• Aucun résultat trouvé

Data banks in historical anthropology : the material infrastructure for interdisciplinarity

N/A
N/A
Protected

Academic year: 2022

Partager "Data banks in historical anthropology : the material infrastructure for interdisciplinarity"

Copied!
13
0
0

Texte intégral

(1)

Article

Reference

Data banks in historical anthropology : the material infrastructure for interdisciplinarity

MENK, Roland

Abstract

Le présent article donne une description sommaire d'un système de banque de données destinée à fournir un apport documentaire à l'anthropologie historique. Tout d'abord on insiste sur l'importance d'une approche interdisciplinaire (avec l'archéologie) de cette recherche.

Partant des desiderata concernant l'éventail des données à récolter - et tenant compte de considérations portant sur les modalités de stockage et d'édition - on esquisse brièvement la philosophie de base, la genèse et les caractéristiques du logiciel ADAM. Le but de la banque de données gérée à l'aide de ce système consiste à récolter un maximum de données morphométriques individuelles relatives à du matériel squelettique historique et préhistorique, de le compléter par une très vaste documentation (aspects culturels, géographiques, chronologiques, bibliographiques, etc.), et de le rendre disponible pour une élaboration ultérieure. Le système ADAM se caractérise par une grande souplesse quant aux données qu'on peut y entrer ainsi qu'aux possibilités de son extension future. Il n'est soumis à aucune limite [...]

MENK, Roland. Data banks in historical anthropology : the material infrastructure for interdisciplinarity. Archives suisses d'anthropologie générale , 1979, vol. 43, no. 2,

Anthropologie et archéologie : le cas des premiers âges des métaux : actes du Symposium de Sils-Maria, 25-30 septembre 1978, p. 331-342

Available at:

http://archive-ouverte.unige.ch/unige:95633

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Archives suisses d'anthropologie générale. Genève. 43, 2, 1979, 331-342

Data Banks in Historical Anthropology the Material Infrastructure for Interdisciplinarity

by

Roland MENK

Introduction

Interdisciplinarity in prehistoric research - as we intend to promote it in this Symposium - asks not only for innovation and extension of the underlying concepts, it also calls for the creation of an adequate material infrastructure providing the informational support necessary to carry out the postulated research in an efficient way. A more realistic comprehension of historical events cultural and biological change - its underlying conditions, its modalities and its consequences - can be reasonably expected as a reward for the double effort, intellectual and documentary.

In the absence of such an infrastructure, practical execution of interdisciplinarity is severely compromised: the different branches involved would have to continue to work in their usual way, i.e. «on their own». This can no longer be considered as being an appropria te approach to large-scale oriented research. A pool of common information is necessary in order to avoid parallelism in data gathering, to speed up the progress of research, to intensify the network of communication between scientists, and to stimulate transdisciplinary thinking.

Success or failure of interdisciplinarity in prehistorical research - as postulated in this symposium and elsewhere (Schwidetzky 1971; Menk 1979) - depends to a non- negligeable extent on the progress of physical anthropology, at present probably the weakest link in this teamwork.

In the last decade physical anthropology has undergone a profound renewal of its methodology of data elaboration it possesses now a set of remarkably efficient tools to face this challenge with fair chances for success in the assessment of the biological aspects of history: biological processes of human populations as related to cultural dynamics.

The methodology for a more exhaustive data elaboration being thus available, ail attention must now be devoted to the data. Two fundamentally different aspects must be considered: qualitative and quantitative.

The first point - concerning the bio-genetical relevance of morphometrical data - having been discussed previously (Menk 1978, 1979), the present paper will be focussed entirely on the second point: the management (gathering, storing, retrieving, editing, distributing) of bio-anthropological data together with its general documentation. This leads us straightforwardly to the concept of Data Banks.

SHORT HISTORICAL RECALL

There are two major computerized data banks on physical anthropology in Europe (and, to our knowledge, in the world): one at the Anthropological Institute of the University of Mainz, Germany («Mainzer Lochkartenarchiv»: Schwidetzky and Cree!,

(3)

1971; Perscheid 1974; Schwidetzky, this volume), and the other at the Department of Anthropology of the University of Geneva, Switzerland. Their establishment, initiated in 1967, traces back to an agreement to share the arduous task of gathering individual data available in the literature on human skeletal material from prehistoric Europe.

In the initial phase, the data bank was essentially a file ofpunched cards containing, in a fixed field format, 36 craniometric and osteometric measurements, age at death, sex and catalogue number.

The Institute ofMainz- equipped with its own hardware to handle punched cards - has retained this physical basis of data support. In Geneva however - where no such equipment was available at that time - we had to switch over to a software-oriented data handling, the amount of data having become prohibitive for manual operation. This purely material necessity proved to be very beneficial in the long range. Firstly, it permitted the association of biological data with a large set of indispensable« background information»: geographical, chronological, cultural, bibliographical, etc. This inform- ation - providing the selection criteria for sampling (composition of the groups,

«populations» to be confronted to one another by means of biostatistical data analysis) - thus contained in the same file as the biological data, permitted a substantial improvement to be obtained with regard to the notoriously tedious and time-consuming retrieval operations. A first system realizing such an integration of biological and non- biological data (the former in numerical form, the latter in «free text» or in coded form) was operational by 1971 (Menk 1975). Secondly, the very positive experiences made with this type of integrated data bank I encouraged us to pursue the system development towards an even more versatile and more flexible software permitting any type of information to be entered- numeric, coded or free text; biological or other - in order to cover the whole spectrum of information required for interdisciplinary research.

Since 1977 this universal system has been operational. After a rather long interruption due to the attention required for software development, data implementation has now been resumed: data on skeletal series from ail over the world, and from periods starting with the Upper Palaeolithic, through to recent times have been entered, each series being extensively documented as toits specific background (cultural/ethnographical, chronolo- gical, social, economical, bibliographical, etc.). This «exploration» has contributed to the considerable increase of «background» descriptors (see tab. 1) and of osteometrical measurements introduced into the system2.

The ADAM3 Data Bank System

CONTENTS

1. Physical Anthropology

Osteometric information, as available in the literature, is presented in an almost infinite variety of forms, reflecting: a) the abundance of measuring techniques; b)

l Applications made thus far arc not yct fully intcrdisciplinary. Howcvcr. besicles chronological sampling of the skclctal data. somc non-biological information has been used with much profit. Gcographical data wcrc uscd in a ncw approach: confrontation of gcographical vs. morphological distances bctwccn groups in ordcr to gel more insight into the problcm of «cultural diffusionism vs.

migration». In addition. gcographical data (coordinates) were uscd for automatcd cartography (Mcnk 1975).

2 At present the Data Bank features 71 descriptive items (tab. 1) and 772 morphometrical and morphoscopic variables; the list is cxpandable at any time.

This amount of information seems outrageous. but it must be emphasized that none of the ca. 2'000 scries currcntly containcd in the data bank is fully documentcd for the wholc scopc of information (the maximum numbcr of ostcometrical variables prcscntcd in a single scrics is 126). The high numbcr ofmorphomctrical variables introduccd into the dircctory of the system is parti y duc to the fact that similar measuremcnts (variants proposcd by different biometric schools) wcrc carcfully distinguishcd (for bilatcral measuremcnts the sidc is also rccorded).

3 ADAM is the acronym of Anthropological Data Acquisition and Management.

(4)

DATA BANKS IN HJSTORICAL ANTHROPOLOGY

ITEM DESCRIPTION AND DEFINITIONS

********************************

T C N

y A A D E S C R I P T I p T M

E E

1 N u AFNMB SERIAL NUMBER

0 N

333

A 70 N Ml ANOMZ SERIAL NUMBER MAINZ ("LOCHKARTENARCHIV MAINZ"l 3 A u

4 A M2 5 A U 6 C U 7 A Ml 48 NU

A 58 AU 9 A U 10 A Ml 11 AU

8 C Ml 50 A Ml

A 32 A Ml

AFNAM AAUTH ATITL AP.NM Av. P.

ANBPG ASERI AEDIT ALOC.

AYEAR ACTNT ACOTE ABIBL

ELEMENT NAME AUTHORS TITLE

PERIODICAL NAME VOLUME, PAGINATION NB.OF PAGES

COLLECTION, SERIES; WITH SERIAL NUMBER EDITOR

LOCALITY OF EDITION YEAR OF EDITION CONTENTS

GALL NUMBER OF BIBLIOGRAPHICAL REFERENCES BIBLIOGRAPHY ( OTHER REFERENCES)

2 C Ml 35 C Ml 44 NU 33 C Ml 34 AU 37 A Ml 53 AU

AVARI AVAL.

AMISD ACOLL ACOND ACTRB ARIGT

NAMES OF INDIVIDUAL DATA <MEASUREMENTS, ETC. l VALIDATION STATUS

MISSING DATA CODE <ONLY MEANINGFUL WITH FORMATTED DATA) COLLECTION: INSTITUTION WHERE SKELETAL MATERIAL IS STORED SPECIAL CONDITIONS OF MATERIAL

63 NU 12 NU 14 A Ml 15 N Ml 16 N Ml 17 N Ml 18 N Ml 60 N M2 61 N M2 64 AU 65 N Ml

13 C M2 AETHN 52 C M2 ATRIB 57 C M2 ALING 62 C M2 ATRAD 69 C M2 ASTYL 67 C M2 ARELI

CONTR !BUTORS

COPYRIGHT <DATA EXCHANGE CONDITION) NB OF INDIVIDUALS IN ELEMENT NUMBER OF GROUPS

GROUP NAMES NB. ADULTS NB. NON-ADULTS NB. MALES <ADULTSl NB. FEMALES <ADULTS) PALAEODEMOGRAPHY (SUMMARYl PALAEODEMOGRAPHY (DETAILS) PATHOLOGY <FREE TEXT REMARKS) NUMBER OF TOMBS

GENERAL ETHNIC CHARACTERIZATION TRIBAL DESIGNATION

ETHNO-LINGUISTIC GROUP CULTURAL TRADITION STYLE VARIANTS RELIGIOUS CONFESSION A 19 C M2 ACONT CONTINENT(S)

20 C M2 AREGI REGION(S) 21 C M2 ACTRY COUNTRY<IES)

22 C M2 ASTAT STATE<S) [CANTON, DEPARTEMENT, BUNDESLAND ... J 54 AU ADSTR DISTRICT (COUNTY,ARRONDISSEMENT,BEZIRK,ETC. >

23 A M2 ALCLT LOCALITYCIES)

49 AU ASITN SITE NAME <SEE ALSO LOC2 ON INDIVIDUAL LEVEL) 24 A Ml AGLOC GROUP LOCATIONS

25 N M2 AGCXY GEOGRAPHICAL GROUP COORDINATES 56 N M2 AALTI ALTITUDE (METERS ABOVE SEA LEVEL)

---

26 C M2 ACH.G GENERAL CHRONOLOGY 27 C M2 ACHRl RELATIVE CHRONOLOGY <GROUPS); ORIGINAL ATTRIBUTION 28 C M2 ACHR2 RELATIVE CHRONOLOGY (GROUPS); CURRENT ATTRIBUTION 29 N M2 ACH.A ABSOLUTE CHRONOLOGY <GENERAL>

30 N M2 ACHAG ABSOLUTE CHRONOLOGY OF GROUPS

31 C M2 ACHAM METHOD USED FOR ASSESSMENT OF ABS. CHRONOLOGY 55 A M2 ACC14 LABORATORY REFERENCE OF C~4 SAMPLE(S)

59 AU

A 36 C M2

68 C M2 38 NU 39 NU 66 C Ml 45 C M2 46 C M2 71 A M2 47 C M2

A 51 A Ml

40 AU 43 A M2

41 42 - -

AREMA ASOCI AECON AINDT AUPDT AHABI ASEPU AINHU AORIS APSKL -pROB -ecce AASSO -oATA -END.

GENERAL REMARKS

SOCIO-ECONOMICAL STATUS TYPE OF ECONOMY

DATE OF INTRODUCTION OF SERIES IN THE FILE LAST UPDATE ON THE SERIES

HABITATION TYPE SEPULCHRAL STRUCTURES

INHUMATION TYPE

ORIENTATION OF SKELETON POSITION OF SKELETON

PROBLEMS TO WORK ON WITH THIS MATERIAL COMMENTS (ON PREVIOUSLY ENTERED ITEM) ASSOCIATION GROUP DEFINITIONS (FOR OUTPUT:

INTRODUCES INDIVIDUAL DATA PART PRECEEDED END OF SERIES CCONTROL WORDJ

TABLE 1.- List of items («background descriptors»).

NUMERICAL!J BY FORMAT

(5)

334

persona! preferences of the authors; and c) the state of conservation and «value»

(uniqueness or abundance) of the skeletal material described. As a consequence, there is a tremendous diversity in the presentation of individual data. There is little hope for an eventual generally adopted standardization.

How to face this diversity? Two possibilities are offered: a) define straightforwardly a pragmatically restricted set of commonly used measurements; b) provide the means to record al! data.

The first proposai - reductionist - seems to be the more realistic. Technically speaking, this would be easy to accomplish: representing what could be called a

«maximum common denominator» offrequently used data, it would have the advantage of containing no «ballast» of specific, but infrequently referenced data.

There are, however, severe shortcomings that urged us to abandon this procedure and to switch over to the more exhaustive - and, in terms of cost/yield, apparently inefficient - method. For many morphometrical parameters there exist several variants of measuring techniques. How to cope, practically, with the coexistence of similar measurements, such as the orbita dimensions, long bone lengths, etc.? Ignore the (precious) information when assessed according to another («non-standard») technique?

«Correct» it by adding or substracting some arbitrary constant? Mix the standard and non-standard data indiscriminatedly together, without keeping track of the exact significance of the data?

Whatever policy is adopted in the event, it is essential not to !ose control over the specific conditions of the information recorded. This request not only concerns the osteometrical data, it also applies - and even more - to chronological, cultural, and other information. lts practical realization, however, cannot be undertaken with a simple system; hence the necessity to develop a sophisticated data bank software (see tab. 2).

In addition to these technical considerations, another aspect must be borne in mind:

the evolution of scientific methodology. Indeed, research cannot be permitted to be frozen

M40 BA-PR

M41 EK-PO

M42 BA-GN

M43 FMT-FMT

M43( l l FMO-FMO

M44 EK-EK

M44A **-**

M44C1 l EK"'N"'EK

M45 ZY-ZY

M45Cll JU-JU

M46 ZM-ZM

M46A ***

M47 N-GN

M47A ON-GN

M48 N-PR

M40C1 l NS-PR M4BC3l M48A **-** ON-PR

M49 LA-LA

M49A o-o

M50 MF-MF

M51 MF-EK

M51R MF-EK

M51A O-EK

M51AR D-EK

M51AM D-EK

M51B LA-EK

M51BR LA-EK

M51U ?-?

M52 M52R M52M

M52U ? - ? M53

M54

MSS N-NS

M56 N-RHI

MS?

M57Cl) M57(2>

M57(3)

MOB N-SO

M59

M60 PR-ALY

M61 EKM-EKM

M62 OL-STA

M62A OL-***

M63 ENM-ENM

M64

97. 3 L. BAPR

n. *L. EKPO 115. *L. BAGN 100. *B. FMT"

95. *B. FMO"

95. *B. EK-"

95. *13. EK-"

110. *A. EK-N 129. 5 a. zvzv

114, 1 B. JU-"

95. *B. ZM-"

110. *B. MAL.

118. *H. N-GN 122. *H. ONGN 67. *H. N-PR 18 :H. PRNS 37.

75. *H. ALOR 26. ,!!,B. LA-"

21. 4 B. 0-D 20. *B, MF-"

42. *BORBML 42. *BDRBMR 37. *BORBDL 37. *BORBDR 37. *BORBDA 39. *BORBLL 39. *BDRBLR 38. *BDRBXX 33. 3 H. OREL 33. *H. ORBR 33. *H. ORBA 33. *H. ORBX 47. *D. ORB.

26. 2 B. NAS.

51. *H. NAS.

19. *L. NRHI 8. 7 B. SIMO l :,, 6*8. NASX 10. *B. NASS 10. *B. NASI 7. *L. N-SO 20. *H. CHOA 55. *L. MXAL 62. 9 B. MXAL 45. *L. PALA 52. *L. PALX 39. *B. PALA 12. *H. PALA

GESICHTSLAENGE. CBS: GLJ CH: BPLJ SEITLICHE GESICHTSLAENGE

UNTERE GES I CHTSLAENGE C KI NNBAS I ONLAENGE >

OBERGESICHTSBRËITE CAEUSSERE ORBITALE GESICHTSBREITE>

INNERE ORBITALE GESICHTSBREITE. ms: IDW) BIORBITALBREITE

BIDRBITALBREITE, BIMALARBREITE (HINTERE) NASOMALARBRE I TE C -KURYE l

JOCHBOGENBREITE. ces: JJ CH: ZYBJ BIJUGALBREITE CH: JUBJ

MITTELGESICHTSBREITE. ces: GBJ GESICHTSBREITE CV. HOELDERl MORPHOLOG I SCHE GES I CHTSHOEHE HAUTEUR TOTALE DE LA FACE. CBS: GHJ OBERGESICHTSHOEHE. CBS; G 'HJ

HOEHE DER ALVEOLARPARTIE <HAUTEUR SPINO-ALVEDLAIREl KLEINSTE OBERKIEFERHOEHE (HAUTEUR ORBITO-ALVEOLAIRE MINIMUM) OPHR YON-AL VEOLENHOEHE

HINTERE INTERORBITALBREITE

ZWISCHENAVGENBREITE. ces: DCJ CH: DKBJ CR: DAKRIALNAYA SHIRINAJ VORDERE INTERORBITALBREITE cas: MCJ CR: MAKSILLOFRONTALNAJA SHIRINA ORBITALBREITE CMAXILLOFRONTALE> LINKS. CBS: OlLJ

ORBITALBREITE (MAXILLOFRONTALE) RECHTS ORBITALBREITE (DAKRYON) LINKS. ces: 01 'LJ ORBITALBREITE CDAKRYON) RECHTS

ORB !TALBREITE C DAKRYON l DURCHSCHNITT

ORBITALBREITE (LACRIMALE} LINKS. CBS: LACR. OlLJ ORBITALBREITE (LACRIMALE> RECHTS

ORBITALBREITE; TECHNIK NICHT DEFINIERT ORBITALHOEHE (LINKS). [85 02LJ CH; OBHJ ORB ITALHOEHE RECHTS

ORBITALHOEHE DURCHSCHNITT

ORBITALHOEHE; BEI NICHT DEF'INIERTER BREITE LINEARE LAENGE DER UNTEREN ORBITAWAND CDRBITATIEFE) NASENBREITE. CES: NBJ CH: NLBJ

NASENHOEHE. ces: NH, J LAENGE DER NASENBEINE

KLEINSTE BREITE DER NASENBEINE <SIMOTIC CHORD>. CSS: SCJ CH: WNBJ CR: SIMOTICH VA SHIRINAJ

GROESSTE BRE DER NASENBEINE OBERE BREITE SENBEINE UNTERE BREIT ASENBEINE

LAENGE DES N TSATZES DES STIRNBEINS CHOANENHOEHE

MAXI LLO-ALVEOLAR-LAENGE MAXILLO-ALVEDLAR-BREITE CH: MABJ GAVMENLAENGE. CBS: Gl 'J

GAUMENLAENGE (BIS ZUR SPITZE DER SPINA POSTERIOR>. CSS: GlJ GAUMENBREITE. ces: G2J

GAVMENHOEHE

TABLE 2.- List of morphometrical variables (extract).

(6)

DATA BANKS IN HISTORICAL ANTHROPOLOGY 335 into some rigid, minimalistic framework of standards. Despite the fact that this daim compromises inter-author-compatibility of data, room must be allowed for forther development of nove! methods.

In anthropology, an increasing proportion of scientists is converting to more extensive data gathering (Howells 1973); epigenetical data are more and more frequently used, and new techniques, such as stereometry are in sight (Menk 1978). Ail these arguments urged us to refrain from a reductionalist point of view, at least insofar as the structures for a general purpose data bank are concerned.

2. Circumstantialdata

Morphometrical data with no background information regarding their historical and geographical contexts are strictly useless, since time and space are the two fondamental dimensions along which human populations evolve; thence the need to merge biological (morphometric) and non-biological (cultural, geographical, chronological, etc.) inform- ation into one and the same data bank.

In practice, however, such a combination turns out to be rather difficult to accomplish, due to the different structural nature of the two types of information. As far as the biological data alone are concerned, the situation is clear and simple: the basic reference unit of information is the individual. As to the non-biological information, the situation becomes singularly complicated by the fact that those descriptors, implicitely also assume the fonction of sampling criteria in the retrieval phase. As these retrieval criteria cannot be known in advance, and as they can vary from very specific questions (of local interest) to very global ones, detailed information must be given, in accordance with ail possible levels of interrogation. Moreover, the set of individuals, as presented by an author in a publication, might split into various types of subsets of contradictory composition: two individuals i and j might belong to the same geographical subset, but to two different stratigraphical or cultural ones. The situation is forther complicated by the extraordinary disparity of what authors-when publishing their material - understand by the term of a

« series».

There is simply no unique way of breaking down the mass of information into subgroups. Here again, we have opted for an open system that permits to adapt to each particular case. Most of the descriptors are of the multiple type: the information can be broken down into sub-items (one or two levels; see tab. 1.) which are associated with the particular sub-groups (chronological, geographical, social, etc.). The system has the enormous advantage of eliminating redundancy: there is no need to repeat, for each individual, the information that it has in common with individuals of other subsets.

Therefore, when entering the information from the literature, only minimal conversion or rearrangement of the data is needed, and any kind of information can be entered 4. During interrogation, any links between any level (geographical: regional, local, etc; chronological, individual) can be established or restored.

ÜPERA TIONAL CONSIDERA TI ONS

A modern data bank system - conceived to handle large amounts of data covering a wide range of complex information (quantitative, qualitative and documentary), and

4 Thus the possibility is given to mention particular conditions. or a particular type of information which is not generally available but which could be of intcrcst for spccific studies.

(7)

capable of a large spectrum of operations - must be reliable and easy to use. The user must be protected from its complexity, i.e. the control language must be simple and free of ambiguity. Whenever and wherever possible, he must be prevented from committing errors (e.g. when entering implausible data) and from specifying inconsistent or ambiguous operations. A data bank with unreliable data (or undependable outcome of retrieval operations) is of no practical use.

1. Input phase

The principles of« free field» and« sequence free» s input have been put into operation for both types of data, individual and circumstantial. These two features permit the reduction of data preparation to a strict minimum: no intermediate data transcription (rearrangement on coding sheets) is needed, which eliminates a very important source of human errors. As shown in fig. 1., circumstantial data can be entered in any order, each item being preceeded by a four letter header that provides the system with the information necessary for interna! rearrangement of items. Similarly, the biometrical (individual) data can be copied directly from the original data lists, without any prior rearrangement of their sequence.

Extensive input control is performed: circumstantial data, likely to be used as retrieval criteria, are checked against a codebook containing all currently admitted terms.

Mismatching terms are listed in the protocol of input processing for subsequent corrections: misspelled terms or illegal synonyms are to be converted into the standard form; new terms are to be entered into the code book.

Ali numerical data are automatically checked for plausibility by a sophisticated algorithm which detects abnormal divergence of single values as well as excessive deviation from the standard morphological «profile» (dysharmonious proportions; see fig. 2.).

1111111111 3333 ~ YUGOSLAVIA, EARLY NEOLITHIC: ANZA $

1111111111111 NEMESKERI * J. / LENGYEL * I. $1111111111111 NEDLITHIC SKELETAL FINDS. IN: GIMBUTA S, M. <ED. ) : NEOLITHIC MACEDONIA, AS REFLECTED BY EXCAVATION AT ANZA, SOUTHEAST YUGOSLAVIA $1111111111111976 $llllllilll LOS ANGELES $1111111 THE INSTITUTE OF ARCHAEOLOGY, U CLA $111111111 1 / 375-410 $

IIIIIIIIIIIEUROPE-SDUTH-EAST $IIIIIIJ YUGDSLAVIA *SOUTH-EAST$

111111111111111 MACEDONIA $~LCLT ANZA $IIIIIIJ 21. 97 * 41.66 * O. 02 $ 111111111111111 NEOLITHIC-EARLY $IIIIIIJ EGEAN / STARCEVO $

111111111111111 2 $111111111111 6100 * 200 * 3 * 5900 * 200 * 3 / 5800 * 200 * 3 * 5300 * 200 * 3

$1111111111111 CALIBRATED DATA; GROUP 1 ON LEVEL I; GROUP 2 ON LEVEL II-III$

111111111111111 IDl/SEXA/AGNl/AGN2/NBGROUP/Ml/MlC/M2/M3/M8/M9/M10/Mll/Ml2/M13/M20/

M23/M24/M25/M26/M27/M28/M28Cl)/M29/M30/M31/M31(1)/M43/M43(1)/M44/M46/M48/

M51/M52/M55/M60/M61/M63/M65/M66/M69/M70/M71A/M72/M73/M77/M79/

MHUM1R/MHUM1L/MHUM2R/MHUM2L/MHUM4R/MHUM4L/MHUM5R/MHUM5L/MHUM6R/MHUM6L/

MHUM7R/MHUM7L/MHUM9R/MHUM9L/ MFEM1R/MFEM2R/MFEM6R/MFEM6L/

MFEM7R/MFEM7L/MFEM9R/MFEM9L/MFEM10R/MFEM10L/MFEM19R/MFEM19L/

MTIB1R/MTIB1L/MTIB1BR/MTIB1BL/

MTIB8AR/MTIB8AL/MTIB9AR/MTIB9AL/ MFIB1R/MFIB1L/ MCLA1R/MCLA1L/MCLA6R/MCLA6L/

MPELlR $

-$

3, MASC, 59, 68, 2, -188,,,, - 1 3 5 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ( 3 ) , , ' ' , , ' ' , ' , , ' ' , , , , , , ' , , ' ' ' ' ' , ' , ' ' ' , ' ' ' , , $

6,FEM,20,24, 1,,,, , , 8 7 , , , , , 109, ,, , 126,,,, 107,, ,,93,88,87,89,61,37,34,44,49, (6):58,38,,,34,,,78,90,-140,113, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , $

7, FEM, 36, 40, l, 175, 174, 158, 171, 132, 92, 115, 105, 101, 91, 115,492,295,358, 123, (7)128, 109,89, 107, 111,97,79, 100,93,,, ,-39,30,, ' ' , 114,8~26,55,28,,,, 125, (7)285,276,285,275, 56, 56,20, 19, 14, 14, 57, 57,37,35, 394,392,23,23,27,27,29,31, (7)23,23,39,39, 328,326,327,324,29,29,22,21, 319,322,133, 132,33,34, 197 $

-

FIG.1.- Example of ADAM input.

5 Each item or measuremcnt occupies a field of strict minimum length. Each field is delimitated from the adjacent fields by a separator (special sign such as$,/, • or comma; see fig. 1).

(8)

DATA BANKS IN HISTOR!CAL ANTHROPOLOGY 337

***** ILLEGAL CODE FOR ITEM -cTRY: YUGOLSAVIA

***** FATAL ERROR AT LINE 6 -coNT EUROPE-SOUTH-EAST $-CTRY YUGcl/lllllVIA *SOUTH-EAST$

***** ILLEGAL CODE FOR DATA-ITEM "SEXA" *

***** FATAL ERROR AT LINE 21 3,!llllll,:59,68,2,-188,,,,-13~,,,,,,,,,,,,,,,,,,,,,,,1,,,,

*

***** 7 METRICAL VARIABLES EXCEED TOLERATED RANGE OF VARIATION

LINE # 113 < 11098 > 107, 107, 100, 99, 54, 64,,, 53, 27, 43,, 33,111, 24, 9,, ,11111, 4. 5, 120, 10!1, 48, 74, 9'.

LINE # 11!1 ( 1 1 0 9 8 > , 4 2 0 , , 4 1 9 , , , B , , , , , , , , , l l l a , , . , , I I I , , . . . , $

DATA#

VALUES STANDARDS DEVIATION

29 8.0 5. 0 . 14:,5

***** SUBVECT#

LINE # 115

***** INDIVIDUAL

32 12.0 8.7 . 1017

:,6 :,7 88.0 308.0 360. 0 :,:,_ 0 . :,:,37 21. 0694

AAA AA AAA AA

:,9 :,9 62.0 23!!.0 238.0 49.0 . 526:, 14. 2482

60 43.0 300.0 . 7169

15: 111111 VARIABLES ENCOUNTERED INSTEAD OF 102

(11098), 420, ,419,,, 8 8 , , , , , , , , , , 308, ,62, ,235, ,43,,,, $

# 22 SEEMS TO BE Q = .01669

LINE # 272 LINE # 273 LINE tl 274

(9762)MASC, 3:,, 4:,, -197, , 141,, , 119, 106, 122, 132, 119,, , 116, , 23, , 143,, 74,, 114, (9762) 106, 108, :,:,, 72, 47, 46, :,4, 24,,, 35, 7, , , , , , , , 117, :,o, 93, 117, 34, 67, 38, 70, {9762)61,,,,, 84, 83, 84,, 137,126,117, 55, :5, 5, 3, 4,, 3,

L!NE 11 275 (9762)463,, 460, 1 103,, 395, J 88, 1 399, J 42, '332,177, 1 J', '260,, !50, $

END ONSITE PRINTOUT ON SEPTEMBER 24, 1981 AT 21:28:16 RM*DBILL( 1 ).

FIG. 2.-Example of Input Processing protocol.

Upon completion of input, the information is edited by the system into a master file, used in all subsequent operations.

2. Output phase

In contrast to a punched card file-where the information remains readable to human eyes and, thus, potentially open to manual operations (retrieval, sorting), the ADAM master file - written in internai machine code - is out of any direct human access.

Therefore, all output operations must be performed by the computer, under appropriate (pre-programmed) software control.

The ADAM data bank system provides easily programmable features for a whole range of output facilities that far exceeds the possibilities of a manually ( or mechanically) operated punched card file:

- Information retrieval: selection criteria to almost any degree of complexity - concerning either irrespectively site-specific (circumstantial) and/or individual data - can be formulated in a comprehensive language (fig. 3.).

·-CRITERIA ELEMENT.S: SUBCRIT 1 CTRY EG SUBCRIT 2 CTRY EG - SUBCRIT 3 CHRl EG

CRITERION (Cl OR 2) AND 3) = TRUE CRITERIA INDIVIDUALS: ANY

EDIT DESCRIPTION X FIXED

FNMB 1 1 LCLT 2 5 CTRY 6 9 CH.G 10 12 CHRl 13 15 $

C1X,F6.0,2C1X,4A6),2(1X,3A6)) $

EDIT INDIVIDUALS ALL FORMATTED

-~REGI 6 6 ~cH. G 7 8 ~-CHRl 9 11

~FNMB 1 1 IDl 12 12 Ml 15 15 M17 21 21

~LCLT 2 4 AGA 14 14 MS 16 16 M9

M20 22 22

~cTRY 5 5 SEXA 13 13 17 17 M10 M23 23 23 M48 32 32

18 18 Mll 19 19 M12 20 20 M44 30 30 M45 31 31

M55 36 36 M66 37 37 OUTPUT 8

M27 24 24 M28 25 25 M43 29 29 M51 33 33 M52 34 34 M54 35 35

C lX, F6. 0, lX, 3A6, 2( lX, A6), lX, 2A6, 2( lX, 3A6)/C 12F6. 0))

GO. FIG. 3.-Example of output commands.

(9)

Computation of derived quantztzes: secondary information can be generated (indices, angles, transgenerated variables).

- Layoutr the elements selected for output can be edited in any form and composition, numerical data as well as circumstantial. The layout can be defined with simple commands to satisfy any particular requirement (reference catalogues for human consultation, or formatted layout for further data processing).

- Output structure: sorting features (multiple sort-keys, alphanumerical and numerical) are available. It is also possible to subdivide the whole output into subsets (groups or samples as needed for further processing: numerical analysis, etc).

- Output medium: the output can be directed to any available output medium, according to the particular purpose: display on monitor screen, paper (listing), punched cards or magnetic tape (for exchange), disk file (for further processing).

3. Update

For the sake of software simplicity, update operations on the master file can be performed on the element level only. Pre-existing elements can be deleted or replaced by an updated version 6; new elements can be inserted. Another useful operation has been included: the creation of sub-files. Sub-files have the same structure as the master file, but they contain only a limited number of elements, specifically selecteâ for a current task (research project). This permits to speed up successive output operations to be performed on a particular subset of elements (restricted geographical area, etc.).

GENERAL PROBLEM: RELIABILITY AND DEPENDABILITY OF INFORMATION

There is an extremely important problem in palaeoanthropology and in archaeology:

the precision and the reliability of data. Three examples are given to illustrate the problem: anthropological measurements on damaged skeletal material; cultural assign- ment of a site; assessment of the absolute chronology of a stratum or of a site.

There is no need to emphasize the enormous diversity - from one site to another - concerning accuracy, compatibility (terminological) and dependability of such inform- ation. In the practice however, if such data are to be used in spite of their provisional character, they must be reduced into a rigidly standardized form, necessarily devoid of any indication concerning their restricted validity. This is an extremely dangerous step because- once introduced, in this truncated form, into the computer- there is no longer any means to keep track of such «simplifications» in the subsequent output phases. This can lead to abusive assumptions and to incorrect conclusions.

In order to cope with this danger, this data bank system offers the possibility, for any item, to indicate its validity and to give further details (comments), if desired. General remarks can also be inserted concerning an element as a whole.

As to the morphometrical data, uncertainty can be recorded for any particular measurement by putting a «minus sign» in front ofit. On output, such data can be asked either to be filtered out or to be converted into their absolute value. In addition, it is possible to insert - in the input file - free text comments for any particular data (see fig. 2.).

6 Modifications on existing elements must be done on the «initial input» by means of an editor program.

(10)

DATA BANKS IN HISTORICAL ANTHROPOLOGY TECHNICAL ASPECTS

339

There is no room here for a further discussion of technical and computational considerations. An extremely condensed outline of the software-structures and features - is given hereafter.

The ADAM Data Bank software is a program package written in FORTRAN ASCII to run under control of a UNIV AC 1100 system, in interactive or in batch mode. It contains 57 routines (totalling about 5'800 instruction statements) that are assembled into four processors (main programs).

1. Input processor

This pro gram performs the tasks outlined earlier: reading and breakdown of the free- field input into its structural units (headers, items, sub-items, etc.). lt checks the consistency of the syntax (formai and structural), validates coded and numerical data, prints error messages and performs internai rearrangement and «compression» of the data by means of a sophisticated addressing system. Upon completion of input, it writes the complete information on the master file, which is used by the other processors.

2. Output processor

This program reads and interpretes the output commands (retrieval, layout) specified by a user (in interactive mode with assistance (prompting)). Prepares, starts and supervises the demanded output operations, as described earlier.

3. Update processor

This program establishes a new version of the master file: inserting new elements, substituting modified elements and discarding old (invalid or outdated) elements.

4. CODEBOOK processor

Ali operations of the ADAM software are backed by the so-called codebook which contains - in addition to the code lists explained earlier - the whole formai and structural background of the system (list of items, variables, with indication oftheir type, etc.); the software in itself being totally void of any matter-related content 1.

The codebook exists in two versions: a) in external (readable) form for general consultation by the users; b) in internai form (machine code in «paginated direct access»

structure) for interaction with the processors. Modifications of its content - possible at any time and to almost any extent - are made on the external version; the preparation of the updated internai version, on the basis of the external one, is performed by a special processor. Modifications of the codebook do not generally require a re-processing of the master file.

SUMMARY

In this article a fully computerized data bank system for population history and biology is presented. The fondamental importance of interdisciplinarity (physical

7 The same software can be used to run other data banks. The only requirement is to establish an appropriate code book.

(11)

340

anthropology, archaeology, and related branches) is pointed out. Beginning with a consideration of the requirements regarding the scope of data to be gathered, the basic philosophy, the development and the eventual characteristics of the software package ADAM are discussed. The purpose of the data bank operated with this system is to pool a maximum of morphometrical data on individuals (skeletons) from prehistoric and historie periods and to make it available - upgraded by a wide documentation of

« background» data (culture, chronology, geography, demography, bibliography, etc.)- to interested scholars for further analysis.

The ADAM system is characterized by its flexibility and versatility: there is no rigidly delimitated data set, and there are no chronological or geographical limits as to the data to be entered. Special attention has been given to security and to comfort on all levels of operations (error control, transparency, efficiency). A wide range ofretrieval and editing possibilities is offered.

The system has been designed to handle large amounts of complex data. Currently it contains about 40'000 individuals from more than 2'000 sites from Mesolithic to the present (thematically concentrated on Eurasian pre- and protohistory, Central European Middle Ages, and circumpolar anthropology). The data bank is at the disposai of any participant. For further details please contact the author.

RÉSUMÉ

Le présent article donne une description sommaire d'un système de banque de données destinée à fournir un apport documentaire à l'anthropologie historique. Tout d'abord on insiste sur l'importance d'une approche interdisciplinaire (avec l'archéologie) de cette recherche. Partant des desiderata concernant l'éventail des données à récolter-et tenant compte de considérations portant sur les modalités de stockage et d'édition - on esquisse brièvement la philosophie de base, la genèse et les caractéristiques du logiciel ADAM. Le but de la banque de données gérée à l'aide de ce système consiste à récolter un maximum de données morphométriques individuelles relatives à du matériel squelettique historique et préhistorique, de le compléter par une très vaste documentation (aspects culturels, géographiques, chronologiques, bibliographiques, etc.), et de le rendre disponible pour une élaboration ultérieure.

Le système ADAM se caractérise par une grande souplesse quant aux données qu'on peut y entrer ainsi qu'aux possibilités de son extension future. Il n'est soumis à aucune limite chronologique ou géographique. Une grande importance a été accordée au confort et à la sécurité de son utilisation. Il a été conçu pour gérer un gros volume de données complexes. A ce jour, il contient environ 40'000 individus provenant d'environ 2'000 sites différents, dont la datation s'étend du Mésolithique aux périodes récentes (thèmes principaux: préhistoire et protohistoire de l'Eurasie, anthropologie circumpolaire, haut moyen âge de l'Europe centrale). La banque de données doit servir un cercle aussi grand que possible de participants. L'auteur se tient à la disposition de chacun pour de plus amples renseignements.

ZUSAMMENFASSUNG

In der vorliegenden Arbeit wird ein Datenbank-System für historische Anthropologie vorgestellt. Es wird eingangs auf die grundlegende Bedeutung des interdiszipliniire Forschungsansatzes (Archaeologie) hingewiesen. Ausgehend von den sich daraus ergebenden Desiderata bezüglich Informations-Spektrum, Abspeicherungs- und Ab-

(12)

DATA BANKS IN HISTORICAL ANTHROPOLOGY 341 fragemoglichkeiten, werden Konzeption, Werdegang und Charakteristika des Software- Paketes ADAM geschildert. Zweck der damit betriebenen Datenbank ist es, ein Maximum an morphometrischen Individualdaten über historisches und priihistorisches Skelett- material zu sammeln und dieses - mit einer weitgefassten, geschichtsrelevanten Dokumentation versehen - zur weiteren Bearbeitung bereitzuhalten.

Das ADAM-System zeichnet sich durch Flexibilitiit und Ausbaufahigkeit aus: keine Festlegung auf ein starres Datenschema; keine chronologische und geographische Begrenzung. Besonderes Gewicht wurde der Benützerfreundlichkeit zugemessen: Ver- einfachung der Dateneingabe, Fehlerkontrollen auf allen Stufen, vielfaltige Ab- fragemoglichkeiten. Das System wurde auf die Bewiiltigung grosser Quantitiiten komplexer Daten ausgelegt: gegenwiirtig beinhaltet es rund 40'000 Individuen aus mehr ais 2'000 Fundorten von Mesolithikum bis Neuzeit (thematische Schwerpunkte:

eurasische Ur- und Vorgeschichte, zirkumpolare Anthropologie, mitteleuropiiisches Frühmittelalter). Die Datenbank soli einem moglichst grossen Teilnehmerkreis zur Verfügung stehen. Für Aufragen wende man sich an den Autor.

BIBLIOGRAPHY

HoWELLS, W.W. 1973. Cranial variation in Man. A Study by Multivariate Analysis of Patterns of Difference Among Recent Human Populations. Papers of the Peabody Museum of Archaeology and Ethnology, 67. Cambridge, Mass.

MENK, R. 1975. Anthropologie du Néolithique européen. Analyse multivariée et essai de synthèse.

Thèse, Université de Genève.

1978. Stéréométrie crânienne un vieux rêve de l'anthropologie. Arch. suisses d'Anthrop. gén., 42,

!, 23-30.

1979. Datenbanken für die historische Anthropologie ein Votum für ein gemeinsames Vorgehen bei der Datenbeschaffung. Arch. suisses d'Anthrop. gén., 43, !, 21-25.

PERSCHEID, M. 1974. Das M ainzer Lochkartenarchiv für postkraniales Skelettmaterial priihistorischer Populationen. Homo, 25, 121-124.

ScHWIDETZKY, I. 1971 a. H auptprobleme der Anthropologie; Bevolkerungsbiologie und Evolution des Menschen. Rombach Verlag, Freiburg; 130 pp.

- - 1979. Stand der Mainzer Datenbank far die priihistorische-historische Anthropologie. Arch.

suisses d'Anthrop. gén., 43, 2 (this volume).

und N. CREEL. 1971b. Das Mainzer Lochkartenarchiv für die priihistorische Anthropologie.

Homo, 22, 41-42.

Département d'Anthropologie Université de Genève 12, rue Gustave-Revilliod CH -1227 Genève-Acacias

BANQUES DE DONNEES DISCUSSION

GALLA Y: Pour ouvrir la discussion j'aimerais définir d'une manière très générale, la place qui revient aux banques de données dans les stratégies des recherches actuelles et futures. La banque de données développée par M. Menk répond à une stratégie bien définie et, comme pour toute stratégie, on peut être d'accord ou ne pas l'être. Personnellement j'ai un certain nombre de réticences à formuler.

(13)

342

Dans toute recherche on pose des objectifs auxquels doivent correspondre des réductions de données, ainsi que je l'ai souvent dit dans mes interventions au cours de ce symposium. Les banques de données - préparées pour aider à atteindre l'objectif en question - ont une entrée et une sortie (interrogation). Le problème stratégique qui se pose pour n'importe quelle banque de données est de savoir à quel niveau on opère cette réduction de données. Si l'on opère à la sortie, comme le fait M. Menk, on parle de stratégie lourde, car cela implique un grand volume de données. Si l'on opère à l'entrée, il y a lieu de parler de stratégie légère, et les banques de données qui en résultent sont d'un plus petit volume mais elles sont peut-être plus labiles quant à la durée de leur utilité.

Dans le cadre de notre Département d'Anthropologie nous avons donc adopté une stratégie lourde, avec une banque de données qui devrait permettre d'entreprendre des recherches très diverses.

Mais il faudra voir dans l'avenir quel type de banque de données est le plus adéquat. Je n'ai pas de recette à donner, mais il faut être conscient des problèmes de base.

MENK: En réponse à M. Gallay,j'aimerais faire valoir les points suivants: 1) En anthropologie physique - et c'est peut-être une des différences méthodologiques fondamentales avec l'archéologie - la vraie réduction des données ne se fait pas au niveau de la banque de données, mais après, lors de la phase de leur élaboration numérique. C'est cette dernière qui permet de dégager les facteurs essentiels ( = réduction) servant à résoudre un problème donné. Pour ce faire on a besoin d'un maximum d'information (et non un minimum), et c'est précisément le rôle de la banque de données de permettre de mobiliser cette information.

2) Les termes de «lourd» ou de «léger» me semblent être inappropriés dans le contexte des banques de données. A mon sens, une banque de données doit nécessairement répondre à des vocations multiples, et de ce fait elle doit avoir une certaine «masse». Par contraste, une stratégie légère est nécessairement restreinte à un problème particulier, car il est inconcevable qu'une façon déterminée de réduction puisse être adéquate à plusieurs objectifs.

3) Il conviendrait plutôt d'envisager tous ces problèmes sous l'angle de l'informatique. A présent - et dans les limites de nos préoccupations - l'aspect «volume» joue un rôle secondaire. L'aspect qui prime est celui de la complexité (relations entre rubriques) et, étant donné leur «durée de vie» (qui doit être en rapport avec l'effort nécessaire à leur création), leur potentiel de développement. Dans cette perspective, il faudrait plutôt parler de stratégies souples et de stratégies rigides.

GALLA Y: Mes doutes concernent plutôt les données archéologiques qui sont donc aussi stockées dans cette banque de données. Exemple: pour l'attribution culturelle des sites, faut-il adopter celle qui a été proposée par l'auteur (stratégie lourde), ou bien faut-il faire une révision en fonction d'un système cohérent, lié à une problématique particulière (stratégie légère)? A la suite de l'expérience faite lors du travail sur le Campaniforme (où l'on a fait la réduction à l'entrée)je suis plutôt en faveur d'une stratégie lourde, car force nous a été de constater que les concepts adoptés au début d'une recherche peuvent être assez rapidement dépassés.

MENK: Je reviens sur mon terme de stratégie souple car, pour cette rubrique d'attribution culturelle par exemple, ma banque de données offre la possibilité d'enregistrer selon les deux principes.

MASSET: Permettez-moi de poser une question tout à fait pratique, qui permettra peut-être de mieux appréhender les caractéristiques des deux banques de données. Je disposerai sous peu des données individuelles de la Chaussée-Tirancourt. Qu'est-ce que je dois faire pour vous les communiquer? Quelles informations voulez-vous? Quels codes faut-il respecter?

MENK: Quant à notre système, il n'y a aucune contrainte à respecter: vous nous donnez votre liste des mensurations qui sera mécanographiée pratiquement telle quelle par une perforatrice. Il faudra évidemment ajouter l'information circonstancielle que l'on trouvera en général dans la littérature archéologique.

DASTUGUE: Je pense que les deux stratégies sont valables: si l'on veut instituer une banque

«sectoriale», limitée à un secteur scientifique donné, on peut procéder par stratégie légère. Mais si l'on veut instituer une banque centrale d'anthropologie et d'archéologie, comme cela me semble être le cas ici, on se doit de ne rien négliger, car on ne peut pas savoir à l'avance ce dont on aura besoin.

GALLA Y: Les différences que vous relevez sont celles qu'on retrouve entre des objectifs documentaires et des objectifs scientifiques. Notre banque de données serait donc, dans une première phase, plutôt une banque documentaire.

Références

Documents relatifs

In this paper we present a discussion on the role of semantic web resources in the task of automatically enriching digitised cultural heritage collections using EL methods..

Our first application case in developing HIPLA has been on modeling, stor- ing, and searching Finnish place names in multiple SPARQL endpoints, and on displaying them on historical

The possibility to include the temporal validity of RDF data opens the doors to the creation of new datasets in several domains by keeping track of the evolution of information

Since data contained in a census table is statistical data, we designed a per- cell data model according to the RDF Data Cube vocabulary 11 (see Figure 3).. We use the term

HiGeoMes uses a spatial data infrastructure (SDI) based on OGC Web services to facilitate the exchange of collected archaeological information among project

SIIS will be expected to integrate spatial data from three principal sources: in situ measurements, remote sensing imagery, and historical ice charts:.. • ln Situ Measurements

We prove that there is a unique solution if the prescribed curve is non-characteristic, and for characteristic initial curves (asymptotic curves for pseudo- spherical surfaces and

The application of Web-enabled knowledge representation methods (Linked Data, ontologies) and data science (data integration, data preparation, provenance) has lead