• Aucun résultat trouvé

Placer en Ordre de Fractions et de Nombres Fractionnaires Positifs avec des Fractions Mixtes (A)

N/A
N/A
Protected

Academic year: 2021

Partager "Placer en Ordre de Fractions et de Nombres Fractionnaires Positifs avec des Fractions Mixtes (A)"

Copied!
2
0
0

Texte intégral

(1)

Placer en Ordre de Fractions (A)

Nom:

Date:

Ecrivez chaque ensemble de fractions ou nombres fractionnaires dans l’ordre

indiqué.

1)

2

8

9

, 1

56

,

203

, 1, 2

10091

plus petit plus grand

2)

2

9

25

, 2

12

,

23

, 1

24

,

104

plus petit plus grand

3)

2

3

50

,

15

, 2

34

, 1

10058

, 1

plus grand plus petit

4)

1

3

5

, 1

23

, 2

56

, 1

121

, 2

12

plus petit plus grand

5)

2

7

25

, 1

59

, 1

1112

, 2

35

, 1

10097

plus grand plus petit

6)

2

11

12

, 1, 2,

1120

,

2050

plus grand plus petit

7)

1,

6

10

, 2

10063

, 1

13

,

2950

plus petit plus grand

8)

2

3

6

, 1, 1

49

, 2

106

, 2

plus grand plus petit

9)

2

81

100

, 1

101

, 1

507

, 1

204

,

36

plus petit plus grand

10)

2

1

8

, 1

1825

, 2

49

,

125

, 2

103

plus petit plus grand

(2)

Placer en Ordre de Fractions (A) Réponses

Nom:

Date:

Ecrivez chaque ensemble de fractions ou nombres fractionnaires dans l’ordre

indiqué.

1)

2

8

9

, 1

56

,

203

, 1, 2

10091

3

20

, 1, 1

56

, 2

89

, 2

10091 plus petit plus grand

2)

2

9

25

, 2

12

,

23

, 1

24

,

104

4

10

,

23

, 1

24

, 2

259

, 2

12 plus petit plus grand

3)

2

3

50

,

15

, 2

34

, 1

10058

, 1

2

34

, 2

503

, 1

10058

, 1,

15

plus grand plus petit

4)

1

3

5

, 1

23

, 2

56

, 1

121

, 2

12

1

121

, 1

35

, 1

23

, 2

12

, 2

56

plus petit plus grand

5)

2

7

25

, 1

59

, 1

1112

, 2

35

, 1

10097

2

35

, 2

257

, 1

10097

, 1

1112

, 1

59

plus grand plus petit

6)

2

11

12

, 1, 2,

1120

,

2050

2

1112

, 2, 1,

1120

,

2050

plus grand plus petit

7)

1,

6

10

, 2

10063

, 1

13

,

2950

29

50

,

106

, 1, 1

13

, 2

10063 plus petit plus grand

8)

2

3

6

, 1, 1

49

, 2

106

, 2

2

106

, 2

36

, 2, 1

49

, 1

plus grand plus petit

9)

2

81

100

, 1

101

, 1

507

, 1

204

,

36

3

6

, 1

101

, 1

507

, 1

204

, 2

10081 plus petit plus grand

10)

2

1

8

, 1

1825

, 2

49

,

125

, 2

103

5

12

, 1

1825

, 2

18

, 2

103

, 2

49 plus petit plus grand

Références

Documents relatifs

Multiple discrete-energy ion bands observed by the Polar satellite in the inner magnetosphere on 9 Febru- ary 1998 were investigated by means of particle simulation with a

A case study objectively selected by means of a rotated principal component analysis over the diabatic field is analyzed to test the proposed parametrization.. This study highlights

The assumptions are that substorms expansions are the unloading of magnetic energy stored in the tail and that of the energy thus unloaded more goes into the ionosphere as Joule

Two conclusions are reached: (1) with an optimal set of solar-wind data available, the AE predictions are not markedly improved by the Dst input, but (2) the AE predictions are

Thermal, pressure and wind fields at ground level in the area of the Italian base at Terra Nova Bay, Victoria Land, Antarctica, as observed by a network of automatic weather

We ®nd, for instance, that in cases where the electron temperature is striated along B0 and low frequency waves (x  Xci) are excited in this environ- ment, for instance by a

From comparison of ground observations of auroral forms with meridional pro®les of particle ¯ux measured simultaneously by the low-altitude NOAA satellites above the ground

In layer 1 there are no magnetic field components for the VED (i.e. Computations of the electric field compo- nents are made following the procedure described in Sect. 4.2 using