• Aucun résultat trouvé

High-strength cement pastes : a critical appraisal

N/A
N/A
Protected

Academic year: 2021

Partager "High-strength cement pastes : a critical appraisal"

Copied!
16
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Cement and Concrete Research, 15, January 1, pp. 105-16, 1985-01-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(85)90015-8

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

High-strength cement pastes : a critical appraisal

Beaudoin, J. J.; Feldman, R. F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=415cf52d-95f8-434f-82c8-1c6a8e474bf5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=415cf52d-95f8-434f-82c8-1c6a8e474bf5

(2)

10.

1273

c .

2

National Research

Conseil national

%DG

I

r(

*

Council Canada

de

recherches

Canada

HIGH-STRENGTH CEMENT PASTES

-

A CRITICAL APPRAISAL

by

J.J.

Beaudoin and R.F. Feldman

A N A L Y Z E D

Reprinted from

Cement and Concrete Research

Vol. 15, No.

1,

1985

p.

105- 116

3

-

C . ,

~~j~~

L

1

)

~

~

~

DBR Paper No. 1273

Division of Building Research

I

(3)

Les d c a n i s m e s d e r e n f o r c e m e n t q u i a g i s s e n t dans l a p l t e de c i m e n t 2 h a u t e r e s i s t a n c e s o n t e v a l u e s d a n s c e t e s s a i v i s a n t B d e f i n i r l e s c a r a c t e r i s t i q u e s communes B c e r t a i n e s n o u v e l l e s t e c h n o l o g i e s comme l e s p a t e s d e ciment p r e s s e e s 3 chaud, impregnees e t s a n s d 6 f a u t s m a j e u r s . Les f a c t e u r s i m p o r t a n t s m o d i f i a n t l a r e s i s t a n c e d e s m a t e r i a u x poreux s o n t , e n t r e a u t r e s , l a p o r o s i t e , l a dimension d e s p o r e s , l a c o m p o s i t i o n C-S-H, l e comportement d e s c o m p o s i t e s e t l e s c r i t e r e s d e r u p t u r e . C e t t e communication t r a i t e egalement d e s e f f e t s d e f a i b l e s r a p p o r t s eau-ciment, d e s i n c l u s i o n s d e n s e s , d e s m o d i f i c a t i o n s d e s c o n t r a i n t e s dans l e s zones c r i t i a u e s e t d e l e u r r 8 1 e d a n s 1 1 a m 6 1 i o r a t i o n e t l e c o n t r a l e d e l a - f a b r i c a t i o n d e l a p l t e d e ciment B h a u t e r e s i s t a n c e .

(4)

!

CEMENT and CONCRETE RESEARCH. Vol. 1 5 , pp. 105-116, 1985. P r i n t e d i n t h e USA.

I

0008-8846/85 $3.00+00. Copyright (c) 1985 Pergamon P r e s s , Ltd.

HIGH-STRENGTH CEMENT PASTES

- A

CRITICAL APPRAISAL

J.J. Beaudoin and R.F. Feldman

B u i l d i n g M a t e r i a l s S e c t i o n , D i v i s i o n of B u i l d i n g Research, National Research Council Canada, Ottawa, Canada, KIA 0R6.

(Communicated by M. Daimon) (Received June 5 , 1984)

The mechanisms r e s p o n s i b l e f o r h i g h s t r e n g t h i n cement p a s t e systems a r e a s s e s s e d i n an a t t e m p t t o d e f i n e f e a t u r e s common t o s e l e c t e d new t e c h n o l o g i e s , e.g., hot-pressed, impregnated, and macrodefect-free p a s t e s . Important f a c t o r s i n f l u e n c i n g s t r e n g t h of porous systems i n c l u d e p o r o s i t y , p o r e geometry, C-S-H composition, composite behaviour and f r a c t u r e c r i t e r i a . The e f f e c t s of low w a t e r c e m e n t r a t i o , d e n s e i n c l u s i o n s , s t r e s s m o d i f i c a t i o n i n c r i t i c a l a r e a s and t h e i r r o l e i n o p t i m i z i n g and c o n t r o l l i n g p r o d u c t i o n o f h i g h - s t r e n g t h cement p a s t e a r e d i s c u s s e d .

Energy consciousness i n t h e 1980's h a s i n c r e a s e d t h e need f o r i n n o v a t i o n i n t h e cement and c o n c r e t e i n d u s t r y , w i t h t h e r e s u l t t h a t h i g h - s t r e n g t h

l i g h t w e i g h t m a t e r i a l s have been developed f o r v a r i o u s a p p l i c a t i o n s such a s c l a d d i n g p a n e l s and composites f o r r e t r o f i t purposes. The a r e a of h i g h s t r e n g t h concrete* h a s a l s o been t h e s u b j e c t of r e c e n t symposia c a l l e d t o o b t a i n consensus o n p r i o r i t i e s t o be s e t among c o n c r e t e s c i e n t i s t s , s t r u c t u r a l e n g i n e e r s , and mechanics t h e o r i s t s ( 1 ) .

Development .of new m a t e r i a l s h a s g e n e r a l l y been c a r r i e d o u t by m a t e r i a l s c i e n t i s t s , i n c l u d i n g r e s e a r c h on t h e s u p e r p l a s t i c i z e r s t h a t have made p o s s i b l e t h e u s e of low w/c r a t i o c o n c r e t e . Although t h e r e a r e many

,

c o n v e n t i o n a l ways of producing h i g h - s t r e n g t h c o n c r e t e ( i n c l u d i n g j u d i c i o u s s e l e c t i o n of a g g r e g a t e , admixture and c u r i n g c o n d i t i o n s ) work h a s g e n e r a l l y been r e l a t e d t o t h e cement p a s t e b i n d e r phase. New t e c h n o l o g i e s r e s u l t i n g i n I

h i g h - s t r e n g t h c o n c r e t e p r o d u c t s have evolved from r e s e a r c h on p o r t l a n d cement p s t e . T h i s paper examines some of t h e s t r e n g t h e n i n g mechanisms i n o p e r a t i o n

i

2

h i g h - s t r e n g t h cement p a s t e and c o n s i d e r s t h e m e c h a n i s t i c f e a t u r e s common t o s e l e c t e d new t e c h n o l o g i e s concerned w i t h t h e p a s t e .

*

For normal weight a g g r e g a t e c o n c r e t e , h i g h s t r e n g t h i s g e n e r a l l y d e f i n e d a s c o n c r e t e having compressive s t r e n g t h exceeding t h a t used i n c u r r e n t d e s i g n p r a c t i c e and i s nominally 240 MPa.

(5)
(6)

Vol. 1 5 , No. 1 107

HIGH-STRENGTH CEMENT PASTES, APPRAISAL, MDF PASTES, FRACTURE

Some a u t h o r s (12) have c i t e d t h e e x i s t e n c e of macropores a s a s t r e n g t h c o n t r o l l i n g f a c t o r i n cement systems. Evidence f o r t h e e x i s t e n c e of

I

macropores based on d i f f e r e n c e s i n p o r o s i t y v a l u e s o b t a i n e d by w a t e r

I

pycnometry o r pycnometry u s i n g o t h e r f l u i d s i s n o t ' v a l i d i n h y d r a t e d p o r t l a n d cement systems. Macropores i n v e r y low w/c r a t i o cement p a s t e p r e p a r a t i o n s

I (w/c

G 0.20) may o c c u r a s a r e s u l t of poor compaction i f r h e o l o g i c a l a i d s , I

t

s p e c i a l a d m i x t u r e s , o r s p e c i a l compaction p r o c e d u r e s a r e n o t used. Such v o i d s

would undoubtedly be a s o u r c e of weakness. 1.2 Composition of C-S-H

It i s known t h a t f o r t h e h y d r a t e d p o r t l a n d cement s y s t e m t h e d e g r e e of p o l y m e r i z a t i o n and p o l y s i l i c a t e c o n t e n t i n c r e a s e s w i t h t i m e . It h a s n o t y e t been demonstrated, however, t h a t t h e dependence of s t r e n g t h on p o l y s i l i c a t e c o n t e n t i s independent of t h e t y p e of C-S-H.

The dependence of s t r e n g t k p o r o s i t y r e l a t i o n s o n chemical composition of t h e h y d r o s i l i c a t e s (and, hence, d e n s i t y and c r y s t a l l i n i t y ) h a s been s t u d i e d by t h e a u t h o r s , who o b t a i n e d a f a m i l y of l o g s t r e n g t k p o r o s i t y c u r v e s from t h e r e s u l t s of measurements on a v a r i e t y of a u t o c l a v e d c e m e n t - s i l i c a systems (5)

(Fig. 2a). I n g e n e r a l , h i g h e s t s t r e n g t h s a p p e a r t o b e o b t a i n e d i f t h e r e a c t i o n product i s a blend of p o o r l y - c r y s t a l l i n e and s e m i - c r y s t a l l i n e t y p e s of C-S-H ( c u r v e s f o r 20 and 30% S i 0 2 , Fig. 2a). The p r o p o r t i o n of c r y s t a l l i n e t y p e s g i v i n g h i g h e s t s t r e n g t h is dependent on p o r o s i t y and s t a r t i n g m a t e r i a l . The f l y ash/cement b l e n d ( c u r v e EF, Fig. 2a) h a s a n i n c r e a s i n g p r o p o r t i o n of c o a r s e , dense, c r y s t a l l i n e m a t e r i a l and h a s h i g h e s t s t r e n g t h s o v e r t h e p o r o s i t y r a n g e s t u d i e d . Very h i g h s t r e n g t h o b t a i n e d a t low p o r o s i t y (below t h e normal working r a n g e ) w i t h a h i g h d e n s i t y m a t r i x m a t e r i a l w i l l b e d i s c u s s e d a s a s p e c i a l c a s e i n s e c t i o n 2.2.

T a y l o r ( 6 ) and Crennan e t a l . (13) p r e s e n t e d t h e a u t h o r s ' d a t a i n a n o t h e r way by p r e p a r i n g a p o r o s i t y p a r t i c l e - t y p e s t r e n g t h diagram (Fig. 2b) f o r cement p a s t e s and s i m i l a r m a t e r i a l s . P o r o s i t y i s p l o t t e d a g a i n s t amount of c o a r s e , dense, c r y s t a l l i n e m a t e r i a l f o r a s e r i e s of c o n s t a n t s t r e n g t h c o n t o u r s . The l i n e s AB, EF, and CD c r o s s i n g t h e s t r e n g t h c o n t o u r s a r e f o r normally cured cement p a s t e , a u t o c l a v e d c e m e n t - s i l i c a p r o d u c t s and v e r y " h i g h d e n s i t y " cement m a t e r i a l s . The s i g n i f i c a n c e of t h e l i n e s w i l l b e d i s c u s s e d i n s e c t i o n s 2.1 and 2.2.

1.3 Cement P a s t e M i c r o s t r u c t u r e

Cement p a s t e c a n be c o n s i d e r e d a s a composite m a t e r i a l c o n s i s t i n g l a r g e l y of C-S-H, CH, unhydrated cement and p o r e s p a c e , t h e amount of e a c h component depending on t h e d e g r e e of h y d r a t i o n and w/c r a t i o . I n a s s e s s i n g t h e r e l a t i v e c o n t r i b u t i o n of e a c h component t o s t r e n g t h t h e a p p l i c a t i o n o f composite t h e o r y i s u s e f u l ; when a p p l y i n g b i n a r y m i x t u r e r u l e t h e o r y C-S-H, CH, and p o r e s p a c e c a n b e c o n s i d e r e d a s one p h a s e and unhydrated cement a s t h e o t h e r . The f o l l o w i n g form of mixing r u l e e q u a t i o n r e l a t i n g microhardness* of t h e composite (Hc) t o volume f r a c t i o n of t h e second phase p r o v i d e s some i n s i g h t i n t o e x p e c t e d composite behaviour (14) :

Hc = H I ( 1 + { a v 2 / ( 1

+

Y V ~ ) } ) where a = ( G /G - l ) / ( G / G ~ ) } B

Y =

1

a-fE,fE,)+l)f ( E , / E , - ~ )

V2 = volume f r a c t i o n of second phase E i s modulus of e l a s t i c i t y

*

Microhardness c o r r e l a t e s w i t h b o t h compressive and f l e x u r a l s t r e n g t h of cement systems (5).

(7)

108

J . J . Beaudoin and R.F. Feldman

10 20 30 40 5 0 60 P O R O S I T Y . % I I I ( I I I , , / P O R T L A N D C E M E N T P A S T E

-

-

-

-

-

-

-

-

-

- -

i

-

-

I I I , I , I , 0 0 2 4 6 8 Vol. 15, No. 1 10 FIG. 2 ( a ) Compressive s t r e n g t h v e r s u s p o r o s i t y f o r v a r i o u s a u t o c l a v e d and room t e m p e r a t u r e h y d r a t e d cement and c e m e n e s i l i c a p r e p a r a t i o n s F L E X U R A L S T R E N G T H . M P a 0 I N C R E A S I N G P R O P O R T I O N O F C O A R S E , D E N S E . C R Y S T A L L I N E M A T E R I A L

-

FIG. 2 ( b ) P o r o s i t y - p a r t i c l e t y p e s t r e n g t h p l o t f o r cement p a s t e s and s i m i l a r m a t e r i a l s . Curves of c o n s t a n t compressive s t r e n g t h a r e l a b e l l e d i n MPa. The broken l i n e XC j o i n s p o i n t s of maximum s t r e n g t h a t a g i v e n p o r o s i t y and f r a c t i o n of n o n - c r y s t a l l i n e m a t e r i a l . For s i g n i f i c a n c e of l i n e s AB, CD and

EF

s e e t e x t

k

FIG. 2 ( c ) R e l a t i o n between compressive s t r e n g t h and f l e x u r a l s t r e n g t h f o r normally h y d r a t e d p o r t l a n d cement p a s t e

(8)

Vol. 1 5 , No. 1 109

HIGH-STRENGTH CEMENT PASTES, APPRAISAL, MDF PASTES, FRACTURE

G i s s h e a r modulus

f? i s a s t r e s s c o n c e n t r a t i o n f a c t o r and i s a f u n c t i o n of E2/E and

geometry of t h e second phase ( i . e . major t o minor a x i s r a t i o of a n e l i p t i c a l i n c l u s i o n )

( S u b s c r i p t s r e f e r t o f i r s t o r second phase and H 1 i s t h e microhardness of t h e f i r s t phase, u s u a l l y t h e c o n t i n u o u s m a t r i x . )

An example where eq. ( 1 ) might be a p p l i e d i s a cement s y s t e m c o n t a i n i n g l a r g e amounts of unhydrated cement s e p a r a t e d by t h i n l a y e r s of C-S-H.

Consider phase 1 t o be t h e d e n s e , unhydrated cement p a r t i c l e s p r e s e n t i n s u f f i c i e n t numbers t o comprise t h e c o n t i n u o u s phase, and t h e second,

d i s c o n t i n u o u s phase t o be t h e h y d r a t e d m a t e r i a l i n c l u d i n g C-S-H, CH and p o r e space. Equation ( 1 ) i n d i c a t e s t h a t t h e c o n t r i b u t i o n of t h e second phase t o composite s t r e n g t h depends on t h e s h a p e of t h e second-phase p a r t i c l e s , modulus r a t i o , and volume f r a c t i o n . The i n n e r b r a c k e t e d term ( n e g a t i v e ) e x p r e s s e s t h e d e g r e e t o which t h e s t r o n g unhydrated cement p a r t i c l e s c a n c o n t r i b u t e t o composite s t r e n g t h . Other examples i n c l u d e polymer-impregnated o r modified- cement systems. I n g e n e r a l , t h e composite t h e o r y w i l l b e used t o supplement o t h e r arguments i n s u p p o r t of p a r t i c u l a r s t r e n g t h e n i n g mechanisms.

1.4 Crack Formation

Some workers have employed t h e G r i f f i t h e q u a t i o n t o p r e d i c t s t r e n g t h ( o ) of ceramic and cement systems ( 5 ) .

where E i s Young's modulus, T i s s u r f a c e e n e r g y , and c i s h a l f t h e f l a w l e n g t h .

One d i f f i c u l t y w i t h t h e d i r e c t a p p l i c a t i o n of eq. ( 2 ) i s t h a t work t e r m i n a d d i t i o n t o s p e c i f i c s u t f a c e energy a f f e c t f r a c t u r e . Secondly, n e i t h e r f r a c t u r e energy nor Young's modulus i s c o n s t a n t ; b o t h a r e dependent on p o r o s i t y , w/c r a t i o , environment, and o t h e r m a t r i x p r o p e r t i e s (2,15). F o r example, some workers have i n c o r r e c t l y compared polymer-odified cement

systems w i t h o r d i n a r y p o r t l a n d cement p a s t e (9), u s i n g t h e same v a l u e of T f o r b o t h systems i n e q , ( 2 ) .

E q u a t i o n ( 2 ) i s a p a r t i c u l a r c a s e of t h e I n g l i s s o l u t i o n f o r t h e s t r e s s f i e l d round a n e l l i p t i c a l h o l e i n a n i n f i n i t e p l a t e w i t h i t s major a x i s normal t o a uniform t e n s i l e s t r e s s (16). A fundamental assumption i n t h e G r i f f i t h e q u a t i o n i s t h a t t h e f l a w s a r e a t o m i c a l l y s h a r p and t h e major/minor a x i s r a t i o l a r g e , i . e . , t h a t t h e s h a p e of t h e f l a w i s f i x e d . Pores ( h a v i n g d i f f e r e n t pore s h a p e s ) , a s such, do n o t f i t t h e G r i f f i t h d e f i n i t i o n of a flaw. Some ceramic s c i e n t i s t s have approached t h i s problem by c o n s i d e r i n g p o r e s themselves a s an i n t e g r a l p a r t of f l a w s , i.e., t h e l e n g t h of t h e f l a w i s c o n s i d e r e d t o be t h e p o r e d i a m e t e r p l u s one g r a i n d i a m e t e r on e i t h e r s i d e of t h e pore (17). T h i s i s based on t h e concept t h a t c r a c k s w i l l p r o p a g a t e a l o n g g r a i n boundaries emanating from t h e p o r e w a l l i n t o t h e body u n t i l t h e n e x t l a y e r of g r a i n s i s encountered. E f f e c t s of v a r i a t i o n i n p o r e shape t h a t a l t e r t h e s t r e s s f i e l d i n t h e v i c i n i t y of t h e p o r e a r e n o t considered. T h i s concept was a p p l i e d t o cement p a s t e by Wittman and Z a i t s e v , who modelled t h e system a s

a p l a t e c o n t a i n i n g a c y l i n d r i c a l h o l e w i t h two edge c r a c k s emanating from p o i n t s of maximum t e n s i l e s t r e s s (18). V e r i f i c a t i o n of i t s v a l i d i t y f o r normally h y d r a t e d cement p a s t e by d i r e c t measurement i s d i f f i c u l t s i n c e g r a i n s i z e i s extremely f i n e . I n systems t h a t c o n t a i n l a r g e numbers of unhydrated cement g r a i n s ( 5

-

50 um) i t may be p o s s i b l e . It i s , however, u n c e r t a i n whether macropores i n p o o r l y compacted low waterlcement r a t i o p a s t e s , which c o n t a i n l a r g e amounts of unhydrated cement, c a n b e c o n s i d e r e d a s f l a w s i n t h e G r i f f i t h s e n s e ( 9 ) .

(9)

110

J.J. Beaudoin and R.F. Feldman

Vol. 1 5 , No. 1

1.5 Applied S t r e s s Mode

The d i s c u s s i o n of f r a c t u r e c r i t e r i a h a s been based o n specimens s u b j e c t e d t o t e n s i l e s t r e s s . A l i n e a r c o r r e l a t i o n between compressive and f l e x u r a l s t r e n g t h s was observed (19) f o r normally h y d r a t e d cement p a s t e (Fig. 2c); t h e a v e r a g e compressive/f l e x u r a l s t r e n g t h r a t i o was approximately 10. Roy and Gouda ( 7 ) found a s i m i l a r c o r r e l a t i o n between compressive and t e n s i l e s t r e n g t h s f o r b o t h h o e p r e s s e d and c o l d - p r e s s e d cement p a s t e

specimens and argued t h a t most m i c r o s t r u c t u r a l p r o p e r t i e s (such a s p o r o s i t y ) a f f e c t i n g h i g h s t r e n g t h i n compression c o n t r i b u t e i n a p a r a l l e l manner t o t h e h i g h s t r e n g t h i n t e n s i o n .

F a i l u r e t h a t o c c u r s i n most compressive s t r e n g t h t e s t s i n v o l v e s t h e g e n e r a t i o n of t e n s i l e s t r e s s e s because of end e f f e c t s . Crack growth i n v o l v i n g a p o r e l i n k a g e p r o c e s s h a s a l s o been d e s c r i b e d a s o c c u r r i n g d u r i n g compression of p o r t l a n d cement p a s t e (17). It a p p e a r s t h a t t h e r e a r e common f a c t o r s a f f e c t i n g c r a c k growth i n compression and f l e x u r a l t e s t i n g . The r o l e p o r e s p l a y i n f r a c t u r e under compression o r i n t e n s i o n may, however, be d i f f e r e n t . R i c e h a s s u g g e s t e d t h a t t e n s i l e ( o r f l e x u r a l ) s t r e n g t h may b e c o n t r o l l e d p r i m a r i l y by p o r e and g r a i n s i z e and by t o t a l p o r o s i t y , i n c l u d i n g s h a p e e f f e c t s , a s d i s c u s s e d p r e v i o u s l y ; h e f u r t h e r a r g u e s t h a t , i n compression, p o r e s a l o n e a c t a s s t r e s s c o n c e n t r a t o r s : t h a t , i n compression, c r a c k development from p o r e s i s i n h i b i t e d u n t i l much h i g h e r s t r e s s e s have been r e a c h e d ( 1 7).

1.6 Pore Shape

S e v e r a l e x p r e s s i o n s have been u s e d t o d e s c r i b e t h e p o r o s i t y dependence o f s t r e n g t h and f r a c t u r e energy f o r c e r a m i c and cement systems (6,20). F o r example, i t h a s been found t h a t t h e r o l e of pore shape i n f r a c t u r e energy can be accounted f o r by t h e f o l l o w i n g r e l a t i o n ( 2 1) :

Y = Y , ~ -bp ( 3 )

where Y = f r a c t u r e e n e r g y , p = p o r o s i t y , yo = f r a c t u r e energy a t z e r o p o r o s i t y , and b i s a p o r e s h a p e f a c t o r (Fig. 3). S i m i l a r e x p r e s s i o n s have been used f o r t h e p o r o s i t y dependence of e l a s t i c modulus and s t r e n g t h . A model was developed by Knudsen (22) t o a c c o u n t f o r t h e e f f e c t o f p o r e s h a p e by assuming t h a t f r a c t u r e energy should be p r o p o r t i o n a l t o t h e f r a c t i o n of s o l i d a r e a f r a c t u r e d , and t h a t f r a c t u r e w i l l g e n e r a l l y f o l l o w t h e p a t h of m a x i m pore and minimum s o l i d c r o s s - s e c t i o n a l a r e a . The a n a l y s i s , which assumes a uniform d i s t r i b u t i o n of p o r e s , r e s u l t e d i n t h e non-linear model c u r v e s i n Fig. 3. The "b" v a l u e s used i n eq. ( 3 ) , which r e s u l t i n l i n e a r c u r v e s i n c l o s e agreement w i t h t h e model c u r v e s , a r e g i v e n i n Fig. 3. Values of "b" d e r i v e d from s t r e n g t h d a t a f o r a u t o c l a v e d c e m e n t s i l i c a p r e p a r a t i o n s v a r y from

4.4 t o 7.7. Assuming t h a t t h e r e i s some c o r r e l a t i o n between s t r e n g t h r a t i o s (S/So) and f r a c t u r e energy r a t i o s (-flyo), t h e s e systems seem t o have a v a r i e t y of pore shapes. It might be argued t h a t p o r e shape and composition of C-S-H a r e n o t two independent v a r i a b l e s . It a p p e a r s , however, t h a t p o r e s h a p e m o d i f i c a t i o n f o r a system w i t h a g i v e n composition p r o v i d e s a means of

i n c r e a s i n g s t r e n g t h .

I n a d d i t i o n t o s h a p e , t h e "b" v a l u e i n eq. ( 3 ) i s a l s o s e n s i t i v e t o pore l o c a t i o n and s i z e . F r a c t u r e h a s g e n e r a l l y been s e e n t o o r i g i n a t e i n l a r g e , n o t s m a l l , p o r e s i n a body h a v i n g b o t h t y p e s (17). Bodies h a v i n g o n l y f i n e p o r e s a r e g e n e r a l l y a t l e a s t a s s t r o n g a s comparable b o d i e s w i t h

p r i m a r i l y l a r g e p o r e s . Samples h a v i n g more uniformly shaped and spaced p o r e s tend t o have lower "b" v a l u e s . Local c o n c e n t r a t i o n s of p o r e s c a n a l t e r "b" v a l u e s whether t h e p o r e s a r e i n t e r g r a n u l a r o r i n t r a g r a n u l a r , o r mixed. In

(10)

Vol. 15, No. 1 111 HIGH-STRENGTH CEMENT PASTES, APPRAISAL, MDF PASTES, FRACTURE

FIG. 3

F r a c t u r e energy r a t i o , y/yo vs

volume f r a c t i o n p o r o s i t y f o r v a r i o u s s i m p l e p o r e shapes. The arrows from each p o r e shape i n d i c a t e t h e d i r e c t i o n of s t r e s s i n g r e l a t i v e t o t h e p o r e geometry

-. -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 V O L U M E F R A C T I O N P O R O S I T Y , P

p o r e s a t g r a i n boundaries. The "b" v a l u e i n compression tests i s

s i g n i f i c a n t l y h i g h e r . The r e a s o n f o r t h i s a p p a r e n t h i g h e r p o r o s i t y dependence of compressive s t r e n g t h i s n o t known.

It f s a p p a r e n t t h a t c o n p a r i s o n of s t r e n g t h d a t a on t h e b a s i s o f a n e x p o n e n t i a l e q u a t i o n s i m i l a r t o eq. (3)

i s

i n a d e q u a t e t o e x p l a i n a l l t h e r e a s o n s f o r a t r e n g t h d i f f e r e n c e s among v a r i o u s cement systems

.

The

a p p l i c a t i o n of eq. (3) t o s t r e n g t h d a t a i s , however, a u s e f u l s t a r t i n g p o i n t f o r comparing d i f f e r e n t systems.

These comments a d d r e s s what t h e a u t h o r s c o n s i d e r t o b e some o f t h e i m p o r t a n t f a c t o r s i n t h e development of v e r y h i g h s t r e n g t h cement p a s t e s ( i n t h i s review compressive s t r e n g t h i n e x c e s s of 6 0 MPa). C o n s i d e r a t i o n w i l l be g i v e n t o t h e s e f a c t o r s i n m e c h a n i s t i c arguments p e r t a i n i n g t o h i g h s t r e n g t h . 2.0 O p t i m i z a t i o n of F a c t o r s C o n t r o l l i n g P r o d u c t i o n of H i g h t h Cement P a s t e 2.1 Low Water-Cement R a t i o A s d i s c u s s e d , h i g h e r s t r e n g t h s c a n b e a c h i e v e d w i t h normally h y d r a t e d low-porosity cement paste.* T h i s i s u s u a l l y accomplished by k e e p i n g t h e w/c r a t i o a s low a s p o s s i b l e , but i t should be recognized t h a t low w/c r a t i o cement p a s t e ( u s u a l l y w/c t0.25) h a s a c h a r a c t e r i s t i c m i c r o s t r u c t u r e d i f f e r e n t

.

from t h a t of p a s t e w i t h h i g h e r w/c r a t i o . The low w/c r a t i o p a s t e i s a more heterogeneous composite m a t e r i a l t h a n normal cement p a s t e because i t c o n t a i n s s i g n i f i c a n t amounts of anhydrous cement p a r t i c l e s embedded i n a C-S-H m a t r i x . T h i s , i n t u r n , h a s c h a r a c t e r i s t i c s d i f f e r e n t from t h o s e produced a t h i g h e r w/c r a t i o (23). The C-S-H m a t r i x and t h e unhydrated cement p a r t i c l e s b o t h

*

An i m p o r t a n t assumption i s t h a t t h e low p o r o s i t y p a s t e s a r e w e l l compacted and do n o t c o n t a i n l a r g e v o i d s t h a t may o c c u r due t o poor c o n s o l i d a t i o n .

(11)

Vol. 1 5 , No. 1

J . J . Beaudoin and R . F . Feldman

c o n t r i b u t e t o s t r e n g t h . T h i s C-S-H d i f f e r s from t h a t p r e p a r e d a t h i g h e r w/c r a t i o i n t h a t i t i s l e s s dense, c o n t a i n s t r a p p e d microspace between s h e e t s , h a s a d i f f e r e n t C/S r a t i o , a s i g n i f i c a n t l y lower N 2 s u r f a c e a r e a , a p o r e s i z e d i s t r i b u t i o n skewed towards s m a l l e r p o r e s i z e s , and c o n t a i n s p o r e s p a c e t h a t

cannot be p e n e t r a t e d by mercury. I n t h e s e p a s t e s , e f f e c t s d e s c r i b e d a s a g i n g

\

a r e more prominent, i . e . , rearrangement and c o n s o l i d a t i o n of C-S-H l a y e r s ,

g e n e r a l l y r e s u l t i n g i n s t r e n g t h i n c r e a s e s . The r e l a t i v e c o n t r i b u t i o n s of t h e J

C-S-H m a t r i x and cement i n c l u s i o n s i s important i n d e v e l o p i n g h i g h s t r e n g t h , and t h e s e s p e c i a l c h a r a c t e r i s t i c s of low w/c r a t i o p a s t e s p l a y a r o l e i n d e t e r m i n i n g t h e e x t e n t of t h e i r c o n t r i b u t i o n .

S e v e r a l p a p e r s d e s c r i b i n g t h e p r e p a r a t i o n and p r o p e r t i e s of a well- c o n s o l i d a t e d , low p o r o s i t y m a t r i x w i t h a r e l a t i v e l y h i g h d e g r e e of h y d r a t i o n have been p u b l i s h e d by Yudenfreund e t a l . (24-30). A t y p i c a l composition o f a cement p a s t e p r e p a r e d by them i s a s f o l l o w s : w/c = 0.20, t y p e I cement w i t h f i n e n e s s 600

-

900 m2/kg (much f i n e r t h a n normal), a g r i n d i n g a i d ,

e.g., d i e t h y l c a r b o n a t e a t 0.5% by weight of cement, 1% by weight of d r y d x e d calcium l i g n o s u l p h o n a t e and 0.5% potassium c a r b o n a t e ( a s e t - c o n t r o l l i n g

a d d i t i v e ) . This t y p i c a l cement p a s t e ( d e g r e e of h y d r a t i o n (10%) h a s a compressive s t r e n g t h of a b o u t 204 MPa a t 28 days. P o r o s i t y determined by water pycnometry was r e c a l c u l a t e d by t h e p r e s e n t a u t h o r s t o g i v e a n e q u i v a l e n t v a l u e of approximately 5% c o r r e s p o n d i n g t o t h a t which would have been o b t a i n e d by helium pycnometry. The d a t a p o i n t f o r t h i s p r e p a r a t i o n l i e s on t h e

s t r e n g t h p o r o s i t y c u r v e f o r normally h y d r a t e d cement p a s t e ( l i n e AB, Fig. 2a). I n t h i s c a s e , t h e a b i l i t y t o a c h i e v e low p o r o s i t y by means of g r i n d i n g and r h e o l o g i c a l a i d s ( w i t h o u t which e f f e c t i v e c o n s o l i d a t i o n would be d i f f i c u l t t o a c h i e v e ) a p p e a r s t o be r e s p o n s i b l e f o r h i g h s t r e n g t h .

2.2 E f f e c t of Dense I n c l u s i o n s

S t r e n g t h s s i g n i f i c a n t l y h i g h e r t h a n 204 MPa c a n b e o b t a i n e d a t low p o r o s i t i e s by i n c r e a s i n g t h e c o n t r i b u t i o n of d e n s e phases s u c h a s unhydrated cement. Roy e t a l . (31) demonstrated t h a t w i t h " h o t - p r e s s i n g " t e c h n i q u e s s t r e n g t h s a s h i g h a s 644 and 6 3 MPa (compressive and t e n s i l e s t r e n g t h s ,

r e s p e c t i v e l y ) can be achieved. These low p o r o s i t y m a t e r i a l s , p r e s s e d a t up t o 1020 MPa, and t e m p e r a t u r e s g r e a t e r t h a n 150°C c o n t a i n e d l a r g e amounts of unhydrated cement ( d e g r e e of h y d r a t i o n ranged from 29

-

37%). There a r e s e v e r a l o t h e r examples of v e r y s t r o n g cement p a s t e systems a t low p o r o s i t i e s . These i n c l u d e s e v e r a l of t h e h y d r a t e d a l u m i n a t e cement m i n e r a l s , e.g., C4AF, C3A, CA (32-34).

Low s t r e n g t h of a l u m i n a t e cements h y d r a t e d a t e l e v a t e d t e m p e r a t u r e s i s

o f t e n a t t r i b u t e d t o t h e f o r m a t i o n of t h e C3AH6 phase. Contrary t o g e n e r a l o p i n i o n , however, t h e c u r i n g of a l u m i n a t e systems a t h i g h e r t e m p e r a t u r e

a c t u a l l y r e s u l t s i n improvement i n s t r e n g t h , provided t h e w a t e r s o l i d r a t i o i s low. Higher s t r e n g t h s a t v e r y low w / s r a t i o s may b e a t t r i b u t e d t o d i r e c t f o r m a t i o n of t h e c u b i c C3AH6 phase on t h e o r i g i n a l s i t e s of t h e cement

m i n e r a l s . T h i s r e s u l t s i n i n t i m a t e c o n t a c t between d e n s e p a r t i c l e s t h a t form * a c l o s e l y welded, c o n t i n u o u s network w i t h enhanced mechanical s t r e n g t h . An

a n a l a g o u s e x p l a n a t i o n i s o f f e r e d f o r enhanced s t r e n g t h of low p o r o s i t y , a u t o c l a v e d , c e m e n t - s i l i c a m i x t u r e s a t low s i l i c a c o n t e n t . These p a s t e s c o n t a i n s i g n i f i c a n t amounts of d e n s e aC2SH and a r e weak a t h i g h p o r o s i t i e s where t h e i n t e r p a r t i c l e c o n t a c t s a r e fewer, weaker, and p o s s i b l y have s h a r p boundaries t h a t c a n c o n t r i b u t e t o h i g h e r l o c a l s t r e s s e s . A t low p o r o s i t y , t h e c o n t r i b u t i o n t o s t r e n g t h of t h e aC SH p a r t i c l e s

-

formed i n c l o s e p r o x i m i t y t o one a n o t h e r

-

i s r e f l e c t e d i n t h e $ a r g e i n c r e a s e i n s t r e n g t h of t h e

m a t e r i a l .

(12)

amounts of dense c r y s t a l l i n e m a t e r i a l demonstrate t h e p r i n c i p l e e x p r e s s e d by t h e m i x t u r e r u l e , i . e . , eq. ( 1 ) . The c o n d i t i o n s of f o r m a t i o n of t h e d e n s e i n c l u s i o n s , however, determine t h e r e l e v a n c e of what i s p r e d i c t e d by

1

eq. ( 1 ) . 2.3 S t r e s s M o d i f i c a t i o n i n C r i t i c a l Areas a F a i l u r e i n b r i t t l e m a t e r i a l s , i n c l u d i n g cement p a s t e s , i s of t e n t h e r e s u l t of i n i t i a t i o n and p r o p a g a t i o n of c r a c k s o r i g i n a t i n g i n h i g h s t r e s s r e g i o n s . M o d i f i c a t i o n of t h e s t r e s s f i e l d i n t h e s e r e g i o n s c a n r e s u l t i n h i g h s t r e n g t h . F i b r e r e i n f o r c e m e n t of b r i t t l e m a t r i c e s c a n r e s u l t i n s i g n i f i c a n t i n c r e a s e s i n f l e x u r a l s t r e n g t h and i s a p r a c t i c a l example of c r a c k c o n t r o l through s t r e s s m o d i f i c a t i o n p r o c e s s e s . T h i s m o d i f i c a t i o n c a n a l s o be a c h i e v e d i n u n r e i n f o r c e d m a t r i c e s , f o r example, by changing t h e geometry o f a c r a c k t i p , p o r e , o r v o i d s p a c e between p a r t i c l e s . This c a n be done i n s e v e r a l ways: (1) d e p o s i t i o n of a s m a l l amount of a d d i t i o n a l C-S-H b i n d e r i n h i g h - s t r e s s r e g i o n s , ( 2 ) impregnation of a porous system w i t h a second phase,

( 3 ) molecular b r i d g i n g of microspace by a n impregnant, ( 4 ) i n t e g r a l mixing w i t h a low-modulus polymer emulsion, and ( 5 ) f i l l i n g macrodefects and modifying t h e i r geometry.

F i g u r e 4 i s a s c h e m a t i c i l l u s t r a t i o n of some of t h e s e concepts. The "hot-pressed" samples

(7),

which had a d d i t i o n a l m o i s t - c u r i n g f o r 28 d a y s , had s i g n i f i c a n t i n c r e a s e s i n s t r e n g t h a l t h o u g h t h e i n c r e a s e i n d e g r e e of h y d r a t i o n was m a r g i n a l , I t i s suggested t h a t t h e s m a l l amount of a d d i t i o n a l h y d r a t i o n

( a l t h o u g h t o t a l p o r o s i t y i s e f f e c t i v e l y unchanged) i s s u f f i c i e n t t o "glue" t h e dense c l i n k e r p a r t i c l e s t o g e t h e r and modify t h e s t r e s s f i e l d a t r e g i o n s of i n t e r p a r t i c l e c o n t a c t (Fig. 4a). The mechanism of s t r e s s m o d i f i c a t i o n

probably i n v o l v e s change of pore shape due t o t h e f i r s t concept and r e d u c t i o n of t h e "b" f a c t o r i n eq. ( 3 ) .

I n c r e a s e s i n s t r e n g t h due t o impregnation of p o r e s w i t h a s o l i d , which i t s e l f h a s good e n g i n e e r i n g p r o p e r t i e s , a p p e a r s a l s o t o be ( i n a d d i t i o n t o p o r o s i t y r e d u c t i o n ) t h e r e s u l t of a s t r e s s m o d i f i c a t i o n mechanism c o n t r o l l i n g behaviour i n r e g i o n s of h i g h s t r e s s . F i g u r e 4b i l l u s t r a t e s how p o r e shape i n r e g i o n s of h i g h s t r e s s may b e modified. Large i n c r e a s e s i n s t r e n g t h a s w e l l a s h i g h t o t a l s t r e n g t h a r e o b t a i n e d f o r compositions c o n t a i n i n g dense

p a r t i c l e s , e.g.

,

h i g h p o r o s i t y systems c o n t a i n i n g aC2SH p a r t i c l e s , when t h e s e compositions a r e impregnated w i t h a second phase. The mechanism r e s p o n s i b l e f o r s t r e n g t h i n c r e a s e ( a t l e a s t i n p a r t ) i s s i m i l a r t o t h a t s u g g e s t e d f o r t h e "hot-pressed" systems. Another s t r e n g t h e n i n g mechanism i s p o s s i b l e when t h e impregnant i s f i l l i n g microspace between s u r f a c e s s e p a r a t e d by d i s t a n c e s of molecular dimension; f o r example, i t i s a r g u a b l e t h a t a polymethylmethacrylate molecule c o u l d b r i d g e two s u r f a c e s of a micropore, t h u s u t i l i z i n g t h e s t r e n g t h of c o v a l e n t bonds r a t h e r t h a n t h e s t r e n g t h of t h e i n t e r c o n n e c t i o n s of s e v e r a l of t h e polymethylme t h a c r y l a t e molecules themselves (Fig. 4c).

Microscopic e v i d e n c e s u p p o r t s arguments t h a t polymer emulsions,

e.g., l a t e x systems, b r i d g e m i c r o c r a c k s w i t h a polymer f i l m (35), r e s i s t i n g c r a c k growth and i n c r e a s i n g t e n s i l e s t r e n g t h and f a i l u r e s t r a i n ( F i g . 4d). I n c r e a s e d d u c t i l i t y i s dependent on t h e t y p e and amount of polymer. When t h e polymer forms a f i l m i n a r e g i o n of h i g h s t r e s s , t h e arguments p r e s e n t e d f o r

I

s t r e s s m o d i f i c a t i o n a l s o seem t o a p p l y . With r e s p e c t t o w a t e r s o l u b l e

polymers, i f t h e c o n c e n t r a t i o n of polymer i n t h e p o r e s p a c e a v a i l a b l e i s h i g h , t h e n t h e polymer w i l l have a d i r e c t r e i n f o r c i n g e f f e c t on t h e cement system and behave t h e same a s l a t e x e s .

F o r a g i v e n p o l y m e r c e m e n t r a t i o t h e c o n c e n t r a t i o n of polymer i n t h e pore s o l u t i o n i s i n v e r s e l y p r o p o r t i o n a l t o t h e w/c r a t i o . T h i s can be a s i g n i f i c a n t f a c t o r i n v e r y low p o r o s i t y systems. F o r l a t e x - m o d i f i e d p o r t l a n d

(13)

J.J. Beaudoin and R.F. Feldman Vol. 15, No. 1 UNHYORATED CEMENT PARTICLE l a l IMPREONANT

2

I C S H ( b ) ( c J FILM ( d l 0 0 10 20 30 40 5 0 60 T O T A L P O R O S I T Y , % FIG. 4 FIG. 5 Schematic i l l u s t r a t i o n s of F l e x u r a l s t r e n g t h v s p o r o s i t y f o r o r d i n a r y v a r i o u s s t r e s s m o d i f y i n g p o r t l a n d cement p a s t e . MDF = cement p a s t e mechanisms cement p a s t e p u b l i s h e d d a t a i n d i c a t e t h a t ( f o r c o n s t a n t polymer c o n t e n t ) t e n s i l e s t r e n g t h i s p o r o s i t y dependent o v e r a wide r a n g e o f p o r o s i t y a n d s t r e n g t h i n c r e a s e s a s p o r o s i t y d e c r e a s e s (36). It a p p e a r s t h e n t h a t t o t a l p o r o s i t y i s one o f t h e c o n t r o l l i n g f a c t o r s t h a t d e t e r m i n e t h e t e n s i l e s t r e n g t h of t h e s e m a t e r i a l s .

An example o f a polymer-modified cement s y s t e m ( h a v i n g h i g h f l e x u r a l s t r e n g t h ) i n which mechanisms i l l u s t r a t e d i n F i g . 4(a, b and d ) a r e o p e r a t i v e i s a s y s t e m r e f e r r e d t o a s Macro-Defect-Free (MDF) cement p a s t e (37-42). T h i s p a s t e system i s p r e p a r e d a t v e r y low w/c r a t i o s (0.08

-

0.20). I n g e n e r a l , composition c o m p r i s e s t h e f o l l o w i n g : h y d r a u l i c cement, w a t e r , o n e p o l y m e r i c o r w a t e r - d j . s p e r s i b l e a d d i t i v e , p a r t i c u l a t e m a t e r i a l i n s o l u b l e i n t h e

c o m p o s i t i o n h a v i n g p a r t i c l e s i z e (0.1 um. A t y p i c a l composition i s a s a

f o l l o w s : 100 p a r t s p o r t l a n d cement, 0.7 p a r t s i l i c a powder (0.04 pm) and 16.5 p a r t s aqueous s o l u t i o n c o n t a i n i n g 3.5 p a r t s polyacrylamide.

Hydroxypropyl methyl c e l l u l o s e and hydrolyzed p o l y ( v i n y 1 a c e t a t e ) have been u s e d i n l i e u o f polyacrylamide.

F i g u r e 5 i s a f l e x u r a l s t r e n g t h v s p o r o s i t y p l o t f o r cement p a s t e , i n c l u d i n g a p l o t p o i n t f o r MDF cement p a s t e (41). The p o r o s i t y v a l u e s d e t e r m i n e d by w a t e r pycnometry a r e probably h i g h e r t h a n a c t u a l , b u t t h e g e n e r a l t r e n d of t h e d a t a would be s i m i l a r i f c o r r e c t p o r o s i t y v a l u e s were used. The ? l o t p o i n t f o r MDF cement p a s t e i s s i g n i f i c a n t l y h i g h e r t h a n t h e v a l u e on t h e c u r v e a t t h e same p o r o s i t y . The s t r e s s m o d i f y i n g c h a r a c t e r i s t i c s o f t h e polymer e n a b l e t h e d e n s e unhydrated cement p a r t i c l e s t o c o n t r i b u t e more

(14)

Vol. 1 5 , No. 1 115 HIGH-STRENGTH CEMENT PASTES, APPRAISAL, MDF PASTES, FRACTURE

f u l l y t o t h e s t r e n g t h of t h e composite i n accordance w i t h eq. (1). T h i s i s

t h e p r i n c i p a l r e a s o n why t h e MDF s y s t e m i s s t r o n g e r t h a n normal p a s t e a n d d o e s

n o t f i t t h e s t r e n g t h - p o r o s i t y c u r v e f o r t h e l a t t e r .

I

The f l e x u r a l s t r e n g t h v a l u e o f t h e MDF p a s t e (Fig. 5) i s a b o u t 6 0 MPa,

a v a l u e a p p r o x i m a t e l y t h e same a s t h a t o b t a i n e d by Roy and Gouda7 f o r t h e

maximum t e n s i l e s t r e n g t h o f h o t - p r e s s e d cement p a s t e . I n b o t h c a s e s t h e

unhydrated cement a p p e a r s t o c o n t r i b u t e a n optimum amount t o composite

s t r e n g t h i n a c c o r d a n c e w i t h m i x t u r e r u l e t h e o r y and eq. ( 1 ) . It i s s u g g e s t e d

t h a t a s t r e s s m o d i f i c a t i o n mechanism i s p r i m a r i l y r e s p o n s i b l e . A

s i g n i f i c a n t l y lower compressive s t r e n g t h l f l e x u r a l s t r e n g t h r a t i o (approx. 3) f o r polymer-modified cement systems a p p e a r s t o s u p p o r t t h i s s u g g e s t i o n (36). The e f f e c t of macrovoids i n t h e MDF polymer cement s y s t e m h a s n o t b e e n determined. 3.0 Concluding Remarks The mechanisms d i s c u s s e d a r e t h o s e t h e a u t h o r s b e l i e v e t o b e r e l e v a n t and a p p a r e n t l y r e s p o n s i b l e f o r t h e h i g h s t r e n g t h of many p r o d u c t s d e s c r i b e d i n r e c e n t p a t e n t s . One of t h e p r i n c i p a l mechanisms a p p e a r s t o b e t h e m o d i f i c a t i o n of s t r e s s i n a r e a s of h i g h s t r e s s ( f o r example, c r a c k t i p s ) by c h e m i c a l a n d p h y s i c a l means. It i s hoped t h a t t h e o p i n i o n s e x p r e s s e d w i l l p r o v i d e i n s i g h t f o r f u r t h e r development. R e f e r e n c e s S.P. Shah. Concr. I n t . ,

3,

94 (1981).

P.J. Sereda, R.F. Feldman, and E.G. Swenson. Highway Res. Board, Spec.

Rept. 90, 58 (1966).

J.D. B i r c h a l l , K. K e n d a l l and A.J. Howard. Eur. P a t . Appl.,

EP 0038126A1, 18 (1981).

R.F. Feldman and J.J. Beaudoin. Cem. Concr. Res.,

5,

389 (1976).

V.S. Ramachandran, R.F. Feldman, and J.J. Beaudoin. Concrete S c i e n c e ,

Heyden & Son, 1981, pp. 427.

H.F.W. Taylor. Cem. Concr. Res.,

7,

465 (1977).

D.M. Roy and G.R. Gouda. Cem. Concr. Res.,

2,

807 (1973).

R.A. Helmuth and D.H. Turk. Highway Res. Board, Spec. Rept. 90, 135

(1 966).

J.D. B i r c h a l l , A.J. Howard, K. K e n d a l l a n d J.H. R a i s t r i c k . Eur. P a t .

Appl., EP 55035, 38 (1982).

S. Diamond a n d W. Dolch. J . C o l l o i d I n t . S c i . ,

38,

234 (1972).

R.F. Feldman. Cem. Concr. Res., 1, 285 (1971).

R.F. Feldman. Cem. Tech.,

3,

5 ( i 9 7 2 ) .

J.M. Crennan, S.A.S. El-Hemaly and H.F.W. Taylor. Cem. Concr. Res.,

1,

493 (1977).

R.F. Feldman and J.J. Beaudoin. Cem. Concr. Res.,

1,

19 (1977).

J.J. Beaudoin. Cem. Concr. Res.,

2,

705 (1982).

C.E. I n g l i s . Trans. I n s t . Nav. A r c h i t . , LV, 1,219 (1913).

R.W. Rice. M i c r o s t r u c t u r e Dependence of Mechanical Behaviour o f

Ceramics,

&

T r e a t i s e o n M a t e r i a l s S c i e n c e a n d Technology, Vol. 11:

P r o p e r t i e s and M i c r o s t r u c t u r e (Ed. by R.K. MacCrane), Academic P r e s s ,

New York, 1977, pp. 199-382.

F.H. Wittman and J u Z a i t s e v . In Mech. Behaviour o f M a t e r i a l s , Proc. I n t .

Conf. on Mech. Behaviour of M a z r i a l s , Soc. Mat. Sci., Japan,

4,

84-95

(1972).

J.J. Beaudoin. Cem. Concr. Res.,

13,

153 (1983).

G. Verbeck and R. Helmuth. V I n t . Symp. Chem. Cern., Vol. 111, 1 (1968).

R.W. R i c e , S.W. Freiman, R.C. Pohanka, J.J. Mecholsky, Jr.

,

and C .C. Wu.

(15)

Vol. 1 5 , No. 1

J . J . Beaudoin and R.F. Feldman

I n F r a c t u r e Mechanics of Ceramics, Vol. 4 (Ed. by R.C. B r a d t ,

-

D.P.H. Hasselman and F.F. Lange), Plenum P r e s s , New York, 1974,

pp. 849-876.

F.P. Knudsen. J. Amer. Ceram. Soc.,

42,

376 (1959).

!

J.J. Beaudoin. Cem. Concr. Res.,

9,

771 (1979).

M. Yudenfreund, I. O d l e r and S. Brunauer. Cem. Concr. Res.,

l,

313

(1972). F

M. Yudenfreund, J. S k a l n y , R.S. Mikhail, and S. Brunauer. Cem. Concr.

Res.,

2,

331 (1972).

I. O d l e r , M. Yudenfreund, J. S k a l n y , and S. Brunauer, Cem. Concr. Res.,

2, 463 (1972).

-

I. O d l e r , J. Hagynassy, Jr., E.E. Bodor, M. Yudenfreund, and S. Brunauer,

Cem. Concr. Res.,

2,

577 (1972).

M. Yudenfreund, K. Hanna, J. S k a l n y , I. O d l e r , and S. Brunauer, Cem.

Concr. Res.,

2,

731 (1972).

S. Brunauer, M. Yudenf reund, I. O d l e r , and J. Skalny. Cem. Concr. Res.,

3, 129 (1973).

-

S. Brunauer, J. S k a l n y , I. O d l e r , a n d M. Yudenfreund. Cern. Concr. Res.,

3 , 279 (1973).

-

D.M. Roy, G.R. Gouda, and A. Bobrowsky. Cem. Concr. Res.,

L,

349 (1972).

V.S. Ramachandran and J.J. Beaudoin. J. Mats. S c i . ,

11,

1893 (1976).

V.S. Ramachandran and R.F. Feldman. J. Appl. Chem. Biotech.,

23,

625

(1973).

34. V.S. Ramachandran and R.F. Feldman. Cem. Concr. Res.,

3,

729 ( 1 973).

35. V.R. R i l e y and I. Razl. Composites, 27 (1974).

36. A. Bentur. I n t . J. Cem. Comp. and L i g h t w e i g h t Concr., 4, 57 (1982).

37. J.D. B i r c h a l l , A.J. Howard, and K. Kendall. Nature,

z,

389 (1981).

38. N. A l f o r d , G. Groves, and D. Double. Cem. Concr. Res.,

12,

349 (1982).

39. N. Alford and D. Double. Adsorption a t t h e Gas-Solid and U q u i d - S o l i d

I n t e r f a c e (Ed. by J. Rouquerol a n d K.S.W. S i n g ) , E l s e v i e r Pub., 1981,

pp. 259-268.

40. N. A l f o r d and A. Rahman. J. Mats. S c i . ,

16,

3105 (1981).

41. N. Alford. Cem. Concr. Res.,

11,

605 (1981).

42. N. A l f o r d , G. Groves, and D. Double. Cem. Concr. Res.,

12,

349 (1982).

T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l Research Council of Canada, and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r o f t h e D i v i s i o n .

(16)

T h i s p a p e r , w h i l e b e i n g d i s t r i b u t e d i n r e p r i n t form by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l o f C a n a d a , O t t a w a , O n t a r i o , K1A 0R6.

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in