• Aucun résultat trouvé

Investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using Constrained full-field measurements methods

N/A
N/A
Protected

Academic year: 2021

Partager "Investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using Constrained full-field measurements methods"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-01885346

https://hal.archives-ouvertes.fr/hal-01885346

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using Constrained

full-field measurements methods

Li Li, Félix Latourte, Jean Michel Muracciole, Laurent Waltz, Laurent Sabatier, Bertrand Wattrisse

To cite this version:

Li Li, Félix Latourte, Jean Michel Muracciole, Laurent Waltz, Laurent Sabatier, et al.. Investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using Constrained full- field measurements methods. Optics and Lasers in Engineering, Elsevier, 2019, 112, pp.182-195.

�10.1016/j.optlaseng.2018.08.003�. �hal-01885346�

(2)

Investigations ofthe thermomechanicalbehavior ofa coarse-grained

aluminum multicrystal usingConstrained full-field measurements methods

L. Lia, , F.Latourteb, J.-M. Muracciolea, c, L.Waltza, c, L.Sabatiera, d, B.Wattrissea, c

aLMGC, Univ. Montpellier, CNRS, Montpellier, France

bEDF R&D, MMC Department, Moret-sur-Loing, France

cLaboratoire de Micromécanique et d’Intégrité des Structures (MIST), IRSN-CNRS-Université de Montpellier, Montpellier, France

dAix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France

Keywords:

Digital image correlation (DIC) Constrained DIC

InfraRed Thermography (IRT) Constrained IRT

EBSD analysis

Displacement and strain mapping Crystal plasticity

a b s t r a ct

Withtheintentionofachievinganexperimentalgrainscaleenergybalanceatfinitestrainandatthegrainscale, amechanicaltestonacoarse-grainedaluminiumispresentedinthispaperusingtwocomplementaryimaging techniquesbasedonvisibleandinfraredlight.SpecificimageprocessingmethodsreferredtoasConstrainedDig- italImageCorrelation(ConstrainedDIC)andConstrainedInfraRedThermography(ConstrainedIRT)areapplied toinvestigatethethermomechanicalbehavioratthemicrostructuralscale.ConstrainedDICisusedtoobtain displacementandstrainfieldsduringthetest,whileConstrainedIRTprovidesanestimateoftemperatureand heatsourcefieldsinducedbythemechanicalloading.Theproposed“constrained” methodsallowtoenforcean adjustablelevelofconstraintsonameasuredfield(displacementortemperature)withoutreferringtoaspecific finite-elementdescription.Inthatmanner,itispossibletodecouplethemeasurementmodelandtheinterpre- tationmodelwhilekeepingregularizingconstraints(suchascontinuityofthefields).Inthispaper,wemainly focusonthekinematicanalysisoftheexperimentaltest.ElectronBackscatterDiffraction(EBSD)isalsousedin thiscasetoexperimentallycharacterizethemicrostuctureofa3mmthickspecimenwithcentimetricgrainsize.

1. Introduction

Polycrystallinemetalsusuallypossessamicrostructurecomposedof anaggregationofcrystallinegrainswithvaryingsize,morphologyand orientation.Duringamacroscopictensileloading,thediversityofgrain orientationsandtheintrinsicanisotropyofcrystal plasticityleadsto strongheterogeneitiesinthematerialplasticresponse,andconsequently toaninhomogeneousthermaldistributionduetothermomechanicalef- fects.

Recently, heterogeneous phenomena on mechanical andthermal fieldshavebeenstudiedinmetallicmaterialsatthegranularscale[1–

6].Alltheseworkshaveshownthevarietyofmicromechanicalmod- ellingissuesthatcanbeaddressed usingclassicalDIC(DigitalImage Correlation)&IRT(InfraRedThermography)method.Hereafter,a“Con- strained” surfaceDICorIRTmethodisproposedtoenrichthekinematic orthermaltransformationofneighbouringelements(orgrains)byim- posingcontinuity(ordiscontinuity)conditionsonthedisplacement(or thedisplacementgradientcomponent) oronthetemperature(orthe temperaturegradient).

Performingstrainfieldandheatsourcemeasurementsultimatelyal- lowstoaccesstotheevolutionofthemechanicalandcalorimetricen-

ergiesinvolvedinthetransformation.Thisassessmentcontributestoa betterknowledgeofthelocalthermomechanicalsignatureofthemate- rialdeformationmechanisms.

As mentioned, two data processing methods (Constrained DIC [7,8]andConstrainedIRT[9])arerequiredtoperformkinematicand thermalmeasurementsthatarebothneededtoconductalocalenergy balancewithineachgrainduringamechanically-loadedtest.Inthelight ofthisgeneralobjective,wemainlyfocusinthispaperonthekinematic aspectoftheaforementionedgeneralmethodology.

First,theprincipleofConstrainedDICmethodwillbeintroduced.

Then,thenumericalvalidationofConstrainedDICmethodwillbeper- formedonnumericalexampleassociatedtocrackedpolycrystallineag- gregates.Afterwards,thisnovelmethodwillbeappliedtorealexperi- mentalimages.

Infact,surfacedisplacementfieldmeasurementsofmaterialssub- jectedtovariousloadings(e.g.mechanicalloadingorthermalloading) areanimportanttaskforexperimentalistsaddressingchallengesinthe fieldofsolidmechanics.

Inrecentyears,anincreasingnumberofspectaculardevelopments inopticalfull-fieldmeasurementtechniqueshasbeenwitnessed[10], includingbothinterferometrictechniquesandnon-interferometrictech- niques.However,theinterferometrictechniquesinvolvedelicateproce-

(3)

dureswhicharenotalwayseasilytransferabletoconventionaltesting laboratories.Consequently,theDigitalImageCorrelation(DIC)method widelyconsideredasarepresentativenon-interferometricopticaltech- nique,hasbeenlargelyacceptedandcommonlyusedasapowerfuland flexibletoolforsurfacedisplacementandstrainmeasurementintheex- perimentalsolidmechanicsfield[2,4,6,11–14].

Thesemeasurementsareparticularlyvaluableinthesensethatthey allowtheinterpretation ofcomplex tests atdifferent scalesandthat theyarenaturallyadaptedtoscaletransitions.Forthesereasons,they havebeenlargelyusedtocharacterisethedeformationmechanismsorto proposeandvalidatemicromechanicalmodelsorscaletransitionlaws.

Fromamicrostructuralviewpoint, polycrystallinematerials area discretestructurethatarecomposedofjointedgrainswithvaryingsizes andorientations.Thecharacterisationandmeasurementofgrainstruc- turesisofgreatinteresttoMaterialsScientistsbecausetheyaredirectly relatedtothephysicalpropertiesofmatter[15,16].

Ourobjectivehereistheunderstandingoftherelationshipbetween themicrostructuralparametersandthemechanical behaviourof the heterogeneousmaterialsatthemacroscopicscale,inparticularatthe granularlengthscale[17–19].

Usingtheclassicallocalapproaches,thematerialmicrostructureis notaccountedforinthekinematiccomputation:

Firstly,theintroducedsubsets(forDIC)areindependentlydefined fromthemicrostructure

Secondly,asthetransformationofneighbouringsubsetsaresepa- ratelyprocessed,sosubsetsmayoverlap.

Thisisaninherentdisadvantageoftheselocalmethodswhendealing withheterogeneousstructureproblems.

Nevertheless,classicallocalDICmethodshavebeenwidelyusedto highlighttheheterogeneityinkinematicfields[2,6,12,20],inalarge rangeofsituations dealingforinstance,with thefracturemechanics (intergranularorintragranular)problems.

2. PrincipleofconstrainedDICmethod

Global DIC methods were proposed to determine the displace- mentandstrainfieldsonthewholeimage.Thesemethodsproposeto parametrizethekinematicfieldsusingalimitedsetofdegreesoffree- domwhichtendstoregularizetheDICproblem.Thesemethodswere firstlyintroducedtoimposethecontinuityofmeasureddisplacement onafinite-elementmesh[21,22]orusingB-splines[23,24].GobalDIC methodswereafterwardsextendedtoallowsomediscontinuitiesinthe displacementfieldstoaccountforcrackdevelopment[25,26].

TheConstrainedDICmethodproposed herecorrespondstoanal- ternativetoglobalDICmethods.Itreliesonameshthatrespectsthe materialmicrostructureanditintroducesshapefunctionsthatareex- pressedintherealspaceandnotontheassociatedreferenceelement (asinclassicalfiniteelements).Theshapefunctionscanbeanykind (wegenerallyuselinear,bi-linear,quadratic,bi-quadraticpolynomial functions),andtheshapefunctionchoiceisindependentoftheshapeof theelement.Themostsignificantdifferencewithglobal(finite-element based)DICmethodsreliesinthefactthatthelevelofrestrictionbetween twoadjacentelementscanbemodifiedbychoosingthenumber(andthe location)ofpointswheretoenforcethecontinuityconditionsontheel- ementboundary.Itisalsointerestingtonotethattheproposedmethod allowstohandleinthesameframeworkclassicallocalDICmethods (whichcorresponds toaregularrectangular meshwithnocontinuity conditionbetweeneachelements)toglobalfinite-elementbasedmeth- odsonregularmeshes(byimposingcontinuityconditionsontheends ofeachelementboundary).

AsclassicalDICapproaches(whetherlocalorglobal),theproposed methodalsorelies ontheBrightnessConservationequation[27]mo- tivatingtheuseofapatternrecognitionalgorithmforthedetectionof changesinthegreyleveldistributionoftargetedsurfaceduringloading.

Indeed,themainstepsofConstrainedDICmethodarethefollowing:

Fig.1. Spatialdescriptionofthegeometryofapolycrystallineaggregation.The grainboundariesareinmagentaandtheelementcontoursareinblack.Andthe threereddotsareforspatialmatchingprocedure[6].(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

Spatialdiscretizationofthegeometry

ThroughanEBSDanalysis,atwo-dimensionalarrayofdataasso- ciatedwith themicrostructureis providedbymicroscopic devise [28,29].Afterwards,thismicrostructuralmap(Fig.1a)canbeused toperformaspatialdiscretization(FiniteElementtype)inorderto respectasmuchaspossibletherealmicrostructure.Theobtained meshisusedforsubsequentprocessingofthekinematicresponse.

Inordertooptimizethemeshingprocedure,therealgrainbound- aries(whitecontoursinFig.1a)aresimplifiedandpolygonizedso astokeepthelargegrainsandregroupthesmallestones,asshown inFig.1binmagenta.Byconstruction,thelevelofmicrostructural simplificationhastobeadjusteddependingonthespatialresolution associatedwiththekinematicand/orthermalmeasurement.Thein- troduceduncertaintyduringthegrainboundaryextractionoperation isnotquantified,whichissupposedtobenegligibleinthispaper.

Afterwards,anunstructuredmeshiscarefullyappliedonthe“simpli- fied” geometry(representingthemicrostructure)withineachgrain inordertokeeptherepresentationofphysicalgrainboundaries,as showninFig.1c.Insideeachgrain,thesmallestmeshunitiscalled an“element”,whichisequivalentofthecorrelationsubsetforclas- sicalDICmethods.Theelementcontoursareaccuratelydetermined.

(4)

Thecomputationalmeshunderlying themicrostructureisdefined intheinitialconfiguration.Thekinematicvariablesassociatedwith eachelementdescribingthephysicaltransformationofthematerial willbeintroducedinthenextsection.

Descriptionofthephysics

Thespecimen might be subjected todifferent loadings (traction, compression,shearorrotation).Dependingonthemechanicalsitu- ationunderconsideration,thedisplacementfieldcanbecontinuous (continuousmedium)ordiscontinuous (granularmedium orfrac- ture).ThemethoddevelopedhereproposestoenrichtheDICformu- lationinordertointroduceconstraintsintheDICalgorithmscom- patiblewiththecontinuityordiscontinuityofdisplacementfield.

Inordertodescribethekinematicphysics,apolynomialshapefunc- tionisassignedtoeachelementeofthemeshtorepresentthelocal displacementvariations(Eq.(1)).

𝐮𝐞𝐱(𝑋𝐶𝐶𝐷,𝑌𝐶𝐶𝐷,𝑝𝐞𝑋)=

𝑑𝑘𝑋 𝑘=0

𝑑𝑙𝑋

𝑙=0

𝑎𝐞𝑘𝑙𝑋𝐶𝑘𝐶𝐷𝑌𝐶𝑙𝐶𝐷

𝐮𝐞𝐲(𝑋𝐶𝐶𝐷,𝑌𝐶𝐶𝐷,𝑝𝐞𝑌)=

𝑑𝑘𝑌 𝑘=0

𝑑𝑙𝑌

𝑙=0

𝑏𝐞𝑘𝑙𝑋𝐶𝑘𝐶𝐷𝑌𝐶𝑙𝐶𝐷

(1)

where,𝐮𝐞𝐱and𝐮𝐞𝐲arethecomponentsoflocaldisplacementfield(ue) forelementeinthedirections𝑋and⃗𝑌,and(XCCD,YCCD)represents theLagrangiancoordinatesinpixels.Vector𝐩𝐞=(𝑝𝐞𝑋,𝑝𝐞𝑌)=(𝑎𝐞𝑘𝑙,𝑏𝐞𝑘𝑙) gathersthe kinematicshape function parameters. The order and thetype of the kinematic shape function can be chosen accord- ingtorequirements.Thedisplacementfields ineach elementare thusdescribedintherealspace,andnotthrougha“referenceele- ment”,whichisthecaseforclassicalFiniteElement(FE)descriptions [25,30].

Introductionoftherestriction

Intheprevioussection,kinematictransformationsforeachindivid- ualelementhavebeenintroduced.Wewillnowdetailthepossible relationshipsbetweenkinematictransformationofneighbouringel- ements.

Threesituationscanbeencountered:

Thetransformations between neighbouringelementsarecom- pletelyindependent.

Atleastonecomponentofthedisplacementvectoriscontinuous throughthecommonboundary.

Adisplacementjumpisallowedonthecommonboundary.

ThefirstsituationcorrespondstoclassicallocalDICmethods.When imposingcontinuityconditionsonbothdisplacementcomponents, thesecondsituationisanalogoustoglobalDICmethods[31].Here, thecontinuitycondition canbe enforcedon thewholeboundary (exactrestriction)orinalimitednumberofnodes(partialrestric- tion).Inthesamespirit,continuityconditionscanalsobeintroduced atboundaryonthedisplacementderivatives.Thethirdonecorre- spondstounilateralcondition(crackopening).Thiskindofrestric- tionswillnotdiscussedinthispaper.

Afterthedisplacementshapefunctionhasbeenchosenforeachel- ement,restrictionscanbeintroducedbetweenthekinematicfields associatedwitheachpairofneighbouringelements.Fig.2schemat- icallyillustratesthesituationforagivenpairofadjacentelements (elementiandelementj)ofthekinematicmesh.Asproposed,the degreesofthepolynomialsforkinematicdescriptionin elementi andelementjarenotnecessarilyidentical.

Theboundary𝑙𝑢𝑖𝑗 betweenelementsiandjis modeledasalinear relationshipbetweenXandY,whosecoefficientsdependonlyonthe meshgeometry.Forarelatively“horizontal” boundary,asshownin Fig.2,theboundary𝑙𝑖𝑗𝑢 isexpressedas

𝑌𝐶𝐶𝐷=𝛼𝑢𝑋𝐶𝐶𝐷+𝛽𝑢 (2)

Naturally,thecaseofa“vertical” boundaryisdeducedbyinverting theroleofXandY,expressedas𝑋𝐶𝐶𝐷=𝛼𝑢𝑌𝐶𝐶𝐷+𝛽𝑢.

Fig.2. Descriptionoftheboundary𝑙𝑢𝑖𝑗betweentwoadjacentelementsiandj anddefinitionofthelocalNormal-Tangentialcoordinatesystem(𝑁𝑖𝑗,⃗𝑇𝑖𝑗)ofthe boundary𝑙𝑖𝑗𝑢.

Byconstruction,thecoefficients{𝛼u,𝛽u}or{𝛼𝑢,𝛽𝑢}oftheboundary expressionaredefined onlybythegeometricalmesh.Thecompo- nentsofthenormalandtangentialvectorsoftheboundary,𝑁𝑖𝑗and

⃗𝑇𝑖𝑗,areexpressedfrom𝛼uor𝛼𝑢asfollows:

fortherelatively”horizontal” boundary:

𝑁𝑖𝑗= ( 𝛼𝑢

1 )

and⃗𝑇𝑖𝑗= ( 1

𝛼𝑢

)

(3)

fortherelatively”vertical” boundary:

𝑁𝑖𝑗= ( 1

𝛼𝑢 )

and⃗𝑇𝑖𝑗= ( 𝛼𝑢

1 )

(4) The restriction conditions are introduced along the element boundary𝑙𝑢𝑖𝑗 usingthelocalNormal-Tangentialcoordinatesystem (𝑁𝑖𝑗,⃗𝑇𝑖𝑗) oftheboundary.Asmentionedabove,differentkindof restrictionscanbeimposed:

continuityrestriction:equalityofthevariable(oritsderivative)on bothsidesoftheboundary

jumprestriction:inequalityofthevariable(oritsderivative)on bothsidesoftheboundary

Inthispaper,weonlyfocusedondescribingcontinuityrestrictions.

They correspondtotheintroductionof linearequations between theparametersdescribingkinematicfieldsoftwoadjacentelements.

Thecontinuityofthedisplacementfield(ue)isimposedinthelocal Normal-Tangentialcoordinatesystemoftheboundary,inorderto imposeeitheranormaloratangentialdisplacementcontinuity(or bothsimultaneously).

Furthermore,restrictionconditionscanalsobeimposedonthedis- placementgradientontheelementboundaries.

Finally,takingintoaccountthesedifferentrestrictionsleadstoim- posethecorrespondinglinearequationsbetweenthetwoadjacent elementsiandj,thatcanbeexpressedasalinearsystem:

[𝐀𝐢𝐣𝐔]{

𝐏𝐢𝐣𝐔}

={𝟎} (5)

where[ 𝐀𝐢𝐣𝐔]

isthekinematicelementaryrestrictionmatrixbetween element i and j, and {

𝐏𝐢𝐣𝐔}

is the elementary vector containing alltheunknownkinematicparameters(𝐩𝐢,𝐩𝐣)=(𝑎𝑖𝑘𝑙,𝑏𝑖𝑘𝑙,𝑎𝑗𝑘𝑙,𝑏𝑗𝑘𝑙)for thesetwoadjacentelements.Thelinearrelationsbetweenpiandpj (Eq.(5))allowstodecreasethenumberofindependentparameters tobedeterminedbycorrelationforelementiandj.Theintroduction ofthislinearrelationsreducesthenumberofDegreesOfFreedom (DOFs)requiredtodescribethekinematicfield.

Byiteratingthisoperationforallboundariesonwhichcontinuity restrictionsareapplied,aglobalkinematicrestrictionmatrixAUis builtforthemesh,aswellasaglobalvectorPUcontainingallthe kinematicparameters.

[𝐀𝐔]{

𝐏𝐔}

={𝟎} (6)

Références

Documents relatifs

The estimates of PfRc were generated by the Malaria Atlas Project using a malaria transmission model to describe the relationship between PfRc and the predicted probability

Especially case III (c.o.g. located behind the e.a.) showed a significantly different behavior than the other 1-DOF cases with a higher beat frequency. The main investigation

In order to evaluate the loading history effect in a sintered material sample extracted after manufacturing, a test procedure was made with different load levels applied to the

In order to evaluate the loading history effect in a sintered material sample extracted after manufacturing, a test procedure was made with different load levels applied to the

An evaluation of the displacement field obtained by digital image correlation allows us to evaluate the heterogeneous strain field observed during these tests.. We focus on

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The final chapter of this thesis will cover the fabrication of the Upper Machine structure, the Inter- Platen Motion system, and the Force Application system.. This

Safety assurance through advances in long-term operation requires research and development activities that tackle, extended period materials performance, selection of materials for