• Aucun résultat trouvé

Early degassing of lunar urKREEP by crust-breaching impact(s)

N/A
N/A
Protected

Academic year: 2021

Partager "Early degassing of lunar urKREEP by crust-breaching impact(s)"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-01318456

https://hal.sorbonne-universite.fr/hal-01318456v2

Submitted on 26 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Early degassing of lunar urKREEP by crust-breaching impact(s)

Jessica J. Barnes, Romain Tartese, Mahesh Anand, Francis M. Mccubbin, Clive R. Neal, Ian A. Franchi

To cite this version:

Jessica J. Barnes, Romain Tartese, Mahesh Anand, Francis M. Mccubbin, Clive R. Neal, et al.. Early

degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters,

Elsevier, 2016, 447, pp.84-94. �10.1016/j.epsl.2016.04.036�. �hal-01318456v2�

(2)

Contents lists available atScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Early degassing of lunar urKREEP by crust-breaching impact(s)

Jessica J. Barnesa,, Romain Tartèsea,b, Mahesh Ananda,c, Francis M. McCubbind, Clive R. Neale,Ian A. Franchia

aPlanetary&SpaceSciences,TheOpenUniversity,WaltonHall,MK76AA,UK

bInstitutdeMinéralogie,dePhysiquedesMatériauxetdeCosmochimie,MuséumNationald’HistoireNaturelle,SorbonneUniversités,CNRS,UPMC&IRD, 75005 Paris,France

cEarthSciencesdepartment,NaturalHistoryMuseum,London,SW75BD,UK

dNASAJohnsonSpaceCenter,MailcodeXI2,2101NASAParkway,Houston,TX 77058,USA

eDepartmentofCivil&EnvironmentalEngineering&EarthScience,UniversityofNotreDame,IN46556,USA

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received4December2015

Receivedinrevisedform18April2016 Accepted20April2016

Availableonline13May2016 Editor:B.Marty

Keywords:

Moon apatite volatiles NanoSIMS chlorine magmaocean

Current models for the Moon’s formation have yet tofully account for the thermal evolutionof the MooninthepresenceofH2Oandothervolatiles.Ofparticularimportanceischlorine,sincemostlunar samples are characterised by unique heavy δ37Cl values, significantly deviating from those of other planetary materials,includingEarth, forwhichδ37Clvalues clusteraround 0h.Inorderto unravel the cause(s)oftheMoon’suniquechlorineisotopesignature,weperformedacomprehensive studyof high-precisioninsituClisotopemeasurementsofapatitefromasuiteofApollosampleswitharangeof geochemicalcharacteristicsandpetrologictypes.TheCl-isotopiccompositionsmeasuredinlunarapatite inthestudiedsamplesdisplayawiderangeofδ37Clvalues(reachingamaximumvalueof+36h),which are positivelycorrelatedwiththeamountofpotassium(K),RareEarthElement(REE)andphosphorous (P)(KREEP)component ineachsample.Usingthesenewdata,integratedwithexistingH-isotope data obtainedforthesamesamples,weareabletoplacethesefindingsinthecontextofthecanonicallunar magmaocean(LMO)model.TheresultsareconsistentwiththeurKREEPreservoirbeingcharacterisedby aδ37Cl∼+30h.SuchaheavyClisotopesignaturerequiresmetal-chloridedegassingfromaCl-enriched urKREEPLMOresidue,aprocesslikelytohavebeentriggeredbyatleastonelargecrust-breachingimpact eventthatfacilitatedthetransportandexposureofurKREEPliquidtothelunarsurface.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

ExistingmodelsfortheformationoftheMoon(´CukandStew- art, 2012; Canup, 2012) predict widespread melting and partial vaporisation of silicate material. Hydrodynamic escape (Pahlevan and Stevenson, 2007) may have facilitated the extensive loss of volatilestothevacuumofspaceduringtheproto-lunardiskphase.

PahlevanandStevenson (2007)alsopresentedanelegantmodelto explain the isotopic similarity of oxygen isotopes (e.g., Wiechert etal.,2001) betweentheEarthandtheMoon.Inaddition,Canup et al. (2015) have recentlyprovided possible mechanisms to ex- plainsomeisotopicdifferencesbetweenthesetwobodies(e.g.,Zn).

However,collectively thesemodelshaveyettofullyreconcilethe thermalevolutionoftheearlyMoonwiththepresenceofH2Oand otherassociatedvolatilesignaturesinthelunarinterior,that have beenrecognisedthroughstudiesoflunarsamples.

* Correspondingauthor.

E-mailaddress:jessica.barnes@open.ac.uk(J.J. Barnes).

In lunar rocks, apatite [Ca5(PO4)3(F,Cl,OH)] is the most com- monvolatile-bearingmineral(McCubbinetal.,2015a).Amultitude of studies have investigated the abundances of volatiles (H2O, F, and Cl, e.g., McCubbin et al., 2010a, 2010b, 2011; Boyce et al., 2010) and the hydrogen isotopic compositions of lunar apatite (e.g., Greenwood et al., 2011; Barnes et al., 2013, 2014; Tartèse etal.,2013, 2014a,2014b;Boyceetal.,2015).Thesestudieshave shownthat(i) parentalmeltstothemarebasaltscontainedH2O>

F> Cl,whilsttheparentmeltstothelunarhighlandsrockswere characterisedby Cl> H2OF(McCubbinetal., 2015a), and(ii) that apatite in mare basalts were generally characterised by el- evated H-isotope signatures (>+600h, Greenwood et al., 2011;

Tartèse et al., 2013). TheseH-isotope compositionsare similar to those measured in the lunar picritic glasses (Saal et al., 2013;

Füri et al., 2014), which have been interpreted, at least in part, as resulting from degassing of molecular H2 during ascent and emplacement of basaltic magmas on the lunar surface under re- ducing conditions.Currently, it has been argued that only a few samples (olivine-hosted melt inclusions trapped within picritic http://dx.doi.org/10.1016/j.epsl.2016.04.036

0012-821X/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(3)

glass beads, some KREEP basalts and a few plutonic highlands rocks) may have preserved primitive lunar H-isotopic composi- tions(Saaletal., 2013; Barnesetal., 2014; Tartèseetal., 2014a).

In the context of the lunar magma ocean (LMO) model, late- stage LMO residual melts are thought to have been enriched in incompatible elements such as K, REEs, and P, which are col- lectively called urKREEP or a KREEP-component, when referred toasa geochemicalreservoir orgeochemicalcomponent, respec- tively (Warren and Wasson, 1979). It is anticipated that chlorine (andother volatiles) shouldhavebeen concentratedin theresid- ualLMO melts givenits incompatibility in olivine and pyroxene, which were the dominant early phases to crystallise in the cu- mulate pile of the LMO (e.g., Snyder et al., 1992; Elkins-Tanton et al., 2002, 2011; Elkins-Tanton and Grove, 2011; Elardo et al., 2011). When compared to chondritic meteorites and terrestrial rocks (e.g., Sharp et al., 2013a), most lunar samples have exotic Clisotopiccompositions(Sharpetal.,2010; Treimanetal.,2014;

Tartèse et al., 2014b; Boyce et al., 2015), which are difficult to explain in light of the abundance and isotopic composition of other volatilespecies, especially H,andthe currentestimatesfor Cland H2Oin the BulkSilicateMoon (BSM) (Hauri etal., 2015;

McCubbinetal.,2015a).

Inordertofullyunderstandthemeaningandsignificanceofthe uniqueCl-isotopecompositionsdisplayedbythemajorityoflunar rocksandtoplacetheseinthecontextofthedifferentiationofthe Moon,weinvestigatedtheCl-isotopiccompositionofapatitefrom a diverse set of lunar samples from Apollo missions: 11 (10044

&10058),14(14304),15(15386&15555),and17(70035,76535, 78235&79215).Oursamplesetcoversarangeoflunarlithological types,includingKREEPandveryhighpotassium(VHK)basalts,and selectedplutonichighlandsrocks(fulldetailscan befoundinthe SupplementaryInformation).

2. Analyticalprotocols

High-precisioninsitumeasurementsofCl-isotopesandvolatiles inapatite fromthefollowing nine Apollothin-sections were car- riedoutinthiswork:10044,645;10058,254;14304,177;15386,46;

15555,206;70035,195;76535,51; 78235,43and79215,50.Twenty eightapatite grainswere identifiedas beingsuitable foranalysis by ion probe (see below). During the analytical campaign, scan- ningelectronmicroscopy (SEM)andelectronprobe microanalysis (EPMA) were carriedout in order to characterise mineral chem- istryinthe thin-sectionsstudied, followingthe methodsdetailed inBarnesetal. (2014).

The abundance and isotopic composition of Cl in lunar ap- atite grains were measured using the Cameca NanoSIMS 50L at the Open University and a protocol modified after Tartèse et al.

(2014b) overthree analytical campaigns fromNovember 2014to August2015.AnalyseswerecarriedoutusingaCs+primarybeam of1 μmdiameter,withan accelerating voltageof16 kV. Be- foreeach analysis, thearea ofinterest was pre-sputteredusing a

120 pA probecurrentfor3 minutesat 8×8 μm to ensurethe area was thoroughly cleaned of surface contamination. Analyses wereperformedusingaprimaryprobecurrentofbetween40and 60pA,for5 minutes, overrastered areasofbetween3×3 μm and5×5 μm.Electronicgatingwasusedtocollectsecondaryions emittedfromonlytheinner 25%oftherasteredareas.Secondary negativeionsof16O1H,18O, 35Cl,37Cl,and40Ca19Fwerecollected simultaneouslyonelectronmultipliers(EMs).40Ca19Fwasusedto easily identify apatite on real-time secondary ionimages during pre-sputteringandto monitorFcontents, butit was notused to preciselyquantifyapatiteFcontentsduetothepoorionisationef- ficiencyof40Ca19F.A massresolvingpowerof8000(Camecadef- inition)wasusedinordertoreadilyresolveisobaricinterferences, particularlybetweenpeaksof 17Oand16O1H. Each1-inchround

Fig. 1.CalibrationsfortheapatitestandardsusedinthisstudyofknownClcontent (wt%)versusthemeasured35Cl/18Oratio,forarepresentativeanalyticaldayduring eachofthethreeanalyticalsessions.

thin-section was coated with30 nm of gold and an electron flood gun was used for charge compensation.Secondary ion im- ages of16O1H weremonitored inrealtime during pre-sputtering andafter analysisto ensurethat the analysed areaswere free of anysurficialcontamination,cracks,orhotspots.

ApatiteClcontentswerecalibratedusingthemeasured35Cl/18O ratios and the known Clcontents ofterrestrial apatite standards (described inMcCubbin etal., 2010a,2012), whichwere pressed intoanindiummountalongwithaSanCarlosolivinecrystalthat was used to estimate background abundances of H2O (between

10and90 ppm)andCl(<5 ppm).The slopesofthecalibration lines(Fig. 1)definedbyapatitestandardswithvaryingClcontents were used to calculate the Cl contents of apatite in the Apollo samples.Theuncertainties reportedontheClcontentsofthe‘un- known’ apatite combine the 2σ uncertainty associated with the calibrations andthe analytical uncertainties associated witheach individualmeasurement.

Finally, two of the reference apatite grains, Ap005 or Ap004 (McCubbin et al., 2012), were used to correct the measured 37Cl/35Cl ratios for instrumental mass fractionation. The isotopic composition of chlorine is reported using the standard delta (δ) notation withrespectto the37Cl/35Clratioofthestandard mean oceanchloride(SMOC, 37Cl/35Clratio= 0.31977),andisreported with the associated 2σ uncertainties, which combine the repro- ducibility of37Cl/35Clmeasurements on thereferenceapatite(ei- therAp005orAp004)andtheinternaluncertaintyofeachanalysis.

Fig. 2 shows an example of the reproducibility of δ37Cl values measured on a secondary apatite standard (Ap003) run during theFebruarysessionandreferencedtoAp004(Ap004hasaδ37Cl value of ∼+0.11h, Zach Sharp, University of New Mexico, pers.

comm.).AllAp003analysesarewithinerroroftheterrestrialvalue of0±1h(Sharpetal.,2013a),withanaverageδ37Clvaluefor theanalyticalweekof+0.17±1.26h.

3. Results

3.1. Petrographiccontextoflunarapatite

Inthin-section 10044,645,apatiteoccursincontactwithnon- mesostasis pyroxene,plagioclaseandsometimes withtroilite (ap- atite5, forexample,whichisone ofthe largestapatite grainsin this sample at200 μm in thelongest dimension; Fig. 3A). Ap- atitealsooccursenclosed,almostexclusively,withinclinopyroxene crystals.Forexampleapatite 6C,whichis<50 μminthe longest dimension and is euhedral(showing basal section habit) on one sidebutdisplays apartiallyresorbedtextureontheotherside of

(4)

Fig. 2.Plotofδ37Clvaluesforsecondaryapatitestandard(Ap003)foranalysesfrom 13thFebruaryto18thFebruary2015.Theerrorbarsrepresentthe2σ uncertainties andareacombinationofthereproducibilityontheprimaryreferenceapatiteand analyticalerrorassociatedwithindividualmeasurements.Thereddiamondatthe extremerighthandsideoftheplot,istheaverageδ37Clvalueforthatsessionand theerrorbarsrepresentthestandarddeviationofthemeasuredvalues(n=32).

(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

thecrystal(Fig. 3B).Apatiteanalysed inthisstudyisalsopresent indirectcontactwithmesostasisminerals,mostlyK-feldspar,silica, fayalite,andasymplectiteassemblageconsistingoffayalite,silica, andCa-richpyroxenethatisenclosedbyplagioclaselaths(e.g.,the

60 μmacicularapatite6DinFig. 3C).Themajorityofapatitein sample10044containsmall<5 μm-sizedinclusionsofplagioclase, K-feldsparandoccasionally,ironsulphide(troilite).

In thin-section10058,254, apatite is commonlyfound inlate- stage mesostasisareascomprisedofK-richphases(K-feldsparand occasionallyK-richglass),troilite,baddeleyite,pyroxene,silica,Fe- pyroxene, tranquillityite, ilmenite, fayalite, and a symplectite as- semblage. We observed apatite in contact with either late-stage K-feldspar,silicaandotherphases(e.g.,Fig. 3D)orincontactwith plagioclase,pyroxene,andasymplectiteassemblage (e.g.,Fig. 3E).

Wedidnotobservearelationshipbetweenapatitecrystalsizeand petrographicsetting,andapatiteoccursassubhedralhexagonalto tabularcrystalsofupto90 μminlength.

Inthin-section15555,206,apatite occursenclosedinpyroxene (type 1) or, more commonly, in contact with plagioclase, pyrox- ene,silica,andK-feldspar(type2).Apatite1analysedinthiswork is inthetype 2location (Fig. 3F)where itformsacicular rodsof up to100 μm inlength.Apatite5alsoanalysedhereisfoundbe- tween type 1andtype 2petrographic settings (Fig. 3G) whereit

Fig. 3.Back-scatteredelectron(BSE)imagesofselectedapatitecrystalsinthemarebasaltsstudied:10044,645;10058,254;15555,206and70035,195.A=10044 apatite 5, B=10044 apatite6C,C=10044 apatite6D,D=10058 apatite 5,E=10058 apatite6,F=15555 apatite1,G=15555 apatite5,H=70035 apatite15,andI=70035 apatite 17.Where:Ap=apatite,Bdy=baddeleyite,Cpx=clinopyroxene,Kfs=potassium-rich(oftenBa-rich)alkalifeldspar,Fa=fayalite,Ilm=ilmenite,Pl=plagioclase, Sym=symplectiteassemblage(Ca-richpyroxene,fayalite,silica),Tro=troilite,andTrq=tranquillityite.

(5)

Fig. 4.BSEimagesofapatitecrystalsandtheirsurroundingpetrographiccontextinKREEP-richbasalts:14304,177and15386,46.A=14304 apatite4,B=14304 apatite5, C=15386 apatite2,andD=15386 apatite5.MineralabbreviationsasincaptionforFig. 3,Mer=merrilliteandZrn=zircon,andRgl=residualK-richglass.

Fig. 5.BSEimagesshowingthe petrographiccontextofapatiteinthehighlandsandthe impact-relatedsamplestudied:76535,51;78235,43and79215,50.A=76535 apatite 3,B=78235 apatite 5,andC=79215 apatite12.MineralabbreviationsasincaptiontoFig. 3,Opx=orthopyroxene,Ol=olivine,Fe=ironnickelblebs,andSym= symplectiteassemblage(Mg–Alchromiteandtwo-pyroxenes,Elardoetal.,2012).

ismostcommonlyenclosed inclinopyroxeneaseuhedralto sub- hedral crystals of up to30 μm in the longest dimension and typicallycontainingplagioclaseinclusions.

Inthin-section70035,195, apatite crystals15and17 bothoc- curasbasalsections(hexagonal)of20 μmindiameter(Fig. 3H and3I). Apatite inthis section isvery rare andoccursmostly in mesostasis areasincontactwithK-feldspar andsilica. Apatite17 isenclosedwithinatroilitegrain(Fig. 3I).

VHK basalt 14304,177 contains interstitial K-rich areas and vein-likestructuresthataresituatedbetweenpyroxeneandplagio- clasecrystals.InplacestheK-rich veinscontainK-feldspar,K-rich glass(appearingbrowninplanepolarisedlight),merrillite,badde- leyite,andapatite(anexampleisshowninFig. 4A).Inthissample, theapatite crystals are restricted to the K-rich regions and typi- callyrangefrom50to>300 μminthelongestdimension.Most oftheapatiteobservedaresubhedralandareusuallyheavilyfrac- tured(Fig. 4B).

Apatite in sample 15386 is almost exclusively found within mesostasis pockets surrounded by plagioclase and/or pyroxene crystals.Apatite2isfoundincontactwithK-feldspar,ilmenite,and pyroxene,anditsurroundsapocketofK-feldspar.Apatite2issub-

hedral and occurs asblades up to100 μm in length (Fig. 4C).

Apatite 5 is an anhedral grain250 μm in length that is in di- rect contactwith merrillite, plagioclase and K-feldspar (Fig. 4D).

Apatite 10 is a subhedralcrystal that is25 μm in the longest dimensionoccurringinter-grownwithmerrillite.Thecrystalisen- closedinmesostasisglassandtroilite.

Sample 76535,51contains threecrystalsofapatiteasreported in Barneset al. (2014). Eachcrystal co-existswithmerrillite and islocated betweenplagioclasecrystals.Thelargestapatite crystal is also found in contact with a symplectite assemblage (consist- ing of Mg–Al chromite and two pyroxenes, Elardo et al., 2012) and clinopyroxene (Fig. 5A, Barnes et al., 2014). Apatite crystals rangefromanhedraltosubhedralandrangeinsizefrom50 μm to250 μm.Apatiteinthin-section78235,43areeitherfound in smallpockets ofmesostasis containing Fe-metal, silica,merrillite, and clinopyroxene or associated with the main rock-forming or- thopyroxene and plagioclase grains. Apatite occurs as subhedral grainsup to95 μminlength andare generallyheavilycracked (Fig. 5B).

Granuliticbreccia79215iscomposed ofbotha matrixportion dominated by an anorthositic troctolite composition and a troc-

Références

Documents relatifs

An example of the use of high alumina cement concrete to counter corrosive effects of peat may be seen in the piles for the grade separation structures of the Burnaby Expressway in

University of Science and Technology of China, Hefei; (b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation

The size of the bubble is proportional to the change in abundance relative to baseline, while the color of the bubble represents the direction of the change (red: increase;

Given the large orbital separation and high satellite-to-primary mass ratio of all known Kuiper Belt Object (KBO) binaries, it is important to reassess their stability as bound

In contrast, the highest ω 532 values were measured on 12 and 20 July when the air masses were slowly moving and hence residing longer over local continental sources, which resulted

each EEG signal, to select the interesting signals and present the spatiotemporal dynamics of these activities during the seizure. The selection of the best channels makes it

In this paper, we propose a novel algorithm for brain current source localization, the FO-D-MUSIC method based on i) the separability of the data transfer matrix as a function

Plusieurs auteurs ont étudié la synthèse et la réactivité de la 1,5-benzodiazépine et ont prouvé que cette dernière, ainsi que ses dérivés ont une activité