• Aucun résultat trouvé

Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures

N/A
N/A
Protected

Academic year: 2022

Partager "Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures"

Copied!
7
0
0

Texte intégral

(1)

Article

Reference

Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures

CHERPILLOD, Pascal, et al.

Abstract

The diagnosis of Ebola virus disease relies on the detection of viral RNA in blood by real-time reverse-transcription PCR. While several of these assays were developed during the unprecedented 2013-2015 Ebola virus disease outbreak in West Africa, few were applied in the field.

CHERPILLOD, Pascal, et al . Ebola virus disease diagnosis by real-time RT-PCR: A

comparative study of 11 different procedures. Journal of Clinical Virology , 2016, vol. 77, p.

9-14

DOI : 10.1016/j.jcv.2016.01.017 PMID : 26874083

Available at:

http://archive-ouverte.unige.ch/unige:85381

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

ContentslistsavailableatScienceDirect

Journal of Clinical Virology

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j c v

Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures

Pascal Cherpillod

a,b,c,∗,1

, Manuel Schibler

b,c,∗

, Gaël Vieille

a,b,c

, Samuel Cordey

a,b,c

, Aline Mamin

b,c

, Pauline Vetter

b,c

, Laurent Kaiser

a,b,c

aSwissNationalReferenceCentreforEmergingViralDiseases,GenevaUniversityHospitals,Geneva,Switzerland

bLaboratoryofVirology,GenevaUniversityHospitals,Geneva,Switzerland

cUniversityofGenevaMedicalSchool,Geneva,Switzerland

a r t i c l e i n f o

Articlehistory:

Received13October2015

Receivedinrevisedform4December2015 Accepted27January2016

Keywords:

Ebolavirus Diagnosis Real-timeRT-PCR Analyticalsensitivity RNAquantification

a b s t r a c t

Background:ThediagnosisofEbolavirusdiseasereliesonthedetectionofviralRNAinbloodbyreal- timereverse-transcriptionPCR.Whileseveraloftheseassaysweredevelopedduringtheunprecedented 2013–2015EbolavirusdiseaseoutbreakinWestAfrica,fewwereappliedinthefield.

Objectives:Tocomparetechnicalperformancesandpracticalaspectsof11Ebolavirusreal-timereverse- transcriptionPCRprocedures.

Studydesign:Weselectedthemostpromisingassaysusingserialdilutionsofculture-derivedEbolavirus RNAanddeterminedtheiranalyticalsensitivityandpotentialrangeofquantificationusingquantified invitrotranscribedRNA;viralloadvaluesintheserumofanEbolavirusdiseasepatientobtainedwith theseassayswerereported.Finally,easeofuseandturnaroundtimesofthesekitswereevaluated.

Results:Commercialassayswereatleastassensitiveasin-housetests.Fiveoftheformer(Altona,Roche, Fast-trackDiagnostics,andLifeTechnologies)wereselectedforfurtherevaluation.Despitedifferences inanalyticalsensitivityandlimitsofquantification,allofthemweresuitableforEbolavirusdiagnosis andviralloadestimation.TheLifetechLyophilizedEbolaVirus(Zaire2014)assay(LifeTechnologies) appearedparticularlypromising,displayingthehighestanalyticalsensitivityandshortestturnaround time,inadditiontorequiringnoreagentfreezing.

Conclusions:Commercialkitswereatleastassensitiveasin-housetestsandpotentiallyeasiertousein thefieldthanthelatter.Thisqualitativecomparisonofreal-timereversetranscriptionPCRassaysmay serveasabasisforthedesignoffutureEbolavirusdiseasediagnostics.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background

As of September, 2015, more than 28,000 cases and over 11,000deathshave occurredduringtheWestAfricanepidemic of Ebola virus disease (EVD) (http://apps.who.int/ebola/ebola- situation-reports),whichiscausedbytheMakonavariantofthe Zaireebolavirus(EBOV)species.Itsgenomeisa19kblongsingle- stranded,negative-senseRNA.Rapiddiagnosisisacriticalinfection controlmeasure,particularlyin lightofEVD’searlysymptoma- tology,which is indistinguishablefromthat of other infections including malaria [1]. Ebola virus diagnostics have improved

Correspondingauthorat:LaboratoryofVirology,DivisionofInfectiousDis- eases,GenevaUniversityHospitals,4RueGabrielle-Perret-Gentil,1211Geneva 14/Switzerland.Fax:+41223724097.

E-mailaddress:manuel.schibler@hcuge.ch(M.Schibler).

1 Contributedequally(co-firstauthors).

considerablyfollowingthedevelopmentofreal-timereversetran- scriptionPCR(real-timeRT-PCR)assayscapableofrapidlydetecting viralRNAinbloodspecimens[2–7].Theirabilitytoestimateviral loadsinblood,whichcorrelatewithclinicaloutcome[8–11],aswell asinvariousbodyfluids[12–20],makesthemusefultoolsinthe post-diagnosticphase.Therecentimplementation,thoughsome- whatcontroversial,ofanegativebloodreal-timeRT-PCRresultas adischargecriterionhasonlyincreasedtheseassays’importance [21,22].

Yetcommercialmoleculardiagnosticassaysweremadeavail- ableonlyin2014.Validationresultsofreal-timeRT-PCRassays recentlyusedinthefieldinWestAfricaandinothercountriesfor screeningarelimitedandnotpubliclyavailable,andnoassayshave yetbeencomparedsystematically.

http://dx.doi.org/10.1016/j.jcv.2016.01.017

1386-6532/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

10 P.Cherpillodetal./JournalofClinicalVirology77(2016)9–14 2. Objectives

Weundertookthepresentcomparativestudytoevaluatethe performanceofseveralcommercialandin-houseEBOVreal-time RT-PCRassaysinordertoinformfutureselectionsanduseofthese toolsbothinthefieldandinhigh-resourcesettings.

3. Studydesign

ThestudyflowchartisshowninFig.1.

3.1. EBOVRNAs

C5 (GenBank no. KJ660348) and C15 RNAs (GenBank no.

KJ660346) extracted from Vero-cell cultures after inoculation withserum from patient C5 in Guéckédou and patient C15 in Kissidougou [23] were kindly provided by the Swiss Institute for NBC-Protection (Spiez Laboratory, Biology–Virology Group, Spiez, Switzerland). Alignment of the two sequences revealed 5nucleotidechanges(99%nucleotidesequencehomology): two werelocatedintheNgene atpositions 2124and2185,one in theGPgeneatposition6909,andtwointheLgeneatpositions 13,856and15,660.Noneofthesepositionsaretargetedbyanyof thereal-timeRT-PCRassaystestedinourstudy,exceptpossiblyfor theposition13,856nucleotidechange,whichcouldbeinvolvedin thetargetsequenceoftheRealStar® FilovirusScreenRT-PCRKit 1.0,theRocheLightMix®ModularEbolaVirusZaireassay,and/or theFTD®Ebolareal-timeRT-PCR.

Inordertodetermineboththeanalyticalsensitivityandthelin- earrangeofselectedreal-timeRT-PCRassays,weusedtwoRNA transcripts990bases long(TriLink BioTechnologies, SanDiego, USA)atknownconcentrations.OnespanstheLgene(nt12,792to nt13,781ofthegenomicstrand,GenBankref:KM233117)andthe othertheNPgene(nt374tont1363ofthegenomicstrand,GenBank ref:KM233117);togetherthesecoverallreal-timeRT-PCRtargets usedinthisstudy.WealsousedRNAextractedfromtheserumof anEVDpatientmanagedinourinstitution[19].AllRNAinthesame experiment,eitherextractedortranscribedinvitro,underwentthe samefreeze–thawcycle.

3.2. RNAextraction

RNA extractionwas performedwith the EasyMagautomate (NucliSENS®EasyMAG,bioMérieux,Geneva,Switzerland)follow- ingthemanufacturer’sinstructions.400␮lofspecimen(EbolaZaire positiveserum)wereinactivatedby1mloflysisbuffer(EasyMAG® LysisBuffer),followedbynucleicacidextractionwithafinalelution volumeof50␮l.

3.3. rRT-PCRassays

Thefollowingsixcommercialassayswereselectedbasedon theiravailabilityonthemarketinSwitzerlandatthetimeofthis studyand theirability tobeconductedonopen platformsand adaptedtothespecificationsofanaverageclinicalmicrobiology Laboratory:RealStar®FilovirusScreenRT-PCRKit1.0(ref:441013, Altona,Hamburg,Germany)andtheZaireEbolavirusassayfrom theRealStar®FilovirusTypeRT-PCRKit1.0(ref:451003,Altona, Hamburg,Germany),RocheLightMix®ModularEbolaVirusZaire (ref:40-0666-96,Roche,Rotkreuz,Switzerland),FTD®Ebola(ref:

FTD-71-64,Fast-trackDiagnostics(FTD),Sliema,Malta), Lifetech EbolaVirus(Zaire2014)andLifetechLyophilizedEbolaVirus(Zaire 2014)(ref:4489990,LifeTechnologies,Waltham,USA).Thesetests arereferredtoasAltonaScreen,AltonaType,Roche,FTD,Lifetech andLifetechL,respectively,throughoutthemanuscript.

Accordingtothemanufacturer’sinstructions,thefollowingreal- timePCRplatformsweresuitableforeachcommercialkit:

Altonascreen:

Mx3005PTMQPCRSystem(Stratagene),VERSANT®kPCRMolec- ularSystemAD (Siemens),ABIPrism® 7500SDSand7500Fast SDS(AppliedBiosystems),LightCycler®480InstrumentII(Roche), Rotor-Gene® 3000/6000 (Corbett Research), Rotor-Gene® Q5/6 plexPlatform(QIAGEN),andCFX96TM/DxReal-TimeSystem(BIO- RAD).

Altonatype:

VERSANT®kPCRMolecularSystemAD(Siemens),ABIPrism® 7500SDSand7500FastSDS(AppliedBiosystems),LightCycler®480 InstrumentII(Roche),Rotor-Gene®3000/6000(CorbettResearch), Rotor-Gene®Q5/6plexPlatform(QIAGEN),andCFX96TM/DxReal- TimeSystem(BIORAD).

Roche:

LightCycler®480IIInstrument(Roche),andCobasz480(Roche).

FTD:

ABI Prism® 7500 SDS, 7500 Fast SDS, and ABI ViiA7 (Applied Biosystems),CFX96TM/Dx Real-Time System(BIORAD), LightCycler® 480IIInstrument(Roche),Rotor-Gene®3000/6000 (CorbettResearch),andSmartCycler®(Cepheid).

LifetechandLifetechL:

7500FastSDS,ABIViiA7,andQuantStudioreal-timePCRsys- tems(AppliedBiosystems).

Inaddition,wetested5in-housereal-timeRT-PCRassays:The real-timeRT-PCRdesignedbyGibbandcolleaguesin2001[2],as wellasa modifiedversion, whichwe adaptedaccording tothe viralcirculatingsequencesin2014;amodifiedversionoftheEbola Zaire-TMassaydesignedin2010[7],whichwasadaptedaccording to2014EBOVsequencesbytheSwissInstituteforNBC-Protection (Spiez Laboratory, Biology–Virology Group,Spiez, Switzerland);

andtwoin-housereal-timeRT-PCRassays,whichweredesigned accordingtopubliclyavailableEbolasequencesthroughOctober 2014,the“EBOV-GP-GE-14”andthe“EBOV-L-GE-14”real-timeRT- PCRs,targetingtheGPandLgenesrespectively.Thesein-house assaysarereferredtoasEBOGP-1D,EBOGP-1D14,EbolaZaire-TM, EBOV-L-GE-14 and EBOV-GP-GE-14, respectively. Primers pairs andprobesweredesignedusingPrimerExpresssoftwareversion 3.0.

TheRoche,AltonaScreenandAltonaTypeassayswereusedwith theLightCycler 480thermocycler (Roche Diagnostics, Rotkreuz, Switzerland)whiletheFTD,LifetechandLifetechLassayswererun withtheViiA7thermocycler(LifeTechnologies,Waltham,USA), accordingtothemanufacturer’sinstructions.Allnon-commercial real-timeRT-PCRswererunusingtheStepOnePlusthermocycler (LifeTechnologiesWaltham,USA).Characteristicsofthe11eval- uatedreal-time RT-PCRassays, includingcycling conditionsand primers’andprobes’sequences,whenavailable,aresummarized inTableS1.

3.4. Lowerlimitsofdetectionandquantification,andEBOVRNA quantification

Foreachselectedreal-timeRT-PCRassay,knownconcentrations ofinvitrotranscribedRNAs(seeabove)wererunintriplicateintwo separateexperimentstoestablishstandardcurvesanddefinethe limitofdetection(LOD)andthelowerlimitofquantification(LOQ).

TheLODwasdefinedasthelowestRNAconcentrationdetectedin allofthesixreplicates.TheLOQwasdefinedbasedonbothtrip- licateexperimentsasthelowestRNAconcentrationthatcouldbe plottedonastandardcurvewithaslopebetween−3.1and−3.6 (correspondingtoaPCRefficiencybetween90%and110%),anr2 valueabove0.95,andvisuallylimiteddispersionaroundthecurve.

ForEBOVRNAquantificationintheclinicalspecimen,astandard

(4)

Fig.1. Flowchartofthestudy.LOD:limitofdetection;LOQ:lowerlimitofquantification.

curvewasestablishedusingserialdilutionsofquantifiedinvitro transcribedRNAineachexperiment.

4. Results

4.1. Analyticalsensitivitycomparisonofsixcommercialandfive in-houserRT-PCRassays

Each of the six commercial and five in-house assays was evaluated by end-point dilution using 5-fold dilutions of two culture-derivedfull-lengthEBOVgenomeRNAs,relatedtoisolates collectedinGuineainMarch2014(namedC5andC15RNAs)(Fig.1 andTableS2).

Whileall11assayscoulddetectRNAfrombothisolates,the commercialkitstendedtobemoresensitive.Sincethein-house real-timeRT-PCRsprovidednoadvantagesintermsofperformance oreaseofuse,theywerenotselectedforfurtherevaluation.Wedid notretaintheLifetechEbolaVirus(Zaire2014)assayforfurther testingeither,asitwaslesssensitivethanitslyophilizedcounter- partandlackeditspracticaladvantages.

TheLODwasdeterminedforthefivemostpromising assays (AltonaScreen,AltonaType,Roche,FTD,andLifetechL),usingserial dilutionsofquantifiedinvitrotranscribedRNAs(Fig.2,Table1).As canbeseeninFig.2,whichrepresentstwoseparateexperiments performedsevenmonthsapart,theinter-assayvariabilityisvery small.

4.2. Lowerlimitofquantification

Thefiveselectedassayswerefurthertestedfortheirquantifica- tionabilities(Fig.2,Table1).Ofnote,thehighestRNAconcentration testedinouranalysiswas6.25E9RNAcopies/ml,whichdidnot reachtheupperlimitofquantificationforanyassay.

4.3. EBOVRNAquantificationandend-pointdilutionusingserum ofanEVDpatient

Thefivecommercialreal-timeRT-PCRswerealsorunindupli- cateon3-folddilutionsof RNAextractedfroma serumsample withdrawnfromanEVDpatientmanagedinourinstitution[19]

(Table1).TheEBOVRNAquantificationvaluesobtainedwiththe variousassaysintheundilutedserumwereasfollows:1.16E6RNA copies/ml(Altona Screen),1.13E5RNA copies/ml(AltonaType), 9.5E4RNAcopies/ml(Roche),4.0E4RNAcopies/ml(FTD),and2.5E4 RNAcopies/ml(LifetechL).

4.4. Easeofuseandturnaroundtime

The complexity of technical manipulations was comparable betweenthefiveassays,exceptfortheLifetechLyophilizedsystem, whichdoesnotrequireanyreal-timeRT-PCRmixpreparation.For eachassay,weestimatedseparatelythehandlingtimefromRNA extractiontoreal-timeRT-PCRandthereal-timeRT-PCRcycling time,andthetotalturnaroundtime(Table1).

(5)

12 P.Cherpillodetal./JournalofClinicalVirology77(2016)9–14

Fig.2. Graphicalrepresentationofstandardcurve,linearityrange,lowerlimitofquantification(LOQ)andlimitofdetetction(LOD)foreachEBOVrRT-PCRassay.Eachplot showsvaluesobtainedfromtwoseparateexperimentsinwhichserialdilutionsofinvitrotranscribedEBOVRNAwererunintriplicate.Reddiamondsrepresentthefirst experimentandbluediamondsthesecond.ThelowestRNAconcentrationforwhichthelinepassesthroughrepresentstheLOQ.Theverticalgreydashedlinerepresentsthe LOD.Foreachassay,thecyclingnumberrecommendedbyeachmanufacturerisrepresentedbythehighestnumberindicatedontheyaxis.Diamondssituatedabovethe maximumcyclelinerepresentRNAdilutionsthatwerenotdetected.Slopeandr2valuesareindicatedforeachcurve.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

Table1

ComparisonoffiveselectedEBOVrRT-PCRassays.

Assay LOD(invitro transcribedRNA copies/ml)

LOQ(invitro transcribedRNA copies/ml)

Highestpatient RNAdilution detected

Handlingtime fromextraction torRT-PCRa (min)

rRT-PCRcycling time(min)

Totalturnaround time(min)

Storagetemperature

AltonaScreen 1250 12,500 27× 70–100 120 190–220 −20C

AltonaType 6250 625,000 27× 70–100 120 190–220 −20C

Roche 1250 6250 27× 70–105 80 150–185 −20C

FTD 625 1250 81× 70–100 75 145–175 −20C

LifetechL 62.5 625 243× 55–80 50 105–130 2–8C

aNucleicacidextraction,rRT-PCRmixpreparation,platepipettingLOD:limitofdetection;LOQ:lowerlimitofquantification.

(6)

5. Discussion

We providethefirstsystematic comparisonof severalEBOV real-timeRT-PCRassays,sixofwhicharecommerciallyavailable, usingserialdilutionsoffull-lengthEBOVRNAsfromthe2013–2015 EVDoutbreak.In-houseassaysdidnotmatchtheperformanceof thecommercialkits evenafter primer adaptations in linewith recentlyisolatedEBOVsequences.Thiscouldbeexplainedinpart bythelackofextensivereagentoptimization.

The five most promising assays, all commercially available (Altona Screen, Altona Type,Roche, FTD, and Lifetech L),were selectedforfurtherevaluationusingquantifiedRNAtranscripts.

TheLifetechLyophilizedassaydisplayedthebestanalyticalsen- sitivitywithanLODof62.5RNAcopies/ml,andthelowestLOQ(625 RNAcopies/ml),whichmaybeexplainedinpartbythekit’srela- tivelyhighRNAeluatevolume.Indeed,25␮lofeluateisrequired;

thisis2.5to5timesmorethanthatrequiredbytheRoche,FTDand bothAltonaassays.

Turnaroundtimesrangedfromtwo (LifetechLyophilized)to 3.5h (both Altonaassays). The differences are relatively small, however,andshouldhavelittleimpactonpatientmanagement.

Complexityofuseandreagentstorageconstraintsarelikelytobe moresignificantissuesinthefield.

Altogether,despite differences in analytical sensitivities and LOQs,theAltonaScreen,Roche,FTD,andLifetechLassaysalldis- playedanalyticalsensitivitieshighenoughtoensureaccurateEVD diagnosisandlinearquantificationrangessufficienttoassessviral kinetics,atleastwhendealingwithhighRNAconcentrations.

TheZaireEbolavirusassayfromtheRealStar®FilovirusTypeRT- PCRKit1.0wastheleastsensitiveandtheleastsuitedforEBOVRNA quantification.Thisisaminorissue,however,iftheassayisused primarily,asitsnameimplies,totypetheZaireebolavirusspecies.

Nevertheless,thedifferentsensitivitiesexhibitedbythereal- time RT-PCR kits can have considerable clinical impact. For instance,astheviralRNAloaddecreasesduringtherecoveryphase, thevariousreal-timeRT-PCRassaysmayyieldundetectableresults atdifferenttimepoints,potentiallyresultinginprolongingorshort- eningofpatientisolationtime.Thisissuewasexemplifiedduring themanagementofanEVDinfectedpatientinourcenter,aswe obtaineddifferentreal-timeRT-PCRresultswiththeRocheand Altonaassaysrunonthesamesamplesduringtheconvalescent phase[19].However,one canarguethatwhena patientshows signsofclinicalcure,thelow-leveldetectionofviralRNAproba- blyreflectsgenomicremnantsratherthanresidualinfectiousvirus [24].Therefore,highCtvaluesobtainedduringtherecoveryphase shouldprobablynotbeoveremphasized.

EBOVRNAquantificationbyreal-timeRT-PCRisclinicallyuse- ful,sincehighviremiaiscorrelatedwithahighermortality[8–11].

PreciseEBOVRNAquantificationwillalsobeavaluabletoolintrials evaluatingantiviralagents.

It should be noted, however, that in this study we did not perform a complete real-time RT-PCR quantification validation, but rather assessed theirrespective quantification potential. A thoroughvalidation according totheMinimum Informationfor Publication of Quantitative Real-time PCR Experiments (MIQE) guidelines[25]wouldbeessentialforanyformalassessmentof EBOV-RNAquantificationperformance.Moreover,asshownwith thequantificationofEBOVRNAintheserumofanEVDpatient,RNA copies/mlvaluesvariedconsiderablyaccordingtothereal-timeRT- PCRassay,from4.41to6.07log10RNAcopies/ml.Thisvariability canhaveanimpactonviralloadquantificationresultsinclinical investigations,andhenceontheconclusionsdrawnbysuchstud- ies.Therefore,inordertocomparequantificationvaluesobtained withdifferenttests,theyshouldbeexpressedininternationalunits (IU)permillilterusinganinternationalquantificationstandard,as hasbeendoneforotherviruses.

TheLifetechLandFTDassaysdisplayedremarkablylowLOQs, 625and1250RNAcopies/ml,respectively,whichcouldbeinterest- inginEBOVRNAquantificationinaresearchcontext.TheLifetechL assay,whichtothebestofourknowledgedidnothavetheopportu- nitytobetestedinthefieldduringthe2013–2015EVDoutbreak, displaysmanyinterestingfeatures.Theabsenceofreal-timeRT- PCRmixpreparationandfreezerrequirements,shortturnaround time,highsensitivityandlowLOQrenderthisassayparticularly suitableinthecontextofanoutbreakinlimited-resourcesettings, inwhichcoldchainmanagementcanbechallenging.

Ourstudyhasseverallimitations.Thefirstisthelackofsequence data regardingthe primersand probes includedin commercial assays, which is a consequence of the restrictive data-sharing policies applied by various agencies. Second, our study is not exhaustive,aswemadeaselectionofavailableassaysatagiven timeandataspecificplace,andthatwereadaptedtoourlabora- tory.Third,itshouldbenotedthatweusedanucleicacidextraction procedure(EasyMag)nottypicallyusedinWestAfrica,andthree differentthermocyclersaccordingtothedifferentassays.Finally, thepresentanalysisisfocusedonthe2013–2015EVDepidemicin WestAfrica,andourconclusionsarethusrelevanttotheMakona EBOVvariantcurrentlycirculating.Indeed,whiletheAltonaScreen andRocheassaysperformedwellonRNAfromthe2001EBOVepi- demicinGabon,thesamewasnot truefortheFTDassay(data notshown).Thisillustratestheneedtoadaptreal-timeRT-PCR assaysaccordingtopotentialviralsequenceevolution,asstressed bySozhamannanetal.[26].

Inconclusion,among11EBOVreal-timeRT-PCRassays,com- mercialkitsweresuperiortoin-houseassays;amongtheformer, theLifetechLassaydisplayedthehighestsensitivityandeaseof useaswellasthelowestturnaroundtime.

Funding

TheSwissNationalReferenceCentreforEmergingViralInfec- tionsis supportedbytheSwissFederal Officeof PublicHealth.

AdditionalfinancialsupportwasprovidedbytheSwissNational FoundationGrant32003B-146993toLaurentKaiser.Thefunders hadnoroleinstudydesign,datacollectionandinterpretation,or thedecisiontosubmittheworkforpublication.

Competinginterests Nonedeclared.

Acknowledgements

WeareindebtedtoFelixBaezforkindlydonatinghisbloodfor multipleinvestigations.WearegratefultoOlivierEnglerandChris- tian Beuretfromthe Spiez Laboratory,Biology–Virology Group, Spiez,Switzerland,forprovidinguswithMakonaEBOVC5andC15 RNAs.WealsothankourcolleaguesSabineYerlyfromtheLabora- toryofVirology,GenevaUniversityHospitals,Geneva,Switzerland, fortheconstructivediscussions,andAngelaHuttner,InfectionCon- trolProgram,GenevaUniversityHospitals,Geneva,Switzerland,for editingthemanuscript.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jcv.2016.01.017 References

[1]R.A.Borchardt,TheEbolavirusepidemic:Preparation,notpanic,JAAPA:Off.J.

Am.Acad.Phys.Assist.28(2015)48–50.

(7)

14 P.Cherpillodetal./JournalofClinicalVirology77(2016)9–14

[2]T.R.Gibb,D.A.NorwoodJr.,N.Woollen,E.A.Henchal,Developmentand evaluationofafluorogenic5nucleaseassaytodetectanddifferentiate betweenEbolavirussubtypesZaireandSudan,J.Clin.Microbiol.39(2001) 4125–4130.

[3]Y.Huang,H.Wei,Y.Wang,Z.Shi,H.Raoul,Z.Yuan,Rapiddetectionof filovirusesbyreal-timeTaqManpolymerasechainreactionassays,Virol.Sin.

27(2012)273–277.

[4]A.J.Jaaskelainen,K.Moilanen,K.Aaltonen,N.Putkuri,T.Sironen,H.

Kallio-Kokko,O.Vapalahti,Developmentandevaluationofareal-time EBOV-L-RT-qPCRfordetectionofZaireebolavirus,J.Clin.Virol.67(2015) 56–58.

[5]L.Liu,Y.Sun,B.Kargbo,C.Zhang,H.Feng,H.Lu,W.Liu,C.Wang,Y.Hu,Y.

Deng,J.Jiang,X.Kang,H.Yang,Y.Jiang,Y.Yang,D.Kargbo,J.Qian,W.Chen, DetectionofZaireEbolavirusbyreal-timereversetranscription-polymerase chainreaction,SierraLeone,2014,J.Virol.Methods222(2015)62–65.

[6]J.S.Towner,T.K.Sealy,T.G.Ksiazek,S.T.Nichol,High-throughputmolecular detectionofhemorrhagicfevervirusthreatswithapplicationsforoutbreak settings,J.Infect.Dis.196(Suppl.2)(2007)S205–S212.

[7]A.R.Trombley,L.Wachter,J.Garrison,V.A.Buckley-Beason,J.Jahrling,L.E.

Hensley,R.J.Schoepp,D.A.Norwood,A.Goba,J.N.Fair,D.A.Kulesh, Comprehensivepanelofreal-timeTaqManpolymerasechainreactionassays fordetectionandabsolutequantificationoffiloviruses,arenaviruses,andNew Worldhantaviruses,Am.J.Trop.Med.Hyg.82(2010)954–960.

[8]G.Fitzpatrick,F.Vogt,O.B.MoiGbabai,T.Decroo,M.Keane,H.DeClerck,A.

Grolla,R.Brechard,K.Stinson,M.VanHerp,ThecontributionofEbolaviral loadatadmissionandotherpatientcharacteristicstomortalityinaMedecins SansFrontieresEbolaCaseManagementCentre,Kailahun,SierraLeone, June–October2014,J.Infect.Dis.(2015).

[9]A.Sanchez,M.Lukwiya,D.Bausch,S.Mahanty,A.J.Sanchez,K.D.Wagoner, P.E.Rollin,Analysisofhumanperipheralbloodsamplesfromfataland nonfatalcasesofEbola(Sudan)hemorrhagicfever:cellularresponses,virus load,andnitricoxidelevels,J.Virol.78(2004)10370–10377.

[10]J.S.Schieffelin,J.G.Shaffer,A.Goba,M.Gbakie,S.K.Gire,A.Colubri,R.S.

Sealfon,L.Kanneh,A.Moigboi,M.Momoh,M.Fullah,L.M.Moses,B.L.Brown, K.G.Andersen,S.Winnicki,S.F.Schaffner,D.J.Park,N.L.Yozwiak,P.P.Jiang,D.

Kargbo,S.Jalloh,M.Fonnie,V.Sinnah,I.French,A.Kovoma,F.K.Kamara,V.

Tucker,E.Konuwa,J.Sellu,I.Mustapha,M.Foday,M.Yillah,F.Kanneh,S.

Saffa,J.L.Massally,M.L.Boisen,L.M.Branco,M.A.Vandi,D.S.Grant,C.Happi, S.M.Gevao,T.E.Fletcher,R.A.Fowler,D.G.Bausch,P.C.Sabeti,S.H.Khan,R.F.

Garry,ProgramKGHLF,ViralHemorrhagicFeverC,TeamWHOCR,Clinical illnessandoutcomesinpatientswithEbolainSierraLeone,N.Eng.J.Med.

371(2014)2092–2100.

[11]J.S.Towner,P.E.Rollin,D.G.Bausch,A.Sanchez,S.M.Crary,M.Vincent,W.F.

Lee,C.F.Spiropoulou,T.G.Ksiazek,M.Lukwiya,F.Kaducu,R.Downing,S.T.

Nichol,RapiddiagnosisofEbolahemorrhagicfeverbyreverse

transcription-PCRinanoutbreaksettingandassessmentofpatientviralload asapredictorofoutcome,J.Virol.78(2004)4330–4341.

[12]D.G.Bausch,J.S.Towner,S.F.Dowell,F.Kaducu,M.Lukwiya,A.Sanchez,S.T.

Nichol,T.G.Ksiazek,P.E.Rollin,AssessmentoftheriskofEbolavirus transmissionfrombodilyfluidsandfomites,J.Infect.Dis.196(Suppl.2) (2007)S142–S147.

[13]A.Christie,G.J.Davies-Wayne,T.Cordier-Lasalle,D.J.Blackley,A.S.Laney,D.E.

Williams,S.A.Shinde,M.Badio,T.Lo,S.E.Mate,J.T.Ladner,M.R.Wiley,J.R.

Kugelman,G.Palacios,M.R.Holbrook,K.B.Janosko,E.deWit,N.van Doremalen,V.J.Munster,Pettitt,R.J.Schoepp,L.Verhenne,I.Evlampidou,K.K.

Kollie,S.B.Sieh,A.Gasasira,F.Bolay,F.N.Kateh,T.G.Nyenswah,K.M.DeCock, CentersforDiseaseC,Prevention,PossiblesexualtransmissionofEbola virus—Liberia,2015.MMWR.MorbidityandMortalityWeeklyReport64 (2015)479–481.

[14]C.S.Kraft,A.L.Hewlett,S.Koepsell,A.M.Winkler,C.J.Kratochvil,L.Larson,J.B.

Varkey,A.K.Mehta,G.M.Lyon3rd,R.J.Friedman-Moraco,V.C.Marconi,C.E.

Hill,J.N.Sullivan,D.W.Johnson,S.J.Lisco,M.J.Mulligan,T.M.Uyeki,A.K.

McElroy,T.Sealy,S.Campbell,C.Spiropoulou,U.Stroher,I.Crozier,R.Sacra,

M.J.ConnorJr.,V.Sueblinvong,H.A.Franch,P.W.Smith,B.S.Ribner,Nebraska BiocontainmentU,TheEmorySeriousCommunicableDiseasesU,TheUseof TKM-100802andconvalescentplasmain2patientswithEbolavirusdisease intheUnitedStates,Clin.Infect.Dis.(2015).

[15]B.Kreuels,D.Wichmann,P.Emmerich,J.Schmidt-Chanasit,G.deHeer,S.

Kluge,A.Sow,T.Renne,S.Gunther,A.W.Lohse,M.M.Addo,S.Schmiedel,A caseofsevereEbolavirusinfectioncomplicatedbygram-negativesepticemia, N.Eng.J.Med.371(2014)2394–2401.

[16]G.M.Lyon,A.K.Mehta,J.B.Varkey,K.Brantly,L.Plyler,A.K.McElroy,C.S.Kraft, J.S.Towner,C.Spiropoulou,U.Stroher,T.M.Uyeki,B.S.Ribner,EmorySerious CommunicableDiseasesU,ClinicalcareoftwopatientswithEbolavirus diseaseintheUnitedStates,N.Eng.J.Med.371(2014)2402–2409.

[17]M.Mora-Rillo,M.Arsuaga,G.Ramirez-Olivencia,F.delaCalle,A.M.Borobia, P.Sanchez-Seco,M.Lago,J.C.Figueira,B.Fernandez-Puntero,A.Viejo,A.

Negredo,C.Nunez,E.Flores,A.J.Carcas,V.Jimenez-Yuste,F.Lasala,A.

Garcia-de-Lorenzo,F.Arnalich,J.R.Arribas,I.I.I.U.H.I.U.LaPaz-Carlos,Acute respiratorydistresssyndromeafterconvalescentplasmause:treatmentofa patientwithEbolavirusdiseasecontractedinMadrid,Spain,LancetRespir.

Med.(2015).

[18]A.K.Rowe,J.Bertolli,A.S.Khan,R.Mukunu,J.J.Muyembe-Tamfum,D.Bressler, A.J.Williams,C.J.Peters,L.Rodriguez,H.Feldmann,S.T.Nichol,P.E.Rollin,T.G.

Ksiazek,Clinical,virologic,andimmunologicfollow-upofconvalescentEbola hemorrhagicfeverpatientsandtheirhouseholdcontacts,Kikwit,Democratic RepublicoftheCongo.CommissiondeLuttecontrelesEpidemiesaKikwit,J.

Infect.Dis.179(Suppl.1)(1999)S28–S35.

[19]M.Schibler,P.Vetter,P.Cherpillod,T.J.Petty,S.Cordey,G.Vieille,S.Yerly,C.A.

Siegrist,K.Samii,J.A.Dayer,M.Docquier,E.M.Zdobnov,A.J.Simpson,P.S.

Rees,F.B.Sarria,Y.Gasche,F.Chappuis,A.Iten,D.Pittet,J.Pugin,L.Kaiser, ClinicalfeaturesandviralkineticsinarapidlycuredpatientwithEbolavirus disease:acasereport,LancetInfect.Dis.(2015).

[20]T.Wolf,G.Kann,S.Becker,C.Stephan,H.R.Brodt,P.deLeuw,T.Grunewald,T.

Vogl,V.A.Kempf,O.T.Keppler,K.Zacharowski,SevereEbolavirusdisease withvascularleakageandmultiorganfailure:treatmentofapatientin intensivecare,Lancet385(2015)1428–1435.

[21]WorldHealthOrganization,ClinicalManagementofPatientswithViral HemorrhagicFever,APocketGuidefortheFront-lineHealthWorker,April 2014,pp.61–62.

[22]T.O’Dempsey,S.H.Khan,D.G.Bausch,Rethinkingthedischargepolicyfor Ebolaconvalescentsinanacceleratingepidemic,Am.J.Trop.Med.Hyg.92 (2015)238–239.

[23]S.Baize,D.Pannetier,L.Oestereich,T.Rieger,L.Koivogui,N.Magassouba,B.

Soropogui,M.S.Sow,S.Keita,H.DeClerck,A.Tiffany,G.Dominguez,M.Loua, A.Traore,M.Kolie,E.R.Malano,E.Heleze,A.Bocquin,S.Mely,H.Raoul,V.

Caro,D.Cadar,M.Gabriel,M.Pahlmann,D.Tappe,J.Schmidt-Chanasit,B.

Impouma,A.K.Diallo,P.Formenty,M.VanHerp,S.Gunther,Emergenceof ZaireEbolavirusdiseaseinGuinea,N.Eng.J.Med.371(2014)1418–1425.

[24]J.R.Spengler,A.K.McElroy,J.R.Harmon,U.Stroher,S.T.Nichol,C.F.

Spiropoulou,RelationshipbetweenEbolavirusreal-timequantitative polymerasechainreaction-basedthresholdcyclevalueandvirusisolation fromhumanplasma,J.Infect.Dis.(2015).

[25]S.A.Bustin,V.Benes,J.A.Garson,J.Hellemans,J.Huggett,M.Kubista,R.

Mueller,T.Nolan,M.W.Pfaffl,G.L.Shipley,J.Vandesompele,C.T.Wittwer,The MIQEguidelines:minimuminformationforpublicationofquantitative real-timePCRexperiments,Clin.Chem.55(2009)611–622.

[26]S.Sozhamannan,M.Y.Holland,A.T.Hall,D.A.Negron,M.Ivancich,J.W.

Koehler,T.D.Minogue,C.E.Campbell,W.J.Berger,G.W.Christopher,B.G.

Goodwin,M.A.Smith,EvaluationofsignatureerosioninEbolavirusdueto genomicdriftanditsimpactontheperformanceofdiagnosticassays,Viruses 7(2015)3130–3154.

Références

Documents relatifs

After a brief overview of the impact of this polymorphism on different traits, we present thereafter preliminary studies, which rely upon a candidate gene approach followed by a

Figure 1 shows the results of the wettability study for different pure coal tar pitches and their blends using the same petroleum coke.. It was observed that the

In this study, we evaluated three commercial multiplex PCR assays, BD Max TM Enteric Parasite Panel (Becton Dickinson, Pont-de-Claix, France), G-DiaPara TM (Diagenode

This work aimed i) to assess the performance of Schistosoma PCR assays for the diagnosis of imported schistosomiasis in comparison to conventional microscopy in stool, urine and

In order to evaluate the influence of field retting on the hemp fibres harvested at different growth stages (BF, EF and SM), the mechanical properties of the

For 175375, the DNA product obtained after one-tube nested RT-PCR using panpes- tivirus primers (324 × 326 and A11 × A14) was identified only with a TaqMan BVDV2- specific

The standard dilu- tions were tested alongside the UK KBV positive RNA samples, and for comparison, alongside RNA extracted from Australian bees known to be natu- rally infected

In addition to surveillance for the presence of FMDV in the national herd through testing of bulk (whole) milk, proc- essed samples (such as skim and cream fractions generated by