• Aucun résultat trouvé

An Institution-Independent Proof of the Beth Definability Theorem

N/A
N/A
Protected

Academic year: 2021

Partager "An Institution-Independent Proof of the Beth Definability Theorem"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-00341973

https://hal.archives-ouvertes.fr/hal-00341973

Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

An Institution-Independent Proof of the Beth Definability Theorem

Marc Aiguier, Fabrice Barbier

To cite this version:

Marc Aiguier, Fabrice Barbier. An Institution-Independent Proof of the Beth Definability Theorem.

Studia Logica, Springer Verlag (Germany), 2007, 85 (3), pp.333–359. �hal-00341973�

(2)

Denability Theorem

Mar Aiguierand FabrieBarbier

1

Universite d'

Evry, LaMI CNRS UMR 8042,

523 pl. des Terrasses F-91000

Evry

faiguier,fbarbierglami.univ-e vry. fr

fax number: (+33) 1 60 87 37 89

June 30,2006

Abstrat

Afewresultsgeneralisingwell-knownonventionalmodeltheoryones

havebeenobtainedintheframeworkofinstitutionstheselasttwodeades

(e.g. Craig interpolation, ultraprodut, elementary diagrams). In this

paper, we propose a generalised institution-independent version of the

Bethdenabilitytheorem.

Keywords: Bethdenability,Craiginterpolation,institutions,institutionmorphisms

andomorphisms,inlusiveategory

1 Introdution

A few results generalising well-known onventional model theory ones have

been obtained in the framework of institutions [15℄ these last two deades

(e.g.[8,18,21,16℄). Inordertoontinuethisgeneralisationworkofimportant

resultsfrom onventionalmodeltheory, wepresentin thispaperageneralised

institution-independentversionoftheBethdenabilitytheorem.

The theory of institutions extends Barwise's abstrat model theory [3℄ to

omputersiene. Thisextensionismanifold:

Institutions inlude both notions of signature (related to the notion of

softwareinterfae)andsignaturemorphism(tostruturesoftwares).

Sentenesare onlydened asmembersof aset. This meanssets ofsen-

tenes are neitherneessarily losed under the lassilogial symbols in

f:;^;_;);9;8gnorrestritedtothem. Thisallowsforalargerfamilyof

logistobetakenintoaountsuhasHornlauselogiormodallogis.

(3)

signaturemorphismandalledsatisfation ondition.

The original goals of institutions were to generaliseresults both in omputer

sieneand modeltheory. However,it ismainly in omputersienethat this

taskhasbeenaomplished. Despiteofits importaneforspeiationtheory,

theproblemofgeneralisingonventionalmodeltheoryresultswithintheframe-

work ofinstitutions haveonly been takled bysomeisolated works. Asfar as

weknow,thesearetheones:

Tarleki's works [20,21℄ whih generalisein a partiularform of institu-

tionsome lassialgebrairesultssuh astheBirkho theorem (equiva-

lene betweenequationaltheories andvarieties),the MKinsleytheorem

(equivalenebetweenuniversalHorntheoriesandquasi-varieties)andthe

Mal'evtheorem(existeneofinitialtermmodelsinuniversalHorntheo-

ries),

SalibraandSollo's works[17, 18℄whih dealwithrelationshipsbetween

Craig-style interpolation, ompatnessand Loweinem-Skolem properties

inarelaxedformofinstitutionsalled pre-institutions,

Diaonesu'sreentworks[6,7,8,9℄whihthrowthebasisforarealstudy

ofmodel theorywithin theframeworkofinstitutions.

Among all the onventional model theory results whih are of interestfor

omputersieneistheCraiginterpolationtheorem. Restatedinordertobetter

suitomputersiene's needsasapropertyoversetsofformulaeandanykind

ofsignaturemorphisms,ithasbeenshowntobestronglylinkedtoompleteness

ofstruturedinferenesystems[4, 5℄andto someaspet ofmodularity(faith-

fulness)[10,11, 24, 25℄. It hasreentlybeendiretly provedin theframework

ofBirkhoinstitutions 1

byR.Diaonesu[8℄. UnlikeaformerresultbyA.Sal-

ibraand G.Sollo [18℄, R. Diaonesu'sresult doesn'trequirenegationand is

thussuitableforlogiswithoutitsuhasequationallogiandHornlauselogi.

Inonventionalmodeltheory,animportantonsequeneoftheCraiginter-

polation theorem is theBeth denability theorem. This theorem providesan

answertothequestiontowhatextentimpliitdenitionsanbemadeexpliit.

Forexample,when onewantstoformalizeatheory,theveryrststepistox

thelanguage, that is deidingwhih notionsare primitives, theothers having

tobedenedfrom them. Buthowanonehekuselesssymbolshaven'tbeen

introdued? Thisisaproblemofruialimportaneinspeiationtheoryand

artiialintelligeneandtheBethdenabilitytheorem isatoolto solveit.

Considering the assets of the institutional framework for model theory (ab-

stratness,logi-independene)westudyinthispaperbothdenabilitynotions

(impliit and expliit) from aninstitution-independent point of view. We ad-

dresstheirgeneralisationfromtwodierentangles.

1

Birkhoinstitutionsareapartiularformofinstitutionsmodellassesofwhiharelosed

undersomealgebraioperationssuhasvarietiesandquasi-varietiesare.)

(4)

signaturemorphisms. Tothisend, wemakeuseof thenotionofstrongly

inlusive ategory [10℄ in order to give a ategorial denition of both

set-theoretialnotionsofinlusionanddierene.

2. Sinenon-injetivemorphismsareofgreatimportaneinspeiationthe-

ory,wethengeneralisebothdenabilitynotionsto anykindofsignature

morphisms.

WealsostudythepreservationofBethdenabilitytheoremthroughinstitution

morphismsandomorphisms. Thisallowsinheritaneofthistheoremfromone

logi to another, both ones being presented as institutions and linked by an

institutionmorphism.

This paper is strutured asfollows: Setion 2 reviews some onepts, no-

tationsand terminologyaboutinstitutionsand institution morphismsand o-

morphisms whih are used by this work. Setion 3 reviews the institution-

independentmodeltheoretioneptofCraiginterpolation. Takinginspiration

fromasimilarresultoninstitutiontransformations[18℄,weformulatepreserva-

tiontheorems for Craiginterpolation propertythroughinstitution morphisms

andomorphisms. Setion 4formulates ageneralinstitution-independentver-

sion of the Beth denability theorem and proves it as a onsequene of the

Craiginterpolationproperty. AsforCraiginterpolationwedevelopapreserva-

tiontheoremforBeth denabilitythroughinstitutionmorphisms.

2 Institutions

Intuitively, the theory of institutions abstrats the semantial part of logial

systems aording to the needs of software speiation in whih hanges of

signatures our frequently. In this setion wereview and dene someof the

basinotionsoninstitutionsin usein thispaper.

2.1 Basi denitions and examples

Aninstitution[15℄onsistsofaategoryofsignaturessuhthatassoiatedwith

eah signaturearesentenes,modelsand arelationshipof satisfationthat, in

a ertain sense, is invariant under hange of signature. More preisely, this

meansthat ahange of signature (by asignature morphism)indues \onsis-

tent"hangesinsentenesandmodelsinasensemadepreisebythe\Satisfa-

tionCondition"inDenition2.1below. ThisgoesastepbeyondTarski'slassi

\semantidenition of truth"[23℄ and alsogeneralises Barwise's\Translation

Axiom"[3℄. Moreover,it is fundamental that sentenes translatein the same

diretion as thehange of notation, whereas models translate in the opposite

diretion(thinkofsignatureenrihmentandmodelredution). Thisistherea-

sonfor the funtor Mod in Denition 2.1 below to beontravariant. For the

sake of generalisation, signatures are simply dened as objets of a ategory

(5)

ontingeniessuhasindutivedenitionofsentenesarenotonsidered. Simi-

larly,modelsaresimplyseenasobjetsofaategory,i.e.nopartiularstruture

isimposed onthem. Finally,propertiessatisedbyagivenlassofmodelsare

haraterizedthroughabinaryrelationbetweenmodelsandsentenesofagiven

signature. Moreformally,aninstitutionisdenedasfollows:

Denition2.1 (Institution) An institutionI =(Sig;Sen;Mod;j=)onsists

of

aategorySig,objetsof whih are alledsignatures,

a funtor Sen : Sig ! Set giving for eah signature a set, elements of

whih arealledsentenes,

a ontravariant funtor Mod : Sig op

! Cat giving for eah signature a

ategory,objetsandarrowsofwhiharealled-modelsand-morphisms

respetively, and

ajSigj-indexedfamily ofrelations j=

jMod()jSen() alledsatis-

fationrelation,

suhthatthe followingproperty holds:

8:! 0

; 8M 0

2jMod(

0

)j; 8'2Sen(),

M 0

j=

0

Sen()('),Mod()(M 0

)j=

'

Example2.2 The following examples of institutions are of partiular impor-

taneforomputersiene. Manyotherexamplesanbefoundintheliterature

(e.g. [15,22 ℄).

Propositional Logi(PL) Signatures and signature morphisms are sets of

propositionalvariables andfuntionsbetween themrespetively.

Given asignature , the set of -sentenes is the least set of sentenes

nitely builtoverpropositional variables inand Boolean onnetivesin

f:;_g. Given a signature morphism : ! 0

, Sen() translates -

formulae to 0

-formulaeby renamingpropositionalvariables aording to

.

Givenasignature,the ategoryof-modelsistheategoryofmappings

: ! f0;1g 2

with identities as morphisms. Given a signature mor-

phism : ! 0

, the forgetful funtor Mod() maps a 0

-model 0

to

the -model = 0

Æ.

Finally, satisfation istheusualpropositional satisfation.

Many-sorted FirstOrder Logi (FOL) Signaturesaretriples(S;F;P)where

S isasetofsorts,andF andP aresetsoffuntion andprediate names

2

f0;1garetheusualtruth-values.

(6)

respetively, both with arities in S S and S respetively. Signature

morphisms :(S;F;P)!(S 0

;F 0

;P 0

)onsist of threefuntions between

sets of sorts,sets of funtionsandsets of prediates respetively, the last

twopreservingarities.

Given a signature =(S;F;P), the -atoms are of two possible forms:

t

1

= t

2

where t

1

;t

2 2 T

F (X)

s 4

(s 2 S), and p(t

1

;:::;t

n

) where p :

s

1

:::s

n

2 P and t

i 2 T

F (X)

si

(1 i n, s

i

2 S). The set of

-sentenes is the least set of formulae built over the set of -atoms by

nitely applying Booleanonnetives inf:;_g andthequantier 8.

Given asignature=(S;F;P), a-modelM isafamilyM=(M

s )

s2S

of sets (one for every s 2 S), eah one equipped with a funtion f M

:

M

s1

:::M

sn

! M

s

for every f : s

1

:::s

n

! s 2 F and with

a n-ary relation p M

M

s1

:::M

sn

for every p:s

1

:::s

n 2P.

Given asignaturemorphism :=(S;F;P)! 0

=(S 0

;F 0

;P 0

)and a

0

-modelM 0

,Mod()(M 0

)isthe -model Mdenedfor everys2S by

M

s

=M 0

s

,andfor everyfuntionnamef 2F andprediate namep2P,

byf M

=(f) M

0

andp M

=(p) M

0

.

Finally, satisfation istheusualrst-ordersatisfation.

HornClause Logi(HCL) An universalHornsenteneforasignaturein

FOL is a-senteneof the form ) where isa nite onjuntion

of-atomsandisa-atom. TheinstitutionofHornlauselogiisthe

sub-institution of FOL whose signatures and models are those of FOL

andsentenesare restritedtothe universalHorn sentenes.

EquationalLogi (EQL) Analgebraisignature(S;F)simplyisaFOLsig-

naturewithoutprediatesymbols. Theinstitutionofequationallogiisthe

sub-institution of FOL whose signatures andmodels are algebrai signa-

turesandalgebras respetively,andsentenesarerestritedtoequations.

RewritingLogi (RWL) Given an algebrai signature = (S;F), -

sentenes areformulae of the form': t

1

!t 0

1

^:::^t

n

!t 0

n

)t !t 0

where t

i

;t 0

i 2 T

F (X)

s

i

(1 i n, s

i

2S) andt;t 0

2 T

F (X)

s

(s 2 S).

Models of rewriting logi are preorder models, i.e. given a signature

= (S;F), Mod() is the ategory of -algebras A suh that for ev-

ery s2S,A

s

isequippedwithapreorder. Hene, Aj='if andonlyif

for every variable interpretation :X !A, ifeah (t

i )

A

(t 0

i )

A

then

(t) A

(t 0

) A

where A

:T

F

(A)!A isthe mapping indutivelydened

by: f(t

1

;:::;t

n )

A

=f A

(t A

1

;:::;t A

n ).

Modal FirstOrder Logi with global satisfation (MFOL) 5

The at-

egory ofsignatures istheategory ofFOL signatures.

Given a FOL signature = (S;F;P), -axioms are of the form

3

S +

isthe setof allnon-emptysequenesofelementsinSand S

=S +

[fgwhere

denotestheemptysequene.

4

T

F (X)

s

isthetermalgebraofsortsbuiltoverF withsortedvariablesinagivensetX.

5

aka.quantiedmodallogiK.

(7)

1 n

overthesetof-axiomsbynitelyapplying Booleanonnetivesinf:;_g

andthe quantier8 andthe modality.

Given asignature =(S;F;P), a-model (W;R ), alledKripke frame,

onsists of a family W = (W i

)

i2I

of -models in FOL (the possi-

ble worlds) suh that 6

W i

s

= W j

s

for every i;j 2 I and s 2 S,

and an\aessibility" relation R I I. Given a signature mor-

phism : (S;F;P) ! (S 0

;F 0

;P 0

) and a (S 0

;F 0

;P 0

)-model (W 0

;R 0

),

Mod()((W 0

;R 0

)) is the (S;F;P)-model (W;R ) dened for every i 2 I

by W i

= Mod()(W i

) and by R = R 0

. A -sentene ' is said to be

satised by a-model (W;R ), noted(W;R )j=

', if for every i2 I we

have (W;R )j= i

', wherej= i

isindutively denedon the strutureof '

asfollows:

atoms,Boolean onnetives andquantierarehandledasinFOL,

(W;R )j= i

' when(W;R )j= j

'for every j2I suhthat iR j.

Modal propositional logi (MPL)is the sub-institutionof MFOL whose

signatures are restrited to empty sets of sorts and funtion names and

only 0-aryprediate names.

Modal FirstOrder Logi with loal satisfation (LMFOL) Signatures

and sentenes are MFOL signatures and MFOL sentenes. Given

a signature = (S;F;P), a -model is a pointed Kripke frame

(W = (W i

)

i2I

;R ;W j

) where j 2 I. The satisfation of a -sentene

' by a -model (W;R ;W j

), noted (W;R ;W j

) j=

', is dened by:

(W;R ;W j

)j=

',(W;R )j= j

'.

LMFOL with innitedisjuntion and onjuntion (LIMFOL) This

institutionextendsLMFOLtosentenesoftheform V

and W

where

is a set (possibly innite) of -sentenes. Given a pointed Kripke

frame(W;R ;W j

),

(W;R ;W j

)j=

V

()8'2;(W;R ;W j

)j=

'

(W;R ;W j

)j=

W

()9'2;(W;R ;W j

)j=

'

2.2 Theories in institutions

Letus nowonsideraxedbut arbitraryinstitutionI=(Sig;Sen;Mod;j=).

Notation2.3 Let2jSigj beasignatureand T beasetof -sentenes.

Mod(T)isthefullsub-ategoryofMod()whoseobjetsaremodelsofT,

T

= f' 2 Sen()=8M 2 jMod(T)j; M j=

'g is the set of so-alled

semantionsequenesofT.

6

Intheliterature,Kripkeframessatisfyingsuhapropertyaresaidwithonstantdomains.

(8)

onlyif T =T

.

Denition2.5 (Theategory of theories) A theory morphism from a -

theory T to a 0

-theory T 0

is any signature morphism : ! 0

suh that

Sen()(T)T 0

.

Let us note Th

I

the ategory whose objets and morphisms are theories and

theory morphisms respetively.

Thefollowingpropositionisadiret onsequeneofthesatisfationondition.

Proposition 2.6 Given a -theory T and a 0

-theory T 0

suhthat there is a

theory morphism:T !T 0

,the funtorMod():Mod(

0

)!Mod() anbe

restritedtoMod():Mod(T 0

)!Mod(T).

Corollary2.7 The4-uple I

T

=(Sig

T

;Sen

T

;Mod

T

;j=

T

)where:

Sig

T

=Th

I ,

foreverytheoryT overasignature,Sen

T

(T)=Sen()andMod

T (T)=

Mod(T),and

j=

T

=j=.

isaninstitution.

2.3 Institution morphisms and omorphisms

Manydierent kindofmorphism anbe dened denotingdierentkindof re-

lationshipbetweentwoinstitutions. Theoriginaloneintroduedin[15℄denes

aforgetfuloperationfrom a\riher"institution I to a\poorer"one I 0

. Intu-

itively,itshowshowI isbuiltoverI 0

.

Denition2.8 (Institutionmorphism) LetI =(Sig;Sen;Mod;j=)andI 0

=

(Sig 0

;Sen 0

;Mod 0

;j= 0

)betwoinstitutions. Aninstitution-morphism=(;;):

I!I 0

onsistsof

afuntor:Sig!Sig 0

,

a natural transformation :Sen 0

Æ )Sen, i.e. for every 2jSigj a

funtion

: Sen

0

(()) !Sen() suh that for every signature mor-

phism :

1

!

2

inSig the followingdiagramommutes,

Sen 0

((

1 ))

1

! Sen(

1 )

Sen 0

(())

?

?

y

?

?

y Sen()

Sen 0

((

2

)) !

2

Sen(

2 )

(9)

a natural transformation : Mod ) Mod Æ , i.e. for every 2

jSigjafuntor

:Mod()!Mod 0

(())suhthat foreverysignature

morphism :

1

!

2

inSig the following diagramommutes,

Mod(

2 )

2

! Mod 0

((

2 ))

Mod()

?

?

y

?

?

y Mod

0

( op

())

Mod(

1

) !

1

Mod 0

((

1 ))

suhthatthe followingsatisfation property holds:

82jSigj; 8M2jMod()j; 8' 0

2Sen 0

(())

Mj=

('

0

)()

(M)j=

() '

0

Example2.9 Theinstitutionmorphism=(;;)fromFOLtoEQLmaps

anyFOLsignature(S;F;P)tothe orresponding algebraione (S;F), regards

anyset of equationsas asetof rst-order sentenes over(S;F;;), andregards

any(S;F;P)-modelasa(S;F)-algebrabyforgettingtheinterpretationsofpred-

iate names in P. Itis easy toshow that the satisfation property holds. The

institution morphism from HCL to EQL is dened as the previous one ex-

ept that it regards any equation as a onditional equational formula without

premises. Finally, the institution morphism from FOL to HCL is obvious.

Indeed,itmaps any FOL signature(S;F;P)andany (S;F;P)-model tothem-

selves, and regards Horn sentenesover (S;F;P) as rst-order sentenesover

the samesignature.

7

No institution morphism an denote a forgetful operation from FOL to

either LMFOL nor MFOL. However, we an show how both LMFOL and

MFOL are \embedded" in FOL. Indeed, eah LMFOL signature (S;F;P)

anbetransformedintotheFOL signature(S;F;P)denedby:

S=S[findg

F =ff:inds

1

:::s

n

!s=f :s

1

:::s

n

!s2Fg[fi:!indg

P =fr:inds

1

:::s

n

=r:s

1

:::s

n

2Pg[fR:indindg

LetX beaset ofvariables over(S;F;P),and letx2X

ind

[fig. Wean

dene FO

x : Sen

LMFOL

()T

F

(X) ! Sen

FOL

( )T

F

(X) indutivelyon

termsandformulaestrutureasfollows:

f(t

1

;:::;t

n

)7!f(x;t

1

;:::;t

n )

r(t

1

;:::;t

n

)7!r(x;t

1

;:::;t

n )

7

AHornsentenean beseen as a nitedisjuntion ofrst-order formulaeallof them

beingnegationsofatomsexeptforthelastonewhihisanatom.

Références

Documents relatifs

In this paper, we provide a constructive proof of the Craig interpolation property on the modal logic of knowledge K m.. The proof is based on the application of the Maehara

However, both Beth and Lorenzen sometimes exhibit a strong tendency towards unorthodox views and interprétations of data and lines of development in the history of science

«personality psychology» and then even on the basis of the concept of «self- consciousness». Relying on his références to the literature, my hypothesis is that Beth thought of

Selon une généralisation datant de 1957, due à Tarski et Vaught, nous pouvons même supposer que R est une substructure élémentaire (substructure contenant les mêmes

Mais l'idée même d'une intuition mathématique « modeste » est ambiguë, et certaines de ses versions en sont, nous allons le voir, carrément indéfendables. Intuition mathématique

In the light of this historical reconstruction Beth drew the conclusion that modem science no longer sees the above theory of science as suitable: physical théories are not

In this paper the relation between Evert Willem Beth and the German iogician and philosopher Heinrich Scholz is discussed, the similarities in their flelds of research and

4 6 Même remarque à propos du cas «classique» dans le texte de la conférence Construction sémantique de la logique intuitionniste [Beth 1958b], prononcée à Paris en 1955