• Aucun résultat trouvé

Solution du TP Maple n°3

N/A
N/A
Protected

Academic year: 2022

Partager "Solution du TP Maple n°3"

Copied!
2
0
0

Texte intégral

(1)

O O O

O

O

O O O

O O O

Solution du TP Maple n°3

MG2 - automne 2010

Exercice 1

restart:

A:=X^n-n*X^7+1; B:=X^5+2*X^4-6*X^3-4*X^2+13*X-6;

A:=XnKnX7C1

B:=X5C2 X4K6 X3K4 X2C13 XK6 eq:=A=B*Q(X)+R:

R:=add(a[i]*X^i,i=0..4);

R:=a0Ca1XCa2X2Ca3X3Ca4X4 racines:=solve(B);

racines:=K3,K2, 1, 1, 1

eqs:=subs(X=-3,eq),subs(X=-2,eq),subs(X=1,eq),subs(X=1,diff (eq,X)),subs(X=1,diff(eq,X$2));

eqs:= K3nC2187 nC1 =a0K3 a1C9 a2K27 a3C81 a4, K2 nC128 nC1 =a0K2 a1 C4 a2K8 a3C16 a4, 2Kn=a0Ca1Ca2Ca3Ca4,K6 n=a1C2 a2C3 a3C4 a4,n2 K43 n= 2 a2C6 a3C12 a4

vars:=coeffs(R,X);

vars:=a0,a1,a4,a3,a2 sols:=solve({eqs},{vars});

sols:= a0=1

9 K1 n 2nK 1465 24 nC 553

288 C 1

32 K11Cn 3nC1

4 n2,a1= 20551 144 n K 7

24 n2C 377 1728C 5

64 K1 n 3nC 8

27 K1 1Cn 2n,a2=K1

8 n2K 3427 48 nK 101

576 C 1

64 K1 1Cn 31CnC 1

9 K1 n 21Cn,a3= 1 64 K627

16 nC 1

64 K1 1Cn 3n C 1

8 n2,a4= 1

64 K1 n 3nC4019 144 nC 37

1728 C 1 24 n2C 1

27 K1 1Cn 2n Rsol:=subs(sols,R);

Rsol:= 1

9 K1 n 2nK1465 24 nC553

288 C 1

32 K1 1Cn 3nC 1

4 n2C 20551 144 nK 7

24 n2 C 377

1728C 5

64 K1 n 3nC 8

27 K1 1Cn 2n XC K1

8 n2K3427 48 nK101

576 C 1

64 K1 1Cn 31CnC 1

9 K1 n 21Cn X2C 1 64K 627

16 nC 1

64 K1 1Cn 3n C 1

8 n2 X3C 1

64 K1 n 3nC 4019 144 nC 37

1728C 1 24 n2C 1

27 K11Cn 2n X4

# vérification pour n=100 :

R1:=rem(subs(n=100,A),B,X); R2:=subs(n=100,Rsol);

O O

O O

O O

R1:=K16105547522875353954039343613150175716751618623 C8052773761437677000494682921912669367574018225 X4 K8052773761437677047444705152587832385970432700 X3 K24158321284313030860633982073712519047532808400 X2 C40263868807188384861623347917537857782680841400 X R2:=K16105547522875353954039343613150175716751618623

C8052773761437677000494682921912669367574018225 X4 K8052773761437677047444705152587832385970432700 X3 K24158321284313030860633982073712519047532808400 X2 C40263868807188384861623347917537857782680841400 X R1-R2;

0

Exercice 2

restart:

product(X-r,r=RootOf(X^7-2,X));

X7K2

H:=product(product(X-r-s,r=RootOf(X^7-2,X)),s=RootOf(X^17 -3)):

H:=sort(H);

H:=X119K34 X112C544 X105K21 X102K5440 X98K10295880 X95C38080 X91 K11865431928 X88C189 X85K198016 X84K1753404217656 X81K958322232 X78 C792064 X77K73058971757184 X74C10251916815168 X71K2489344 X70 K945 X68K1171409550359328 X67K5650506012497976 X64C6223360 X63 K10593209592 X61K8407568031198336 X60C441668319396677856 X57 K12446720 X56K176998340024352 X54K29134921153548672 X53C2835 X51 K7338824689392054432 X50C19914752 X49K87673540330647936 X47 K50194522347443712 X46K22874426568 X44C31059905300189006976 X43 K25346048 X42K3346477961073716448 X40K42660269259761664 X39

C156757268001600 X37K35439911729774568576 X36C25346048 X35K5103 X34 K14193305989102745568 X33K17061635654784000 X32K15692214152659968 X30 C10451514240106845696 X29K19496960 X28K8687592144 X27

K7277809809405502080 X26K2897877384880128 X25C49170413590869312 X23 K679128586744172544 X22C11141120 X21K4271574360816 X20

K388388753217360000 X19K170567675228160 X18C5103 X17 K5655170032317792 X16C6775977758957568 X15K4456448 X14 K5054275195200 X13K1308242376709632 X12K2228765736960 X11

(2)

O

O O O O O

O O O

O

O

O

K198486288 X10C13829136531840 X9K4436523012096 X8C1114112 X7 K25744920768 X6K56418840576 X5K1666990080 X4C13880160 X3 K30844800 X2C4386816 XK133259

# vérification : irreduc(H);

true simplify(subs(X=2^(1/7)+3^(1/17),H));

0

# autre méthode :

e:=eliminate({X^7-2,(Y-X)^17-3},{X}):

Hbis:=sort(op(e[2]));

Hbis:=Y119K34 Y112C544 Y105K21 Y102K5440 Y98K10295880 Y95C38080 Y91 K11865431928 Y88C189 Y85K198016 Y84K1753404217656 Y81K958322232 Y78 C792064 Y77K73058971757184 Y74C10251916815168 Y71K2489344 Y70 K945 Y68K1171409550359328 Y67K5650506012497976 Y64C6223360 Y63 K10593209592 Y61K8407568031198336 Y60C441668319396677856 Y57 K12446720 Y56K176998340024352 Y54K29134921153548672 Y53C2835 Y51 K7338824689392054432 Y50C19914752 Y49K87673540330647936 Y47 K50194522347443712 Y46K22874426568 Y44C31059905300189006976 Y43 K25346048 Y42K3346477961073716448 Y40K42660269259761664 Y39

C156757268001600 Y37K35439911729774568576 Y36C25346048 Y35K5103 Y34 K14193305989102745568 Y33K17061635654784000 Y32K15692214152659968 Y30 C10451514240106845696 Y29K19496960 Y28K8687592144 Y27

K7277809809405502080 Y26K2897877384880128 Y25C49170413590869312 Y23 K679128586744172544 Y22C11141120 Y21K4271574360816 Y20

K388388753217360000 Y19K170567675228160 Y18C5103 Y17 K5655170032317792 Y16C6775977758957568 Y15K4456448 Y14 K5054275195200 Y13K1308242376709632 Y12K2228765736960 Y11 K198486288 Y10C13829136531840 Y9K4436523012096 Y8C1114112 Y7 K25744920768 Y6K56418840576 Y5K1666990080 Y4C13880160 Y3 K30844800 Y2C4386816 YK133259

# vérification : Hbis-subs(X=Y,H);

0

Exercice 3

restart:

S:=series(1/((1-X)*(1-X^2)*(1-X^4)),X=0,401):

coeff(S,X,400);

O

O O

O O

O O O

10201 L:=[seq(coeff(S,X,i),i=0..40)];

L:= 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 12, 12, 16, 16, 20, 20, 25, 25, 30, 30, 36, 36, 42, 42, 49, 49, 56, 56, 64, 64, 72, 72, 81, 81, 90, 90, 100, 100, 110, 110, 121

with(genfunc):

eq:=rgf_findrecur(20,L,u,n);

eq:=u n =u nK1 Cu nK2 Ku nK3 Cu nK4 Ku nK5 Ku nK6 Cu n K7

y:=rsolve({eq,seq(u(i)=L[i+1],i=0..6)},u);

y:= 5

32 K1 nC 1 16 nC 1

16 K1nC 1 16 K 1

16 I InC 1 16 C 1

16 I KIn C1

8 nC1 1

2 nC1 C 1 4 nC 17

32 assume(n,integer): z:=evalc(Re(y));

z:= 5

32 K1 n~C 1 16 n~C 1

16 K1 n~C 1

16 n~2C 7

16 n~C 21 32 C1

8 cos 1 2 n~ ! C1

8 sin 1 2 n~ !

# vérification pour n=400 : simplify(subs(n=400,z));

10201

Références

Documents relatifs

Il était important dans ce TP de montrer en quoi la recherche d'approximations de π malgré son caractère désuet est encore d'actualité, notamment d'un point de vue algorithmique

En un sommet de la grille donn´ e on a le choix de monter ou d’avancer, le nombre de chemin est donc la somme des nombres de chemins qui commen¸ cent par monter (Chemin(l −1, L)) et

[r]

[r]

[r]

[r]

[r]

[r]