• Aucun résultat trouvé

Pesticide transfer in the unsaturated zone : sorption and degradation porcesses in geological stratum

N/A
N/A
Protected

Academic year: 2021

Partager "Pesticide transfer in the unsaturated zone : sorption and degradation porcesses in geological stratum"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-02748776

https://hal.inrae.fr/hal-02748776

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pesticide transfer in the unsaturated zone : sorption and degradation porcesses in geological stratum

Hélène Blanchoud, Enrique Barriuso, Valerie Bergheaud, Céline Schott, Julien Tournebize, Laurine Nicola, Gaëlle Tallec, Anniet M. Laverman, Florence

Habets

To cite this version:

Hélène Blanchoud, Enrique Barriuso, Valerie Bergheaud, Céline Schott, Julien Tournebize, et al..

Pesticide transfer in the unsaturated zone : sorption and degradation porcesses in geological stratum.

XIV Symposium in Pesticide Chemistry, Università Cattolica del Sacro Cuore. ITA., 2011, Piacenza, Italy. n.p. �hal-02748776�

(2)

PESTICIDE TRANSFER IN THE UNSATURATED ZONE: SORPTION AND DEGRADATION

PROCESSES EXPERIMENTATION

Hélène BLANCHOUD* & Enrique BARRIUSO*, Valérie BERGHEAUD, Céline SCHOTT, Julien TOURNEBIZE, Laurine NICOLA, Gaëlle TALLEC, Anniet LAVERMAN, Medhi ZERARKA, Céline Roose-Amsaleg & Florence HABETS

*Co-first authors : helene.blanchoud@upmc.fr & barriuso@grignon.inra.fr

(3)

Introduction

Models need to describe transfer processes of pesticides in all compartments

Lots of studies in soils, water

The unsaturated zone considered as passive transfer

However, unknown stock of pesticides in catchments

Need to better describe the unsaturated zone : Sorption processes of pesticides

Degradation processes

(4)

The Orgeval catchment

The PIREN Seine Program:

3 sites for pesticides studies

103 km²

Hydrological equipment since 1962 Mainly agricole

81% culture 18% forest 1% urban area The Orgeval catchment

for the soil-groundwater- river system studies

(5)

New studies: The Phyt’Oracle Project (CNRS funding)

Pesticide uses description and crop studies

Core sample until groundwater (FIRE 3020 funding)

Long term observation of contamination of groundwater and river by pesticides

Modeling chain developpment : The Eaudyssée Platform

Z1

Z2

Z3

Z4

Z5

Z6 Z7

Nappe de Brie Nappe de Champigny

Z1

Z2

Z3

Z4

Z5

Z6 Z7

Nappe de Brie Nappe de Champigny

The Orgeval catchment

EC2Co

Phyt’Oracle

EC2Co

Phyt’Oracle

(6)

Core samples over 40m depth in 2008

Layer characteristics

Measure of adsorption

Measure of degradation kinetics :

mineralisation and by products formation

Bacterial community profiling (second core sampling in 2011)

Description of pesticide behaviour in the

unsaturated zone

Data collection for modeling and comparison with the unsaturated zone

Sampling procedure

Sorption and degradation in soils (2009)

Monthly pesticide contamination in river and piezometers (since 2008)

(7)

Materials and method

Adsorption procedure

14C U-ring labelled atrazine and isoproturon (only isoproturon for surface soils)

Triplicate10ml water (with 2mg pesticide) to 2g of dried soils (about 10mg/kg)

24h shaking (dark and room temperature)

Centrifugation (10 min.)

Surnatant sample for radioactivity measure (compteur Tri-Carb 2100TR Packard)

Degradation procedure

C14 U-ring labelled atrazine and isoproturon (only isoproturon for surface soils)

Triplicate 10g of dried soils for each pesticide and each date of incubation

Add 1ml water containing about 11mg/L of each pesticide

Put in a 500ml hermetic jar with 1 beaker of water (humidity control) and 1 with 3 ml of NaOH 2N (14CO2 capture) in dark at 28°C during incubation times: 7, 14, 28 & 70 days

Triplicates sacrified for each incubation date and extracted 1 time with water containing CaCl2 10-2 mole/L and 3 times with methanol for radioactivity measure (compteur Tri- Carb 2100TR Packard) and residues analyses (HPLC: diode array detector, Waters)

(8)

Materials and method

Bacterial community profiling by PCR (Polymerase Chain Reaction)

Samples were collected in another core sampled in 2011

DNA extrations were done in duplicate, consequently 2 profiles of each depth

PCR with 16S RDNA targeting primers (3 different trials to get enough PCR product)

(9)

Adsorption in each layer (16 samples) Degradation until 70 days (5 samples)

Layers composition

(10)

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Teneur en carbone organique (en %)

Kd (en l/kg)

Adsorption de l'isoproturon

Unsaturated zone Surface

Kd

%OC

Results : Isoproturon Sorption

Low % of organic carbon in the unsaturated zone (ZNS) Same Kd for isoproturon in soils and the unsaturated zone

Depth Number of field

(11)

Low mineralisation after 70 days :

1% for atrazine, 3% for isoproturon in upper layers, Less than 0,5% in deeper layers

Results : Mineralisation rate

In the unsaturated zone :

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0 20 40 60 80

Quantité minéralisées en % de l'apport initial

temps d'incubation en jours Minéralisation d' l'atrazine

1,6 12,50 21,30 29,60 37,25

Minéralisation de l'isoproturon

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0 20 40 60 80

tem ps d'incubation en jour

Quantité minéralisée en % de l'apport initial 1,6

12,50 21,30 29,60 37,25

Isoproturon Atrazine

Incubation (days) Incubation (days)

% of 14 CO2accordingto initial radioactivity % of 14 CO2accordingto initial radioactivity

Depth Depth

(12)

0 10 20 30 40

0 10 20 30 40 50 60 70

Quantités minéralisées en % de l'apport initial

Temps d'incubation en jours

Minéralisation de l'isoproturon dans les sols différents sols de surface

parcelle 34 parcelle 35 parcelle 36 parcelle 38 parcelle 39 parcelle 43 parcelle 66 Minéralisation de l'isoproturon

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0 20 40 60 80

tem ps d'incubation en jour

Quanti minéralisée en % de l'apport initial 1,6

12,50 21,30 29,60 37,25

Isoproturon in Unsaturated zone

Incubation (days) Incubation (days)

% of 14 CO2accordingto initial radioactivity % of 14 CO2accordingto initial radioactivity

Isoproturon in soils

Results : Mineralisation rate

Low mineralisation in the unsaturated zonecompared with soils Soil mineralisation between 15 and 30% of initial quantities

Comparison between the unsaturated zone and soil surface :

Depth

(13)

Not extractible

Extracted with méthanol Extracted with water Minéralized

No change of the disponibility during incubation

Residues are mainly extracted with water

No bound residues in the unsaturated zone

Results: Disponibility of residues

0 20 40 60 80 100

Depth (m) Atrazine residues

70 days 28 days

14 days 7 days

% of initial radioactivity

0 20 40 60 80 100

Depth (m)

Isoproturon residues

14 days 28 days 70 days

7 days

% of initial radioactivity

(14)

Results: Disponibility of residues

Comparison between the unsaturated zone and soil surface :

Not extractible

Extracted with méthanol Extracted with water Minéralized

Larger bound residues in soils

Extracted residues decrease from 7 to 28 days in soils

0 20 40 60 80 100

Depth (m)

Isoproturon residues in the unsaturated zone

14 days 28 days 70 days

7 days

% of initial radioactivity

0 20 40 60 80 100

34 35 36 38 39 43 66 34 35 36 38 39 43 66 34 35 36 38 39 43 66 34 35 36 38 39 43 66

% of initial radioactivity

number of field

Isoproturon residues in soil surface

7 days 14 days 28 days 70 days

(15)

Mainly the active substances, mainly in deeper layers

More by-products in the upper layer

Results: Identification of extracted residues

0 20 40 60 80 100

en % de la quanti de 14C-atrazine initiale

Depth (m)

OHA OHDEA OHDIA ATRA DEA DIE DEDIA

% of initial radioactivity

Atrazine residues

28 days

7 days 14 days 70 days

0 20 40 60 80 100

% of initial radioactivity

Depth (m)

IPU

Monodéméthyl-IPU didéméthyl-IPU ND

ND

Isoproturon residues

28 days

7 days 14 days 70 days

(16)

Results: Identification of extracted residues

Comparison between the unsaturated zone and soil surface :

Larger quantities of bound residues and mineralisation

More by-products in surface soils

0 20 40 60 80 100

% of initial radioactivity

Depth (m)

IPU

Monodéméthyl-IPU didéméthyl-IPU ND

ND

Isoproturon residues in unsaturated zone

28 days

7 days 14 days 70 days

0 10 20 30 40 50 60 70 80 90 100

% of initial radioactivity

Number of f ield

Isoproturon residues in surface soils

Isopropylanyline IPU

Monodéméthyl-IPU didéméthyl-IPU ND

ND ND 28 days

7 days 14 days 70 days

(17)

15 cm 30 cm

80 cm 170 cm 560 cm 630 cm

780 cm 840 cm

M M

High bacterial diversity in the top layers: 15 and 30 cm depth

Highly variable bacterial community structure at 80 cm, very different from the upper layers

Deeper layers containing less DNA ; difficult to obtain PCR products

At deeper depth a less

diverse bacterial community structure

Further analysis of the profiles to be done (image analysis of the profiles)

Results : Bacterial community profiling

(18)

Depth (m) DT50 atrazine  DT50 isoproturon

1,6 127 26

12,50 57 12

21,30 106 74

29,60 219 220

37,25 186 259

Surface Soils DT50 isoproturon

Meanof fields 4‐6 days

Discussion: experimental data

Adsorption : low OC in the unsaturated zone but adsorption occurs

This adsorption is reversible

Degradation: faster in upper than in lower layers related to  bacterial activity, but low compared with surface soils

Unsaturated

zone  Kd Atrazine  (mL/kg) Kocatrazine Kdisoproturon

(mL/kg) Koc isoproturon

Min‐max 0.1 – 13.8 44 – 4200 1.0 – 3.1 180 ‐3475

Mean 1.64 1480 1.61 2050

Surface soils Kdisoproturon

(mL/kg) Koc isoproturon

Min‐max 1.2 – 2.7 9.4 – 12.8

Mean 1.80 11.1

(19)

• Transfer of pesticides in the unsaturated zone (Atrazine and Isoproturon)

Only few mineralisation in deepest zones: < 0,5%, due to low bacterial activity

Disponibility of the active substance: extractible with water: 40%

after 70 days of incubation

• Processes for modeling the unsaturated zone

Adsorption-desorption processes can be considered in the unsaturated zone

Kd is a better descriptor of sorption than Koc in the unsaturated zone

Adsorption is mainly reversible

Mineralisation can be neglected (for atrazine and isoproturon)

• Next step : modeling approach (cf poster) Conclusion

(20)

Thank you for your attention!

Références

Documents relatifs

In terms of the temperature dependence of the quenching rate, previous work has shown that the rate constant for this process displays a negative temperature

Par ailleurs, la revue de littérature relative à la divulgation des FCI nous a permis de constater que les recherches antérieures, généralement de type

We have reasons to believe that KVol behaves differently in H(2), both from the systolic volume in H(2), and from KVol itself in the moduli space of hyperbolic surfaces of genus 2

6‐18   Room  temperature  data  for  the  reaction  rate  constant  from  different  studies  are  consistent  with  each  other; 7‐15   however  the 

Relative rate coefficients for the reactions of ozone with 2- and 3-carene were determined by comparing their rates of decay with that of a reference compound (cyclohexene

Again, a large increase of the noise is clearly seen inside the resonator half bandwidth, in spite of an attempt of reducing the intra cavity power (the three

Aspects struc- turaux et magnétiques de cristaux de ZnO et de films Zn 1-x M x O (M=Co, Mn) épitaxiés par ablation laser sur substrats de ZnO(00.. Réunion du Groupement De

Une des particularités de cette loi est qu’elle ouvre la possibilité à un médecin de pratiquer une euthanasie suite à la demande d’un patient, demande pouvant être basée sur une