechanism throughwhichPNGcangloballyalterthetranslationofhundreds

of mRNAs;and 5)delineatingthecontrolof metabolicchanges

inearlyembryogenesis.Futureworkinthefieldtoaddressthese issuespromisesadeeperunderstandingintothecomplexityofthe Drosophilaoocyte-to-embryotransitionandinsightsinto regula-tionofthistransitioninotheranimals.

Acknowledgments

Weapologizetoourcolleagueswhoseworkcouldnotbecited

due to space limitations. We thank Jessica Von Stetina, Peter

NichollsandGabrielNeurohrfortheirhelpfulcommentsonthe

manuscript.ThisworkwassupportedbyNIHgrantGM118098to

TO-W.TO-WisanAmericanCancerSocietyResearchProfessor.

References

[1]J.D.Laver,A.J.Marsolais,C.A.Smibert,H.D.Lipshitz,Regulationandfunction ofmaternalgeneproductsduringthematernal-to-zygotictransitionin Drosophila,Curr.Top.Dev.Biol.113(2015)43–84,http://dx.doi.org/10.1016/ bs.ctdb.2015.06.007.

[2]M.M.Harrison,M.B.Eisen,Transcriptionalactivationofthezygoticgenomein Drosophila,Curr.Top.Dev.Biol.113(2015)85–112,http://dx.doi.org/10. 1016/bs.ctdb.2015.07.028.

[3]S.A.Blythe,E.F.Wieschaus,Coordinatingcellcycleremodelingwith transcriptionalactivationattheDrosophilaMBT,Curr.Top.Dev.Biol.113 (2015)113–148,http://dx.doi.org/10.1016/bs.ctdb.2015.06.002.

(11)

[4]W.Tadros,H.D.Lipshitz,Thematernal-to-zygotictransition:aplayintwo acts,Development136(2009)3033–3042,http://dx.doi.org/10.1242/dev. 033183.

[5]J.A.Farrell,P.H.O’Farrell,Fromeggtogastrula:howthecellcycleisremodeled duringtheDrosophilamid-blastulatransition,Annu.Rev.Genet.48(2014) 269–294,http://dx.doi.org/10.1146/annurev-genet-111212-133531. [6]K.S.McKim,J.K.Jang,W.E.Theurkauf,R.S.Hawley,Mechanicalbasisofmeiotic

metaphasearrest,Nature362(1993)364–366,http://dx.doi.org/10.1038/ 362364a0.

[7]S.E.Hughes,W.D.Gilliland,J.L.Cotitta,S.Takeo,K.A.Collins,R.S.Hawley, Heterochromaticthreadsconnectoscillatingchromosomesduring

prometaphaseIinDrosophilaoocytes,PLoSGenet.5(2009)e1000348,http:// dx.doi.org/10.1371/journal.pgen.1000348.

[8]J.R.VonStetina,T.L.Orr-Weaver,T.L.OrrWeaver,Developmentalcontrolof oocytematurationandeggactivationinmetazoanmodels,ColdSpringHarb. Perspect.Biol.3(2011)a005553,http://dx.doi.org/10.1101/cshperspect. a005553.

[9]M.Bourouh,R.Dhaliwal,K.Rana,S.Sinha,Z.Guo,A.Swan,Distinctand overlappingrequirementsforcyclinsA,BandB3inDrosophilafemale meiosis,G3(Bethesda)58(2016)3711–3724,http://dx.doi.org/10.1534/g3. 116.033050.

[10]Y.Xiang,S.Takeo,L.Florens,S.E.Hughes,L.J.Huo,W.D.Gilliland,S.K. Swanson,K.Teeter,J.W.Schwartz,M.P.Washburn,S.L.Jaspersen,R.S.Hawley, TheinhibitionofpolokinasebymatrimonymaintainsG2arrestinthemeiotic cellcycle,PLoSBiol.5(2007)2831–2846,http://dx.doi.org/10.1371/journal. pbio.0050323.

[11]J.R.VonStetina,S.Tranguch,S.K.Dey,L.A.Lee,B.Cha,D.Drummond-Barbosa, ␣-Endosulfineisaconservedproteinrequiredforoocytemeioticmaturation inDrosophila,Development135(2008)3697–3706,http://dx.doi.org/10. 1242/dev.025114.

[12]I.Kronja,Z.J.Whitfield,B.Yuan,K.Dzeyk,J.Kirkpatrick,J.Krijgsveld,T.L. Orr-Weaver,Quantitativeproteomicsrevealsthedynamicsofprotein changesduringDrosophilaoocytematurationandtheoocyte-to-embryo transition,Proc.Natl.Acad.Sci.U.S.A.111(2014)16023–16028,http://dx. doi.org/10.1073/pnas.1418657111.

[13]V.Archambault,X.Zhao,H.White-Cooper,A.T.C.Carpenter,D.M.Glover, MutationsinDrosophilaGreatwall/scantrevealitsrolesinmitosisand meiosisandinterdependencewithpolokinase,PLoSGenet.3(2007) 2163–2179,http://dx.doi.org/10.1371/journal.pgen.0030200. [14]B.C.Williams,J.J.Filter,K.A.Blake-Hodek,B.E.Wadzinski,N.J.Fuda,D.

Shalloway,M.L.Goldberg,Greatwall-phosphorylatedendosulfineisbothan inhibitorandasubstrateofPP2A-B55heterotrimers,eLife2014(2014) e01695,http://dx.doi.org/10.7554/eLife.01695.

[15]S.Vigneron,P.Robert,K.Hached,L.Sundermann,S.Charrasse,J.C.Labbé,A. Castro,T.Lorca,Themastergreatwallkinase,acriticalregulatorofmitosis andmeiosis,Int.J.Dev.Biol.60(2016)245–254,http://dx.doi.org/10.1387/ ijdb.160155tl.

[16]J.Fu,I.M.Hagan,D.M.Glover,Thecentrosomeanditsduplicationcycle,Cold SpringHarb.Perspect.Biol.7(2015)a015800,http://dx.doi.org/10.1101/ cshperspect.a015800.

[17]A.Pimenta-Marques,I.Bento,C.A.M.Lopes,P.Duarte,S.C.Jana,M. Bettencourt-Dias,Amechanismfortheeliminationofthefemalegamete centrosomeinDrosophilamelanogaster,Science353(2016),http://dx.doi.org/ 10.1126/science.aaf4866(80)aaf4866-aaf4866.

[18]S.J.Radford,J.K.Jang,K.S.McKim,Thechromosomalpassengercomplexis requiredformeioticacentrosomalspindleassemblyandchromosome biorientation,Genetics192(2012)417–429,http://dx.doi.org/10.1534/ genetics.112.143495.

[19]S.J.Radford,A.L.Nguyen,K.Schindler,K.S.McKim,Thechromosomalbasisof meioticacentrosomalspindleassemblyandfunctioninoocytes,Chromosoma 126(2017)351–364,http://dx.doi.org/10.1007/s00412-016-0618-1. [20]S.J.Radford,A.M.M.Go,K.S.McKim,Cooperationbetweenkinesinmotors

promotesspindlesymmetryandchromosomeorganizationinoocytes, Genetics205(2017)517–527,http://dx.doi.org/10.1534/genetics.116.194647. [21]S.J.Radford,T.L.Hoang,A.A.Głuszek,H.Ohkura,K.S.McKim,Lateraland

end-onkinetochoreattachmentsarecoordinatedtoachieveBi-orientationin Drosophilaoocytes,PLoSGenet.11(2015)e1005605,http://dx.doi.org/10. 1371/journal.pgen.1005605.

[22]S.W.Eichhorn,A.O.Subtelny,I.Kronja,J.C.Kwasnieski,T.L.Orr-Weaver,D.P. Bartel,mRNApoly(A)-tailchangesspecifiedbydeadenylationbroadly reshapetranslationinDrosophilaoocytesandearlyembryos,eLife5(2016) 714–724,http://dx.doi.org/10.7554/eLife.16955.

[23]J.D.Richter,CPEB:alifeintranslation,TrendsBiochem.Sci.32(2007) 279–285,http://dx.doi.org/10.1016/j.tibs.2007.04.004.

[24]L.Weill,E.Belloc,F.-A.Bava,R.Méndez,Translationalcontrolbychangesin poly(A)taillength:recyclingmRNAs,Nat.Struct.Mol.Biol.19(2012) 577–585,http://dx.doi.org/10.1038/nsmb.2311.

[25]J.Lim,M.Lee,A.Son,H.Chang,V.N.Kim,mTAIL-seqrevealsdynamicpoly(A) tailregulationinoocyte-to-embryodevelopment,GenesDev.30(2016) 1671–1682,http://dx.doi.org/10.1101/gad.284802.116.

[26]P.Benoit,C.Papin,J.E.Kwak,M.Wickens,M.Simonelig,PAP-andGLD-2-type poly(A)polymerasesarerequiredsequentiallyincytoplasmic

polyadenylationandoogenesisinDrosophila,Development135(2008) 1969–1979,http://dx.doi.org/10.1242/dev.021444.

[27]J.Cui,C.V.Sartain,J.A.Pleiss,M.F.Wolfner,Cytoplasmicpolyadenylationisa majormRNAregulatorduringoogenesisandeggactivationinDrosophila, Dev.Biol.383(2013)121–131,http://dx.doi.org/10.1016/j.ydbio.2013.08.013. [28]J.Cui,K.L.Sackton,V.L.Horner,K.E.Kumar,M.F.Wolfner,Wispy,the

DrosophilahomologofGLD-2,isrequiredduringoogenesisandegg activation,Genetics178(2008)2017–2029,http://dx.doi.org/10.1534/ genetics.107.084558.

[29]M.A.Welte,Proteinsundernewmanagement:lipiddropletsdeliver,Trends CellBiol.17(2007)363–369,http://dx.doi.org/10.1016/j.tcb.2007.06.004. [30]M.H.Sieber,C.S.Thummel,TheDHR96nuclearreceptorcontrols

triacylglycerolhomeostasisinDrosophila,CellMetab.10(2009)481–490,

http://dx.doi.org/10.1016/j.cmet.2009.10.010.

[31]Z.Li,K.Thiel,P.J.Thul,M.Beller,R.P.Kühnlein,M.A.Welte,Lipiddroplets controlthematernalhistonesupplyofDrosophilaembryos,Curr.Biol.22 (2012)2104–2113,http://dx.doi.org/10.1016/j.cub.2012.09.018. [32]M.H.Sieber,C.S.Thummel,Coordinationoftriacylglycerolandcholesterol

homeostasisbyDHR96,CellMetab.10(2012)481–490,http://dx.doi.org/10. 1016/j.cmet.2009.10.010.

[33]E.Parra-Peralbo,J.Culi,Drosophilalipophorinreceptorsmediatetheuptake ofneutrallipidsinoocytesandimaginaldisccellsbyan

endocytosis-independentmechanism,PLoSGenet.7(2011)e1001297,http:// dx.doi.org/10.1371/journal.pgen.1001297.

[34]J.M.Tennessen,N.M.Bertagnolli,J.Evans,M.H.Sieber,J.Cox,C.S.Thummel, CoordinatedmetabolictransitionsduringDrosophilaembryogenesisandthe onsetofaerobicglycolysis,G3(Bethesda)4(2014)839–850,http://dx.doi. org/10.1534/g3.114.010652.

[35]M.H.Sieber,M.B.Thomsen,A.C.Spradling,Electrontransportchain remodelingbyGSK3duringoogenesisconnectsnutrientstateto

reproduction,Cell164(2016)420–432,http://dx.doi.org/10.1016/j.cell.2015. 12.020.

[36]J.B.Stewart,P.F.Chinnery,ThedynamicsofmitochondrialDNAheteroplasmy: implicationsforhumanhealthanddisease,Nat.Rev.Genet.16(2015) 530–542,http://dx.doi.org/10.1038/nrg3966.

[37]M.Sato,K.Sato,MaternalinheritanceofmitochondrialDNAbydiverse mechanismstoeliminatepaternalmitochondrialDNA,Biochim.Biophys. Acta—Mol.CellRes.1833(2013)1979–1984,http://dx.doi.org/10.1016/j. bbamcr.2013.03.010.

[38]Y.Politi,L.Gal,Y.Kalifa,L.Ravid,Z.Elazar,E.Arama,Paternalmitochondrial destructionafterfertilizationismediatedbyacommonendocyticand autophagicpathwayinDrosophila,Dev.Cell29(2014)305–320,http://dx. doi.org/10.1016/j.devcel.2014.04.005.

[39]H.Ma,H.Xu,P.H.O’Farrell,Transmissionofmitochondrialmutationsand actionofpurifyingselectioninDrosophilamelanogaster,Nat.Genet.46(2014) 393–397,http://dx.doi.org/10.1038/ng.2919.

[40]J.H.Hill,Z.Chen,H.Xu,SelectivepropagationoffunctionalmitochondrialDNA duringoogenesisrestrictsthetransmissionofadeleteriousmitochondrial variant,Nat.Genet.46(2014)389–392,http://dx.doi.org/10.1038/ng.2920. [41]T.R.Hurd,B.Herrmann,J.Sauerwald,J.Sanny,M.Grosch,R.Lehmann,Long

oskarcontrolsmitochondrialinheritanceinDrosophilamelanogaster,Dev.Cell 39(2016)560–571,http://dx.doi.org/10.1016/j.devcel.2016.11.004. [42]O.Uryu,T.Ameku,R.Niwa,Recentprogressinunderstandingtheroleof

ecdysteroidsinadultinsects:germlinedevelopmentandcircadianclockin thefruitflyDrosophilamelanogaster,Zool.Lett.1(2015)32,http://dx.doi.org/ 10.1186/s40851-015-0031-2.

[43]M.H.Sieber,A.C.Spradling,Steroidsignalingestablishesafemalemetabolic stateandregulatesSREBPtocontroloocytelipidaccumulation,Curr.Biol.25 (2015)993–1004,http://dx.doi.org/10.1016/j.cub.2015.02.019.

[44]L.D.Deady,W.Shen,S.A.Mosure,A.C.Spradling,J.Sun,Matrix

metalloproteinase2isrequiredforovulationandcorpusluteumformationin Drosophila,PLoSGenet.11(2015)e1004989,http://dx.doi.org/10.1371/ journal.pgen.1004989.

[45]Y.Heifetz,J.Yu,M.F.Wolfner,OvulationtriggersactivationofDrosophila oocytes,Dev.Biol.234(2001)416–424,http://dx.doi.org/10.1006/dbio.2001. 0246.

[46]E.Knapp,J.Sun,Steroidsignalinginmaturefolliclesisimportantfor Drosophilaovulation,Proc.Natl.Acad.Sci.U.S.A.114(2017)699–704,http:// dx.doi.org/10.1073/pnas.1614383114.

[47]L.D.Deady,J.Sun,Afollicleruptureassayrevealsanessentialrolefor follicularadrenergicsignalinginDrosophilaovulation,PLoSGenet.11(2015) e1005604,http://dx.doi.org/10.1371/journal.pgen.1005604.

[48]C.D.Rubinstein,M.F.Wolfner,Drosophilaseminalproteinovulinmediates ovulationthroughfemaleoctopamineneuronalsignaling,Proc.Natl.Acad. Sci.U.S.A.110(2013)17420–17425,http://dx.doi.org/10.1073/pnas. 1220018110.

[49]H.G.Lee,C.S.Seong,Y.C.Kim,R.L.Davis,K.A.Han,OctopaminereceptorOAMB isrequiredforovulationinDrosophilamelanogaster,Dev.Biol.264(2003) 179–190,http://dx.doi.org/10.1016/j.ydbio.2003.07.018.

[50]D.Das,S.Arur,Conservedinsulinsignalingintheregulationofoocytegrowth, development,andmaturation,Mol.Reprod.Dev.84(2017)444–459,http:// dx.doi.org/10.1002/mrd.22806.

[51]D.Drummond-Barbosa,A.C.Spradling,Stemcellsandtheirprogenyrespond tonutritionalchangesduringDrosophilaoogenesis,Dev.Biol.231(2001) 265–278,http://dx.doi.org/10.1006/dbio.2000.0135.

[52]D.R.Nässel,O.I.Kubrak,Y.Liu,J.Luo,O.V.Lushchak,Factorsthatregulate insulinproducingcellsandtheiroutputinDrosophila,Front.Physiol.4 (September)(2013)252,http://dx.doi.org/10.3389/fphys.2013.00252.

(12)

[53]T.Ikeya,M.Galic,P.Belawat,K.Nairz,E.Hafen,Nutrient-dependent expressionofinsulin-likepeptidesfromneuroendocrinecellsintheCNS contributestogrowthregulationinDrosophila,Curr.Biol.12(2002) 1293–1300,http://dx.doi.org/10.1016/S0960-9822(02)01043-6. [54]S.Takeo,S.K.Swanson,K.Nandanan,Y.Nakai,T.Aigaki,M.P.Washburn,L.

Florens,R.S.Hawley,Shaggy/glycogensynthasekinase3andphosphorylation ofSarah/regulatorofcalcineurinareessentialforcompletionofDrosophila femalemeiosis,Proc.Natl.Acad.Sci.U.S.A.109(2012)6382–6389,http://dx. doi.org/10.1073/pnas.1120367109.

[55]D.R.Nässel,J.VandenBroeck,Insulin/IGFsignalinginDrosophilaandother insects:factorsthatregulateproduction,releaseandpost-releaseactionof theinsulin-likepeptides,Cell.Mol.LifeSci.73(2016)271–290,http://dx.doi. org/10.1007/s00018-015-2063-3.

[56]V.L.Horner,M.F.Wolfner,Transitioningfromeggtoembryo:triggersand mechanismsofeggactivation,Dev.Dyn.237(2008)527–544,http://dx.doi. org/10.1002/dvdy.21454.

[57]A.Swan,T.Schupbach,TheCdc20(Fzy)/Cdh1-relatedprotein,Cort, cooperateswithFzyincyclindestructionandanaphaseprogressionin meiosisIandIIinDrosophila,Development134(2007)891–899,http://dx. doi.org/10.1242/dev.02784.

[58]J.A.Pesin,T.L.Orr-Weaver,Developmentalroleandregulationofcortex,a meiosis-specificanaphase-promotingcomplex/cyclosomeactivator,PLoS Genet.3(2007)e202,http://dx.doi.org/10.1371/journal.pgen.0030202. [59]I.Kronja,B.Yuan,S.W.Eichhorn,K.Dzeyk,J.Krijgsveld,D.P.Bartel,T.L.

Orr-Weaver,Widespreadchangesintheposttranscriptionallandscapeatthe Drosophilaoocyte-to-embryotransition,CellRep.7(2014)1495–1508,

http://dx.doi.org/10.1016/j.celrep.2014.05.002.

[60]T.T.Weil,R.M.Parton,B.Herpers,J.Soetaert,T.Veenendaal,D.Xanthakis,I.M. Dobbie,J.M.Halstead,R.Hayashi,C.Rabouille,I.Davis,Drosophilapatterning isestablishedbydifferentialassociationofmRNAswithPbodies,Nat.Cell Biol.14(2012)1305–1315,http://dx.doi.org/10.1038/ncb2627. [61]C.V.Sartain,M.F.Wolfner,CalciumandeggactivationinDrosophila,Cell

Calcium53(2013)10–15,http://dx.doi.org/10.1016/j.ceca.2012.11.008. [62]T.Kaneuchi,C.V.Sartain,S.Takeo,V.L.Horner,N.A.Buehner,T.Aigaki,M.F.

Wolfner,CalciumwavesoccurasDrosophilaoocytesactivate,Proc.Natl.Acad. Sci.U.S.A.112(2015)791–796,http://dx.doi.org/10.1073/pnas.1420589112. [63]A.H.York-Andersen,R.M.Parton,C.J.Bi,C.L.Bromley,I.Davis,T.T.Weil,A

singleandrapidcalciumwaveateggactivationinDrosophila,Biol.Open4 (2015)553–560,http://dx.doi.org/10.1242/bio.201411296.

[64]V.L.Horner,M.F.Wolfner,Mechanicalstimulationbyosmoticandhydrostatic pressureactivatesDrosophilaoocytesinvitroinacalcium-dependent manner,Dev.Biol.316(2008)100–109,http://dx.doi.org/10.1016/j.ydbio. 2008.01.014.

[65]Y.Bobinnec,C.Marcaillou,X.Morin,A.Debec,Dynamicsoftheendoplasmic reticulumduringearlydevelopmentofDrosophilamelanogaster,CellMotil. Cytoskelet.54(2003)217–225,http://dx.doi.org/10.1002/cm.10094. [66]D.S.Schwarz,M.D.Blower,Theendoplasmicreticulum:structure,function

andresponsetocellularsignaling,Cell.Mol.LifeSci.73(2016)79–94,http:// dx.doi.org/10.1007/s00018-015-2052-6.

[67]H.Parry,A.McDougall,M.Whitaker,Endoplasmicreticulumgenerates calciumsignallingmicrodomainsaroundthenucleusandspindleinsyncytial Drosophilaembryos,Biochem.Soc.Trans.34(2006)385–388,http://dx.doi. org/10.1042/BST0340385.

[68]T.Smani,N.Dionisio,J.J.López,A.Berna-Erro,J.A.Rosado,Cytoskeletaland scaffoldingproteinsasstructuralandfunctionaldeterminantsofTRP channels,Biochim.Biophys.Acta—Biomembr.1838(2014)658–664,http:// dx.doi.org/10.1016/j.bbamem.2013.01.009.

[69]M.R.Turvey,K.E.Fogarty,P.Thorn,Inositol(1,4,5)-trisphosphatereceptor linkstofilamentousactinareimportantforgeneratinglocalCa2+signalsin pancreaticacinarcells,J.CellSci.118(2005)971–980,http://dx.doi.org/10. 1242/jcs.01693.

[70]J.K.Foskett,C.White,K.-H.Cheung,D.-O.D.Mak,Inositoltrisphosphate receptorCa2++releasechannels,Phys.Rev.87(2007)593–658,http://dx.doi. org/10.1152/physrev.00035.2006.

[71]Z.J.Whitfield,J.Chisholm,R.S.Hawley,T.L.Orr-Weaver,Ameiosis-specific formoftheAPC/Cpromotestheoocyte-to-embryotransitionbydecreasing levelsofthePolokinaseinhibitorMatrimony,PLoSBiol.11(2013)e1001648,

http://dx.doi.org/10.1371/journal.pbio.1001648.

[72]M.Hara,B.Petrova,T.L.Orr-Weaver,ControlofPNGkinase,akeyregulatorof mRNAtranslation,iscoupledtomeiosiscompletionateggactivation,eLife6 (2017)e22219,http://dx.doi.org/10.7554/eLife.22219.

[73]H.K.Salz,T.W.Flickinger,E.Mittendorf,A.Pellicena-Palle,J.P.Petschek,E.B. Albrecht,TheDrosophilamaternaleffectlocusdeadheadencodesa thioredoxinhomologrequiredforfemalemeiosisandearlyembryonic development,Genetics136(1994)1075–1086,doi:PMC1205864.

[74]B.Loppin,R.Dubruille,B.Horard,TheintimategeneticsofDrosophila fertilization,OpenBiol.5(2015)150076,http://dx.doi.org/10.1098/rsob. 150076.

[75]S.Tirmarche,S.Kimura,R.Dubruille,B.Horard,B.Loppin,Unlockingsperm chromatinatfertilizationrequiresadedicatedeggthioredoxininDrosophila, Nat.Commun.7(2016)13539,http://dx.doi.org/10.1038/ncomms13539. [76]A.V.Emelyanov,D.V.Fyodorov,Thioredoxin-dependentdisulfidebond

reductionisrequiredforprotamineevictionfromspermchromatin,Genes Dev.30(2016)2651–2656,http://dx.doi.org/10.1101/gad.290916.116. [77]K.L.Sackton,J.M.Lopez,C.L.Berman,M.F.Wolfner,YAisneededforproper

nuclearorganizationtotransitionbetweenmeiosisandmitosisinDrosophila, BMCDev.Biol.9(2009)43,http://dx.doi.org/10.1186/1471-213X-9-43. [78]D.D.Fenger,J.L.Carminati,D.L.Burney-Sigman,H.Kashevsky,J.L.Dines,L.K.

Elfring,T.L.Orr-Weaver,PANGU:aproteinkinasethatinhibitsS-phaseand promotesmitosisinearlyDrosophiladevelopment,Development127(2000) 4763–4774.

[79]L.Vardy,T.L.Orr-Weaver,TheDrosophilaPNGkinasecomplexregulatesthe translationofcyclinB,Dev.Cell12(2007)157–166,http://dx.doi.org/10. 1016/j.devcel.2006.10.017.

[80]W.Tadros,A.L.Goldman,T.Babak,F.Menzies,L.Vardy,T.Orr-Weaver,T.R. Hughes,J.T.Westwood,C.A.Smibert,H.D.Lipshitz,SMAUGisamajor regulatorofmaternalmRNAdestabilizationinDrosophilaanditstranslation isactivatedbythePANGUkinase,Dev.Cell12(2007)143–155,http://dx.doi. org/10.1016/j.devcel.2006.10.005.

[81]L.Chen,J.G.Dumelie,X.Li,M.H.Cheng,Z.Yang,J.D.Laver,N.U.Siddiqui,J.T. Westwood,Q.Morris,H.D.Lipshitz,C.A.Smibert,GlobalregulationofmRNA translationandstabilityintheearlyDrosophilaembryobytheSmaug RNA-bindingprotein,GenomeBiol.15(2014)R4,http://dx.doi.org/10.1186/ gb-2014-15-1-r4.

[82]M.Wang,M.Ly,A.Lugowski,J.D.Laver,H.D.Lipshitz,C.A.Smibert,O.S. Rissland,ME31BgloballyrepressesmaternalmRNAsbytwodistinct mechanismsduringtheDrosophilamaternal-to-zygotictransition,eLife6 (2017)e27891,http://dx.doi.org/10.7554/eLife.27891.

[83]F.Winkler,M.Kriebel,M.Clever,S.Gröning,J.Großhans,Essentialfunctionof theserinehydroxymethyltransferase(SHMT)geneduringrapidsyncytialcell cyclesinDrosophila,G3(Bethesda)7(2017)2305–2314,http://dx.doi.org/10. 1534/g3.117.043133.

[84]Y.Song,R.A.Marmion,J.O.Park,D.Biswas,J.D.Rabinowitz,S.Y.Shvartsman, DynamiccontrolofdNTPsynthesisinearlyembryos,Dev.Cell42(2017) 301–308,http://dx.doi.org/10.1016/j.devcel.2017.06.013,e3.

[85]X.Belles,M.D.Piulachs,Ecdysonesignallingandovariandevelopmentin insects:fromstemcellstoovarianfollicleformation,Biochim.Biophys. Acta—GeneRegul.Mech.1849(2015)181–186,http://dx.doi.org/10.1016/j. bbagrm.2014.05.025.

[86]M.H.Sieber,A.C.Spradling,Theroleofmetabolicstatesindevelopmentand disease,Curr.Opin.Genet.Dev.45(2017)58–68,http://dx.doi.org/10.1016/j. gde.2017.03.002.

[87]J.Dupont,R.J.Scaramuzzi,Insulinsignallingandglucosetransportinthe ovaryandovarianfunctionduringtheovariancycle,Biochem.J.473(2016) 1483–1501,http://dx.doi.org/10.1042/BCJ20160124.

[88]I.Ivanovska,E.Lee,K.M.Kwan,D.D.Fenger,T.L.Orr-Weaver,TheDrosophila MOSorthologisnotessentialformeiosis,Curr.Biol.14(2004)75–80,http:// dx.doi.org/10.1016/j.cub.2003.12.031.

[89]S.Robertson,R.Lin,Theoocyte-to-embryotransition,Adv.Exp.Med.Biol.757 (2013)351–372,http://dx.doi.org/10.1007/978-1-4614-4015-4-12. [90]J.T.Wang,J.Smith,B.C.Chen,H.Schmidt,D.Rasoloson,A.Paix,B.G.Lambrus,

D.Calidas,E.Betzig,G.Seydoux,RegulationofRNAgranuledynamicsby phosphorylationofserine-rich,intrinsicallydisorderedproteinsinC.elegans, eLife3(2014)e04591,http://dx.doi.org/10.7554/eLife.04591.

[91]J.M.Parry,A.Singson,EGGmoleculescoupletheoocyte-to-embryotransition withcellcycleprogression,SpringerBerlinHeidelberg,ResultsProbl.Cell Differ.53(2011)135–151,http://dx.doi.org/10.1007/978-3-642-19065-07.

Figure

Fig. 1. Overview of Drosophila oogenesis and early development. Drosophila has two ovaries, each of which contains 20–30 ovarioles
Fig. 3. Signaling events and metabolic changes during oocyte maturation. Lipids and carbohydrate stores that will serve as energy sources accumulate in a stepwise manner during late oogenesis
Fig. 4. Overview of egg activation in Drosophila. Passage of the oocyte through the oviduct triggers egg activation

Références

Documents relatifs

In our past research on this problem, we have developed several systems for enhancement and bandwidth compression of noisy speech by attempting to estimate the

Pour ces jeunes, le fait de vouloir séduire c’est d’abord de sentir bon, faire du sport afin d’avoir un plus beau corps. Les filles feront plus attention à elles en se

Americans con- sume more spaghetti per capita that any other nation in the world, and the Old Spaghetti Factory is a successful Oregon-based all-American restaurant chain; Swiss

Finally, a wheel with a built in inverted motor by Maxon will be used as a brake system to allow the vehicle to hold its position in the pipe. These motors were obtained this

The present paper presents an extension of the paper by Dalmont et al (JASA, 2005), searching for a diagram of oscilla- tion regimes with respect to the reed opening and the

APC: allophycocyanin; BMC: bone marrow-derived cell; BMMC: bone marrow mononuclear cell; BONAMI: Bone marrow in acute myocardial infarction; CFU: colony forming unit;

However, one particular epidemiological pattern was shared by four longitudinal cohort stud- ies: the rate of inapparent DENV infections was positively correlated with the incidence

This thesis identifies strategies for Codman Square Neighborhood Development Corporation to reduce costs in its administration of the 1-4 Family Program, a