• Aucun résultat trouvé

Modélisation d’adhésions cellulaires via les cadhérines

N/A
N/A
Protected

Academic year: 2022

Partager "Modélisation d’adhésions cellulaires via les cadhérines"

Copied!
20
0
0

Texte intégral

(1)

Modélisation d’adhésions cellulaires via les cadhérines

Simona Mancini

TIMC-Imag (Grenoble) et MAPMO (Orléans)

B. Sarels, M. et Ph. Grillot, R. M. Mège

(Paris VI) (Orléans) (Paris VII)

Journée Modélisation en biologie et statistique de données biomédicales - Grenoble 2 Novembre 2015

(2)

Cadherin-Cadherin adhesion and Actin

Anchoring of cadherins to actin cytoskeleton

Cell 1

Cell 2

Actin retrograde flow

Myosin II Actin

Actin monomers

• Cadherins diffusion

• Trans- and Cis- contacts

• Local aggregation effect

• Actin polymerization

• Retrograde flow

• Cadherins unbinding

(3)

Experimental approach

EC domain o E-cahdrin IgG constant fragment E-cadherin - Fc

Cell

Anti-IgG Fc

N-cadherin - Fc

Experimental approach

Biomimetic substrate

Gavard et al., 2004 Lambert et al., 2000

C2C12 sur Ncad-Fc:

• Flat cadherins substrate

• Release of a single cell

• Spread of the cell, coating

• Fluorescence Recovery After Photobleaching (FRAP)

EC domain o E-cahdrin IgG constant fragment E-cadherin - Fc

Cell

Anti-IgG Fc

N-cadherin - Fc

Experimental approach

Biomimetic substrate

Gavard et al., 2004 Lambert et al., 2000

C2C12 sur Ncad-Fc:

EC domain o E-cahdrin IgG constant fragment E-cadherin - Fc

Cell

Anti-IgG Fc

N-cadherin - Fc

Experimental approach

Biomimetic substrate

Gavard et al., 2004 Lambert et al., 2000

C2C12 sur Ncad-Fc:

EC domain o E-cahdrin IgG constant fragment E-cadherin - Fc

Cell

Anti-IgG Fc

N-cadherin - Fc

Experimental approach

Biomimetic substrate

Gavard et al., 2004 Lambert et al., 2000

C2C12 sur Ncad-Fc:

I Cadherins and actins has the same circular distribution

Gavard et al., J. Cell Sci. (2004)

(4)

Cadherin aggregate and actin Results

EcWT EcCis

Results

EcWT EcCis

No-β-catenin inhibition β-catenin inhibition

I With β-catenin inhibition, no polymerization, uniform distribution I Without β-catenin inhibition, actin polymerization, radial aggregates

(5)

Cadherin diffusion and transport

• Cadherins with low con- nection to actin filaments diffuse more than "wilde"

ones.

• Green = brownian motion.

Red = "transport" by actin.

• Biphasic behavior for medium and low connected cadherins.

• Diffusion coefficient for binded cadherins 2 order of magnitude smaller, almost zero.

Lambert et al., J. Cell. Biol. (2002)

(6)

Model #1

• Macrosc. mod. on Ω = degenerate reaction-diffusion syst.

tu = σ∆u − r(u, v)

tv = r(u, v)

+ Homogeneous Neumann (or periodic) boundary conditions for u + Normalised initial data :

Z

u0 + v0 dx = 1

• u(t, x), v(t, x) : free and fixed cadherins densities

• Reaction term r(u, v) → links and aggregation : r(u, v) = (ρ − v) Ψ(v) u − ε v ε unbound rate, 0 < ε 1

ρ target density (constant), 0 < ρ ≤ 1 −→ 0 < v < ρ

Ψ(v) aggregation function : Ψ(v) = a0 + a1v with 0 < a0, a1 < 1

[GGM] M. Grillot, Ph. Grillot, S. Mancini, (submitted)

(7)

Steady state of #1

• Stationary solutions (u0, v0) to #1 are space homogeneous.

∆u = 0

r(u, v) = 0 gives

u0(x) = C

v0(x) = C(a1ρ−a0)−ε+

p(C(a1ρ−a0)−ε)2−4C2ρa0a1 2Ca1

• If conservation

Z

u + v = 1 with |Ω| = 1, then (u0, v0) = εv0

(ρ − v0)(a0 + a1v0), v0

!

• Linearised system:

λu + σk2u + Au − Bv = 0 λv − Au + Bv = 0

A = ∂ur = εv0

u0 > 0

B = −∂vr = ε(a0+a1v

2 0)

(1−v0)(a0+a1v0) > 0

• λ1,2 < 0 → (u0, v0) stable → No patterns/aggregates

(8)

Numerical results #1

Data: ρ = 1, a0 = 0.25, a1 = 0.5, ε = 0.35, σ = 1, T = 200

⇒ u0 = 0.5691940, v0 = 0.4308060

perturbed initial data v0 final soltion v

(9)

Numerical results #1

Data: ρ = 0.7, a0 = 0.25, a1 = 0.5, ε = 0.35, σ = 1, T = 10

⇒ u0 = 0.6892565, v0 = 0.3107435

u0 (blue) and u (red) v0 (blue) and v (red)

(10)

Numerical results - convergence

For the previous data, the steady state has value ˆv = 0.3107435 vm(t) = max v(t,·) + minv(t, ·)

2

0.30 0.35 0.40 0.45 0.50 0.55 0.60

0 2 4 6 8 10 12 0.20

0.22 0.24 0.26 0.28 0.30 0.32

0 2 4 6 8 10 12 0.31

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

0 2 4 6 8 10 12

vmax vmin vm

Exponential rate ?

(11)

Non-linear aggregation

• if v small then small aggregation and large unbinding

• if v large then large aggregation and small unbinding Ψ(v) = a + tanh(v) , ε → (1 − tanh(bv))

aggregation unbinding

The reaction term reads :

r(u, v) = u(ρ − v) (a0 + tanh(v))

| {z }

F(v)

−v (1 − tanh(αv))

| {z }

G(v)

[SMMS] B. Sarels, S.Mancini, RM. Mège, PO. Strale, (in preparation)

(12)

Stationary solutions

Assume |Ω| = 1, u = 1 − v, and define

f(v) := (1 − v)(ρ − v)(a0 + tanh(v)) − v(1 − tanh(αv))

Since a0 > 0, f(0) = ρa0 > 0, f(ρ) = −ρ(1 − tanh(αρ)) < 0 and f(v) continuous, then ∃ v0 ∈ [0, ρ] such that f(v) = 0.

(13)

Linearisation

• The stationary solution is space homogeneous : v0G0

(ρ − v0)F0, v0

!

, F0 = F(v0) , G0 = G(v0)

• Linear system reads:

λu + σk2u + Au + Bv = 0 λu − Au − Bv = 0

with A = (ρ − v0)F0 , B = v0(ρ − v0)(F00G0 − F0G00) − ρF0G0 (ρ − v0)F0

• The eigenvalues are given by:

λ = 1 2

−(A + σk2 − B) ±

q

(A + σk2 − B)2 + 4Bσk2

and their sign depends on the sign of B. Note A > 0.

(14)

Sign of B

• If B ≤ 0, then (u0, v0) stable → blue domain

• If B > 0, then (u0, v0) unstable → red domain → patterns formation

• If v0 > ρ, then non admissible solution → orange domain

(15)

Numerical results #2

Initial data = centered perturbation of (u0, v0). Time T = 200, a0 = 0.005, α = 2.

(16)

Numerical results #2

Initial data = uniform perturbation of (u0, v0). Time T = 200, a0 = 0.005, α = 2.

(17)

Initial distribution vs. final distribution

σ = 3.3 · 10−2 µm2

s , a = 0.007, α = 2.4

v0 = sum of randomly distributed gaussian

intial distribution final distribution

• max(v0) = 0.05, min(v0) = 10−5, max(v) = 0.96, min(v) = 0.01

• max(u0) = 0.99, min(u0) = 0.95, max(u) = min(u) = 0.61

(18)

Agregates growth

contour m = max(v0)+min(v2 0) Red line = Z

u(T) dx dy

contour m = max(v)+min(v)

2 Blue line =

Z

v(T) dx dy,

• At equilibrium 38% of cadherines are fixed and 62% are free to move.

(19)

Conclusions and Perspectives

• Linear aggregation functions do not leads to structure formations.

Still, interesting mathematical problems concerning degenerate reaction-diffusion systems.

• Non-linear (sigmoids) aggregation and unbinding functions leads to Turing type instabilities. The choice of the parameters has to be investigated more deeply.

• To derive the mathematical model we need more biology experi- ments, in particular concerning the creation and growth of aggre- gates of cadherins in the absence of actin.

• Conclude the modeling and try to recover from numerics and math- ematical results some biological information as the distance be- tween aggregates and their mean size.

• Take into account the actin filaments and their influence on the distribution and behavior of cadherin aggregates.

• Study a discrete model (cellular automat) and/or hybrid models for the coupling with the actin filaments.

(20)

Thank you

Michèle Philippe Benoit René-Marc

PEPS-Math-Bio-Info : MAC

Modélisation d’Adhesion des Cadhérines

Références

Documents relatifs

In this document, the optimal sizing of hybrid photovoltaic- battery systems is presented. It is proposed a simplified control methodology and sizing is conceived as an

We monitor the dynamics of aggregation, which are ruled by cell diffusion and cell–cell collision, and model the cell–cell adhesion induced by the NPs, or nanostickers, using

Notre projet a ceci de particulier : il a été réalisé dans un centre hospitalier de soins de courte durée de moins de 200 lits; les médi- caments sont livrés en cassettes, incluant

Based on the analysis of 50 to 125 years of time series of annual mean temperature at 56 stations in 18 groups selected from 10 mountainous regions of the world, the Alps, Kashmir,

To show how Spec allows for the reuse of existing models, the next step of our example builds a message browser which reuses the method list we just constructed.. We will follow

Besides unilateral contact and Coulomb friction, other parameters relevant to the shape and contact anisotropy, which influence the anisotropy of stress

Figure1: A) Representative images of one animal acquired 17 days post tumor inoculation. The red line corresponds to the manual tumor delineation. Color-coded clustering result

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des