• Aucun résultat trouvé

A Gamma-spectrometer for determination of density distribution and moisture distribution in building materials

N/A
N/A
Protected

Academic year: 2021

Partager "A Gamma-spectrometer for determination of density distribution and moisture distribution in building materials"

Copied!
11
0
0

Texte intégral

(1)

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=d84e58e5-7446-4b1d-964f-957a9cbb73d0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d84e58e5-7446-4b1d-964f-957a9cbb73d0

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Gamma-spectrometer for determination of density distribution and

moisture distribution in building materials

(2)

-

Ser

I

-.

I

THl

N21d

National Research

Conseil national

1.

1302

I*

Council Canada

de recherchg

Canada

c .

2

BLRG

Division of

Division des

-

--

Building Research

recherche~

en batiment

A

Gamma-Spectrometer for Determination

of Density Distribution and Moisture

Distribution in Building Materials

by M.K. Kumaran and M. Bomberg

Reprinted from

Proceedings of the International Symposium

on Moisture and Humidity

Washington, D.C., April 15- 18, 1985

p.

485

-

490

DBR Paper No. 1302

Price $1

.OO

(3)

Un spectrometre gamma

B

double faisceau a 6te congu et monte,

sa source etant un assemblage de 5 5 ~ s 1 3 7

et de 95~m241. Le

detecteur se compose dlun cristal (thallium)

B

iodure de sodium

et dqun analyseur multivoie, chaque voie balayant une region

precise dtenviron

48

kJ

m

o

l

'

l

du spectre combine.

La

source et

le detecteur sont montes sur des plates-formes distinctes qulil

est possible de deplacer dans une matrice spatiale definie par

des coordonnees verticales et horizontales, avec une precision

meilleure que 0,02 mm.

Le

deplacement des plates-formes est

command6 et synchronise par ordinateur.

Les intensites du

rayonnement gamma dans les regions dtint6r@t (autour des deux

pics caracteristiques de 5,79 et 63,88 GJ m

o

l

'

l

du spectre,

aprss passage dans un milieu homogene c o m e de llair,

de lteau

ou des solutions aqueuses) sont enregistrees, lt6cart type

&ant de 0,2% dans les conditions experimentales optimalis6es.

Des programmes informatiques permettent de definir les

parametres de chacun des essais, dtexecuter ltessai et de

collecter les donnges.

Les coefficients dtattenuation

de masse de lteau pour les deux

regions energetiques ont ete dgtermings et concordent

B

1% pres

avec les valeurs couramment acceptees.

On pr6sente dans cette

etude un profil de la distribution de lthumidit6

dans un bloc

de fibre de verre de masse volumique moyenne en train de

(4)

MOISTURE AND H U k

Proceedings of the

International Symposium on Moisture and Humidity

Washington, I

April 15.18,

I

A GAMMA-SPECTROMETER FOR DETERMINATION

OF DENSITY DISTRIBUTION AND MOISTURE

DISTRIBUTION IN BUILDING MATERIALS

M. K. Kumaran

M. Bomber

(5)

O ISA, 1985

A GAMMA-SPECTROMETER FOR DETERMINATION OF DENSITY DISTRIBUTION

AND MOISTURE DISTRIBUTION I N BUILDING MATERIALS

M.K. Kumaran and M. Bomberg

Thermal Performance S e c t i o n D i v i s i o n of B u i l d i n g R e s e a r c h N a t i o n a l R e s e a r c h C o u n c i l of Canada

Ottawa KIA OR6

ABSTRACT

A dual-beam gamma-spectrometer h a s been d e s i g n e d and i n s t a l l e d , i t s s o u r c e a n assembly of 5 5 ~ s 1 3 7 and 9 5 ~ m 2 4 1 . The d e t e c t o r c o n s i s t s of a sodium i o d i d e ( t h a l l i u m ) c r y s t a l a n d a m u l t i c h a n n e l a n a l y s e r , e a c h c h a n n e l s c r e e n i n g a s p e c i f i e d r e g i o n a 4 8 kJ mol-l i n t h e combined s p e c t r a . The s o u r c e a n d t h e d e t e c t o r a r e mounted o n s e p a r a t e t o w e r s t h a t can be moved a l o n g a s p a c e m a t r i x d e f i n e d by v e r t i c a l a n d h o r i z o n t a l c o o r d i n a t e s w i t h a p r e c i s i o n b e t t e r t h a n 0.02 mm; movement of t h e t o w e r s i s c o n t r o l l e d a n d s y n c h r o n i z e d by computer. I n t e n s i t i e s of t h e gamma r a y i n t h e r e g i o n s of i n t e r e s t ( r o u n d t h e two c h a r a c t e r i s t i c peaks of 5.79 and 63.88 GJ mol-l i n t h e s p e c t r a , a s p a s s e d t h r o u g h homogeneous media l i k e a i r , w a t e r o r aqueous s o l u t i o n s ) a r e r e c o r d e d , w i t h a t y p i c a l s t a n d a r d d e v i a t i o n o f 0.2% u n d e r t h e o p t i m i z e d e x p e r i m e n t a l c o n d i t i o n s . Computer programs a r e u s e d t o d e f i n e t h e p a r a m e t e r s of e a c h t e s t , t o r u n t h e t e s t , and t o c o l l e c t d a t a . The mass a t t e n u a t i o n c o e f f i c i e n t s of w a t e r f o r b o t h e n e r g y r e g i o n s have b e e n d e t e r m i n e d a n d a g r e e w i t h a c c e p t e d l i t e r a t u r e v a l u e s w i t h i n 1%. A p r o f i l e i s p r e s e n t e d o f m o i s t u r e d i s t r i b u t i o n i n a b l o c k of medium-density g l a s s f i b e r w h i l e d r y i n g . INTRODUCTION I n t e r a c t i o n between e l e c t r o m a g n e t i c r a d i a t i o n and m a t t e r forms t h e b a s i s o f a l l e x p e r i m e n t a l methods of s p e c t r o s c o p y . Gamma r a y s e m i t t e d by r a d i o a c t i v e m a t e r i a l s , b e i n g p a r t of t h e e n t i r e s p e c t r u m of e l e c t r o m a g n e t i c r a d i a t i o n , a r e a l s o known t o i n t e r a c t w i t h m a t t e r t h r o u g h which t h e y p a s s . As a consequence, r a d i a t i o n i s absorbed by m a t t e r , e i t h e r p a r t i a l l y o r c o m p l e t e l y , d e p e n d i n g upon t h e e n e r g y of t h e p h o t o n s , t h e n a t u r e of t h e a b s o r b e r , a n d t h e d i s t a n c e t h e r a d i a t i o n t r a v e l s t h r o u g h t h e a b s o r b e r . Such a b s o r p t i o n may be due t o a number o f d i f f e r e n t p h y s i c a l phenomena, a s summarized by Adams and Dams ( 1 ) . Two of t h e more i m p o r t a n t phenomena a r e p h o t o e l e c t r i c e f f e c t and Compton s c a t t e r i n g ; i f t h e e n e r g y of t h e photon e x c e e d s 98.62 GJ mol-l, t h e phenomenon of p a i r p r o d u c t i o n i s a l s o b e l i e v e d t o p l a y a n i m p o r t a n t r o l e i n t h e i n t e r a c t i o n ( 1 , 2 ) . It i s g e n e r a l l y a c c e p t e d t h a t t h e a b s o r p t i o n of a rnono-energetic gamma r a y p a s s i n g t h r o u g h a homogeneous a b s o r b e r i s e x p o n e n t i a l , e x p r e s s e d by where I. i s t h e i n t e n s i t y of t h e i n c i d e n t gamma r a y , I i s t h a t of t h e t r a n s m i t t e d gamma r a y , d i s t h e t h i c k n e s s of t h e a b s o r b e r , and

u

i s a c o n s t a n t c h a r a c t e r i s t i c o f t h e a b s o r b e r a n d i s c a l l e d a t t e n u a t i o n c o e f f i c i e n t o r a b s o r p t i o n c o e f f i c i e n t . The q u a n t i t y p f o r t h e homogeneous a b s o r b e r i s d i r e c t l y p r o p o r t i o n a l t o i t s d e n s i t y , p , and may be r e p r e s e n t e d as The p r o p o r t i o n a l i t y c o n s t a n t o i n E q u a t i o n ( 2 ) i s known a s t h e mass a t t e n u a t i o n c o e f f i c i e n t o f t h e a b s o r b e r . Its v a l u e depends o n l y on t h e c h e m i c a l c o n s t i t u t i o n o f t h e a b s o r b e r a n d n o t o n t h e p h y s i c a l s t a t e of e x i s t e n c e . E q u a t i o n ( 1 ) may b e r e w r i t t e n a s

I f t h e a b s o r b e r i s made of two components, s a y . 1 and 2, t h e n E q u a t i o n ( 3 ) becomes

where s u b s c r i p t s 1 and 2 r e f e r t o t h e two components and pl and p2 a r e t h e a p p a r e n t o r p a r t i a l d e n s i t i e s o f t h e components i n t h e m i x t u r e . E q u a t i o n ( 4 ) i s of g r e a t p r a c t i c a l i m p o r t a n c e ; i f o n e m e a s u r e s , s i m u l t a n e o u s l y , t h e t r a n s m i t t e d i n t e n s i t i e s of two gamma r a d i a t i o n s d i f f e r i n g i n e n e r g y , o n e c a n d e t e r m i n e t h e p a r t i a l d e n s i t i e s pl and p 2 , t h e mass a t t e n u a t i o n c o e f f i c i e n t s ol a n d o2 h a v i n g b e e n d e t e r m i n e d s e p a r a t e l y . T h i s p r i n c i p l e h a s been u s e d e x t e n s i v e l y f o r d e t e r m i n i n g d e n s i t i e s a n d m o i s t u r e c o n t e n t o f s o i l s (3-14). I t s m e r i t s have a l r e a d y been p o i n t e d o u t by F e r g u s o n and G a r d n e r ( 3 ) . The most i m p o r t a n t among them i s t h a t t h e system under i n v e s t i g a t i o n r e m a i n s u n d i s t u r b e d . A number of f a c t o r s ( f o r example, c o l l i m a t i o n , background r a d i a t i o n , r e s o l u t i o n o f t h e a n a l y s e r , "dead

(6)

time"* of the measurement, nature of the analyse the transmitted beam. The available 2048

radioactive source, intensity of radiation, channels used in the pulse height analysis mode of

build-up factor) influence the precision of the the equipment are calibrated as follows. A

results, however. The errors introduced by such histogram of the combined spectra is obtained on

factors have been systematically analysed and the equipment screen. The position of the two

appropriate corrections suggested (15-17). Thus, peaks and their separation are adjusted such that

the precision of the measurements depends on how each channel records a successive increment

well one can define and minimize the corrections. -48 kJ mol-l. This is achieved by positioning the

Am peak at the 120th channel and the Cs peak at

THE GAMMA-SPECTROMETER the 1 3 2 4 ~ ~ channel. One of the available

facilities of the equipment allows the user to

The layout of the gamma-spectrometer is shown restrict the measurement to any selected region or

schematically in Figure 1. It was assembled by regions of interest in the histogram.

Foundation Electronic Instruments Inc., Ottawa,

according to the requirements of the Division of The source housing assembly and the detector

Building Research, National Research Council of assembly together with the respective collimators

Canada (NRCC). Construction details of the are mounted on two separate platforms, each of

equipment are available on request from NRCC; only which can be moved vertically and horizontally in

the more important features are summarized below. a 100-cm x 15-cm space matrix for any desired

position within the matrix, defined by a vertical

Source arid a horizontal coordinate with precision better

than 0.02 mm. The resolution of the vertical

The gamma ray source of the equipment consists of coordinate is 0.003 mm and that of the horizontal

1) a composite of americium oxide and aluminium coordinate, 0.015 mm.

oxide, and 2) cesium chloride in a fused silica

matrix. Each is a line source with an active area The gamma-spectrometer is interfaced with a

of 2 mm x 25 mm and is separately housed in PDP11/23 computer system that controls and

double-encapsulated stainless steel tubes. The synchronizes the movements of the two platforms

radioactivity of the

95Ad41

source was carrying the source and detector assemblies.

7.4 x lo9 s-I and that of the 5 5 ~ s 1 3 7 source was Programs are used to define parameters for each

3.7 x lo9 s-l, as determined by the manufacturer test, i.e.

,

starting time, vertical and horizontal

(Isotope Products Laboratories). Characteristic coordinates, live time*, energy regions of

energies of these isotopes are known to be 5.79 interest in terms of channel numbers, etc.

and 63.88 GJ mol-l

,

respectively. The line Sub-programs are available to modify the test

sources are placed in a "source housing assembly." parameters during the test and for data

The gamma rays from the Cs source can be reduced acquisition, display, and printing.

appreciably by use of a manually operated internal

shutter located between the two sources. The EXPERIMENTAL METHODS AND RESULTS

external shutter of the assembly. operated by

electrically activated solenoids, effectively The importance of dead time corrections in

stops all radiation from the two sources. Thus, gamma ray methods is well known (10,lS). The

by an appropriate combination of the two shutters TN-1710 has built-in features to correct for dead

i

the operator can either stop all radiation or have time to some degree. The remaining dead time

a beam from Am or a dual beam from both sources. corrections for both energy regions have been

The beam emerging from the assembly is not determined by various operators of the NRCC

sufficiently collimated. Two successive lead spectrometer, using the method suggested by

block assemblies with 2-mm x 12-mm rectangular Groenevelt (10). Aluminum plates were used as

openings are used to collimate and define the absorbers for these measurements. The dead time

incident gamma ray for any measurement. corrections applied for those reported in this

paper are the most recently determined values,

Detector and Analyser i.e., 3.4 ps count-l for Am and 14.6 us count-l

for Cs. The live time selected for the

The detector and analyser form the most important measurements was 200 s, giving a precision better

parts of a gamma-spectrometer. The detector used than 0.2% with homogeneous absorbers. Shorter

in the NRCC gamma-spectrometer is a 51-m thick live time may be used, but would reduce the

sodium iodide (thallium) crystal with a precision of the counts.

photomultiplier tube (Harshaw model 14SHA8/3.5/x).

The diameter of both the crystal and the Experimental determination of the mass attenuation 1

photomultiplier tube is 89 mm. Before it enters coefficients of water for both energy regions is

the detector the transmitted beam can also be probably the best way to check the spectrometer;

collimated by using lead block assemblies similar theoretical values for these coefficients are

to those used with the source. known (18) to be 0.2049 and 0.0857 cm2mg-l,

respectively, for the Am and Cs characteristic

The multi-channel analyser, TN-1710 from Tracor energies, and several authors have already

Northern, coupled with the detector is used to verified these coefficients experimentally.

*Average time between counts during which analyser "rime during which detector is active and counting

(7)

After the NRCC gamma-spectrometer had been constructed and installed, it was found that the manually-operated internal shutter in the source housing assembly could stop only 80% of the Cs radiation. It is to be expected, therefore, that the

Am

readings will be influenced by secondary photons produced as the absorber interacts with Cs radiations. This will naturally depend on the distance through which the radiation travels. To investigate this quantitatively the following measurements were performed. Four rectangular Plexiglas containers were made with internal path lengths 5.05, 7.77, 10.03, and 14.13 cm,

respectively. These boxes were filled with distilled water and scanned in the spectrometer at several positions for each path length.

Corresponding reference measurements were also made with empty boxes. Each set of measurements was repeated several times to provide the best average value of the mass attenuation coefficients for each path length. They were carried out in two series; in one, no collimation was used on the detector side, and in the other a rectangular collimation with experimentally optimized dimensions was used. For example, when the source-detector separation was -60 cm, the optimized dimension of the detector collimation was 2.4 x 2 cm. The results of these measurements

are summarized in Table I.

Evgin and Svec (19) have recently used the gamma-spectrometer for a set of measurements carried out on specimens prepared with fine Ottawa sand. For three different specimens with bulk densities of 1550, 1716 and 1802 kg* me3 average values for the logarithm of the ratio (I/Io) for Am were, respectively, -1.704, -1.908 and -1.992 for a constant path length. The general

applicability of Equation (3) may be examined with these values.

The NRCC gamma-spectrometer has been designed with a specific objective: to study moisture transport through building materials. As a preliminary study the following experimental investigations were undertaken. A 9.7 x 9.8 x 16-cm block of medimdensity glass fiber insulation was exposed to laboratory conditions (21°C and 48% relative humidity) until it attained constant mass. The average density of the specimen was determined to be 48.4 k g ~ m - ~ . The block was then scanned with the gamma ray at several positions and an average value for the count of transmitted americium beam was determined to be 2.122 x lo6, with a standard deviation of 6 x lo3 for 200 s live time. After

immersion in distilled water, the block was allowed to drain for 10 min. It was then placed on a flat surface and left at constant temperature (21°C) and relative humidity (48%) for 80 h. At this stage it could be seen from a mass

determination that the sample was holding about 300 cm3 of water, distributed within the available space subject to gradients produced by gravity and evaporation. The system was then scanned through a height of 16 cm on the central area. One typical set of readings is shown in Table 11. No collimation was used on the detector side for these measurements.

DISCUSSION

Mass Attenuation Coefficient of Water

As pointed out earlier, it is anticipated that the magnitude of the mass attenuation coefficient of water for

Am

will be influenced by the presence of Cs. It may be seen in Table I that magnitude depends, as expected, on path length and

collimation on the detector side. Empirically, however, the dependency is linear for both series

(Figure 2). This dependency on path length may be due to the secondary photons produced by water interacting with Cs photons. If this is the case, the value of the mass attenuation coefficient should approach the theoretical value of 0.2049 cm2*g-l when the path length approaches zero. On extrapolation to zero thickness both lines converge to 0.203 cm2wg-l, with a standard error of 0.002 cdog-l that agrees well with the theoretical value (Figure 2).

It may also be seen that the magnitude of the slope of the straight lines (a measure of the intensity of the secondary photons) is smaller when a collimator is used on the detector side. This is not unexpected, since the collimator shields part of the secondary photons from

reaching the detector. The magnitude of the slope may be further reduced by reducing the size of the collimator; beyond the optimum size, however, the number of photons decrease and the uncertainty in the count increases as is natural for radioactive phenomena.

The mass attenuation coefficient of water for Cs from all measurements was found to be

0.085

cm2ag-l ,

with a standard deviation of 0.002 cdmg-l, which agrees very well with the theoretical value of 0.0857 cm2* g-l

.

Densities of Ottawa Sand

If p 1 and p2 are densities of two specimens prepared from sand, for a constant path length it follows from Equation (3) that

The ratio p1

lP2

is known from gravimetric measurements and hence can be compared with the three ratios determined from the spectroscopic measurements. Gravimetrically these ratios are 0.860, 0.903 and 0.952. From the gamma ray measurements the corresponding ratios are 0.856, 0.893 and 0.958.

Moisture Distribution in Glass Fiber Block The data in Table I1 are used to construct the profile of moisture distribution in Figure 3. A .

noted, the magnitude of the mass attenuation coefficient of water for Am depends on path length. The calculation was therefore carried out in two stages. In the first, the value of the mass attenuation coefficient was assumed to be 0.203 cm2og-l, and from Equation (3) the apparent density of water at different heights was

(8)

9.7 cm, was t h e n c o r r e c t e d f o r e a c h h e i g h t by m u l t i p l y i n g by t h e f r a c t i o n = ( a p p a r e n t d e n s i t y l r e a l d e n s i t y o f w a t e r ) . I n t h e second s t a g e t h e c o r r e c t e d p a t h l e n g t h was u s e d t o c a l c u l a t e t h e mass a t t e n u a t i o n c o e f f i c i e n t a t t h e r e s p e c t i v e h e i g h t s and t h e v a l u e r e - s u b s t i t u t e d i n E q u a t i o n ( 3 ) . The whole s e r i e s of c a l c u l a t i o n s was r e p e a t e d t o a c h i e v e c o n v e r g e n c e w i t h r e s p e c t t o d e n s i t i e s . F o r t h e r e s u l t s r e p o r t e d h e r e , one t o t h r e e i t e r a t i o n s were s u f f i c i e n t t o a c h i e v e convergence. A p p l i c a t i o n of t h i s e x p e r i m e n t a l t e c h n i q u e w i l l b e f u r t h e r examined by s t u d y i n g m o i s t u r e d i s t r i b u t i o n i n porous m a t e r i a l s . At t h i s s t a g e of t h e s t u d y , however, i t i s a n t i c i p a t e d t h a t f o r very low m o i s t u r e c o n t e n t s , s a y l e s s t h a n 5 g i n a n a v a i l a b l e volume o f 1 0 0 c m 3 , t h i s method may n o t be s u i t a b l e . ACKNOWLEDGEMENT The a u t h o r s g r a t e f u l l y acknowledge t h e a s s i s t a n c e of M r . R. Marchand i n t h e development of t h e computer s o f t w a r e t o o p e r a t e t h e gamma-spectrometer. T e c h n i c a l h e l p from M r . J.G. T h e r i a u l t and M r s . N. Normandin i s a l s o acknowledged. The c o n t r i b u t i o n s of

M r . E. R o s e n q u i s t and M r . P. Armstrong towards t h e development of t h e computer programs w h i l e t h e y were working a s summer s t u d e n t s d e s e r v e s p e c i a l mention. T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of Canada, and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r o f t h e D i v i s i o n . REFERENCES

1. Adams, F. and Dams, R., Revised Second Ed., "Applied Gamma-ray S p e c t r o m e t r y " by

C.E. Cronthamel, I n t . S e r i e s of Monographs i n A n a l y t i c a l C h e m i s t r y , Pergamon P r e s s , 1970, pp. 14-27.

2. D u i v e n s t i j n , A.J. and Venverloo, L.A.J., " P r a c t i c a l Gamma S p e c t r o m e t r y

,"

( I n Dutch) P h i l i p s T e c h n i c a l L i b r a r y S e r i e s , London, C l e a v e r H u m e P r e s s L t d . , 1963, 146 p. 3. Ferguson, H. and Gardner, W.H., "Water

C o n t e n t Measurement i n S o i l Columns by Gamma Ray A b s o r p t i o n , " S o i l S c i e n c e S o c i e t y of America P r o c e e d i n g s , 1962, p. 11-14. 4. Coreg, J . C . , Boulogne, A.R., and

Horton, J . H . , " D e t e r m i n a t i o n of S o i l D e n s i t y and Water Content by F a s t Neutrons and Gamma Rays," Water R e s o u r c e s R e s e a r c h , Vol. 6, No. 1, 1970, p. 223-229.

5. R e g i n a t o , R.J., and van Bavel, C.H.M., " S o i l Water Measurement w i t h Gamma A t t e n u a t i o n , " S o i l S c i e n c e S o c i e t y of America P r o c e e d i n g s , Vol. 28, No. 6, 1964, p. 721-4. P i r i e , E . , L i n , K., and T a y l o r , D., " S o i l D e n s i t y Measurements w i t h Gamma-rays," S o i l S c i e n c e , Vol. 106, No. 6, 1968, pp. 411-4. De S w a r t , J.G., and G r o e n e v e l t , P.H., "Column S c a n n i n g w i t h 60 keV Gamma R a d i a t i o n , " S o i l S c i e n c e , Vol. 112, No. 6 , 1971, p. 419-424. King, L.G., "Gamma-ray A t t e n u a t i o n f o r S o i l - w a t e r c o n t e n t Measurements U s i n g 2 4 1 ~ m , " Proc. I s o t o p e and R a d i a t i o n T e c h n i q u e s ,

I n t e r n a t i o n a l Atomic Energy Agency, Vienna. 1967, pp. 17-29.

Vachaud, G., C i s l e r , J., Thony, J.L. and Debacker. L.

,

" U t i l i s a t i o n d e 1 1 6 m i s s i o n gamma de l'americium-241 pour l a mesure d e l a t e n e u r e n e a u d ' d c h a n t i l l o n s d e s o l s non s a t u r d s , " P r o c e e d i n g s of Symposium on Use of I s o t y p e s i n Hydrology, I n t e r n a t i o n a l Atomic Energy Agency, Vienna, 1970, pp. 643-659. G r o e n e v e l t , P.H., "The Use of a Dual Gamma Scanner t o Observe t h e S h r i n k a g e o f Clay

,"

Geoderma, Vol. 1 1 , 1974, pp. 287-295.

J e n s e n , P.A., and Somer, E., " S c i n t i l l a t i o n T e c h n i q u e s i n S o i l - m o i s t u r e and D e n s i t y Measurements," P r o c e e d i n g s I s o t o p e a n d R a d i a t i o n T e c h n i q u e s Symposium, I n t e r n a t i o n a l Atomic Energy Agency, Vienna, 1967,

pp. 31-47.

Gardner, W.H., and C a l i s s e n d o r f f , C., Gamma-ray a n d N e u t r o n A t t e n u a t i o n i n Measurement of S o i l Bulk D e n s i t y and Water C o n t e n t , " P r o c e e d i n g s of I s o t o p e a n d

R a d i a t i o n Techniques Symposium, I n t e r n a t i o n a l Atomic Energy Agency, Vienna, 1967,

pp. 101-113.

G r o e n e v e l t , P.H., d e S w a r t , J . G . a n d C i s l e r , J . , "Water C o n t e n t Measurement w i t h 60 keV Gamma Ray A t t e n u a t i o n , " B u l l e t i n o f I n t e r n a t i o n a l A s s o c i a t i o n of S c i e n t i f i c Hydrology, X I V , 2 , No. 6 , 1969, pp. 67-78. Davidson, J.M., B i g g a r , J.W. a n d

N i e l s e n , D. R., "Gamma-radiation A t t e n u a t i o n f o r Measuring Bulk D e n s i t y and T r a n s i e n t Water Flow i n P o r o u s M a t e r i a l s , " J. G e o p h y s i c a l R e s e a r c h , Vol. 6 8 , No. 1 6 , 1963, pp. 4777-4783. F r i t t o n , D.D., " R e s o l v i n g Time, Mass A b s o r p t i o n C o e f f i c i e n t a n d Water C o n t e n t w i t h Gamma-ray A t t e n u a t i o n , " S o i l S c i e n c e S o c i e t y of America P r o c e e d i n g s , Vol. 33, 1969, p. 651-564.

P r e i s s , K., " R e l a t i o n Between Energy and E r r o r Due t o N u c l e a r S t a t i s t i c s f o r D e n s i t y Measurement by Gamma Ray T r a n s m i s s i o n , " S o i l S c i e n c e , Vol. 110, No. 3, 1970, p. 151-6.

(9)

17. Ono, H. and Machida, T., "Errors of the 18. Grodstein, G. W., "X-ray Attenuation

Gamma-scattering Density Meter and its Design Coefficients from 10 keV to 100 MeV,"

for Low-density Measurements, Proceedings of National Bureau of Standards, U. S.,

Radioisotope Instruments in Industry and Circular 583, 30 April, 1957.

Geophysics Symposium, International Atomic

Energy Agency, Vienna. Vol. 2, 1966, 19. Evgin, E. and Svec, O., Private

pp. 369-381. couumnication.

Table

I.

Average mass attenuation coefficients a h and a s of water for

americium and cesium radiations as a function o! path length d; the

standard deviation for each oh is 0.001 cm2*g-1 and for each aCs 0.002 cm2-g-1.

-.

Without collimation on detector with collimation on detector

Table 11. The counts IAm for the transmitted americium radiation at various heights, h, from the base of the glass fiber block and the apparent

densities p 1 of water; the live

time is 200 s, the path length is 9.7 cm and the average

reference count is 2.122 x lo6

with a standard deviation of

(10)

A AND B - PLATFORMS THAT CARRY DETECTOR AND SOURCE HOUSE ASSEMBLIES: THESE PLATFORMS CAN BE MOVED VERTICALLY AND HORIZONTALLY. S I - AMERICIUM SOURCE; 5 2 - CESIUM SOURCE: C - INTERNAL SHUTTER SEPARATING THE TWO SOURCES; D - EXTERNAL SHUTTER; El. E2. G1 AND G2 - LEAD BLOCK ASSEMBLIES FOR COLLIMATION;

F - SPECIMEN: H - SODIUM IODIDE (THALLIUM) CRYSTAL: I - PHOTOMULTIPLIER TUBE F I G U R E 1 S C H E M A T I C D I A G R A M OF N R C G A M M A - S P E C T R O M E T E R P A T H L E N G T H , c m F I G U R E 2 D E P E N D E N C E O F c r A m O F W A T E R O N P A T H L E N G T H I N T H E P R E S E N C E O F C S R A D I A T I O N . T H E R E L A T I V E I N T E N S I T I E S O F A m A N D C s A R E 4 T O 1. E A C H * O R 0 R E P R E S E N T S T H E A V E R A G E O F 50 TO 1 0 0 M E A S U R E M E N T S . E A C H S T R A I G H T L I N E I S F R O M A L E A S T S Q U A R E S F I T OF E I G H T P A I R S O F D A T A R E P R E S E N T I N G F O U R U P P E R A N D F O U R L O W E R L I M I T S O F E A C H E X P E R I M E N T A L P O I N T H E I G H T . c m F I G U R E 3 P R O F I L E O F M O I S T U R E D I S T R I B U T I O N I N B L O C K O F M E D I U M - D E N S I T Y G L A S S F I B E R I N S U L A T I O N D E T E R M I N E D B Y G A M M A - S P E C T R O M E T R Y

(11)

T h i s p a p e r ,

w h i l e b e i n g d i s t r i b u t e d i n

r e p r i n t form by t h e D i v i s i o n of B u i l d i n g

R e s e a r c h ,

remains t h e c o p y r i g h t

of

t h e

o r i g i n a l p u b l i s h e r .

It

s h o u l d n o t be

r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e

p e r m i s s i o n of t h e p u b l i s h e r .

A

l i s t

of a l l p u b l i c a t i o n s a v a i l a b l e from

t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of

B u i l d i n g

R e s e a r c h ,

N a t i o n a l

R e s e a r c h

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

K l A

OR6.

Ce

document

est d i s t r i b u 6 s o u s forme de

tiri5-3-part

p a r l a D i v i s i o n d e s r e c h e r c h e s

e n b a t i m e n t .

Les d r o i t s d e r e p r o d u c t i o n

s o n t t o u t e f o i s l a proprigti5 d e l ' d d i t e u r

o r i g i n a l .

Ce d o c u m e n t n e p e u t & t r e

r e p r o d u i t en t o t a l i t 6 ou en p a r t i e s a n s l e

consentement de l ' g d i t e u r .

Une l i s t e d e s p u b l i c a t i o n s de l a D i v i s i o n

p e u t & t r e o b t e n u e en g c r i v a n t

3

l a S e c t i o n

d e s p u b l i c a t i o n s , D i v i s i o n d e s r e c h e r c h e s

e n b a t i m e n t , C o n s e i l n a t i o n a l d e r e c h e r c h e s

Figure

Table  I.  Average mass attenuation coefficients a h   and a s  of water for  americium and cesium radiations as a function o! path length d; the  standard deviation for each oh  is 0.001  cm2*g-1 and for each  aCs 0.002 cm2-g-1

Références

Documents relatifs

For certain tecl~nical reasons, it is inconvenient to use the same crystal specimen for both comparison with the visible reference wavelength (by X-ray/optical interferometry)

Using the automated data products provided by the Swift/XRT light curve 2 and spectra 3 repositories (Evans et al. 2009) we estimated the afterglow X–ray integral fluxes in the 2-10

c) (bottom right) To obtain the period one can study the power spectrum density of X and Y positions of photons detected on the imager. Here we show the periodogram, i.e. the

Nach schweren Verläufen persistieren häufig Leistungsminderungen sowie eine Affektion von Hirnnerven, die sich durch Hypakusis, Dysphagie und Dysarthrie äußert. Während

In order to obtain a better assessment of the relevance of the different capture data sets, the R-matrix calculations were carried out for six cases: the EUROGAM (A) and the GANDI

different theory predictions: NLO pQCD; LO pQCD; PYTHIA using tune QW; PYTHIA using Tune S0; HERWIG using JIMMY; ALPGEN using PYTHIA tune QW; and SHERPA (Figure 3).. The pQCD

• the error on the structure functions of protons: the parton density function (PDF) of the CTEQ collaboration has been used [36]; The PDF uncertainty for the associated production qq

2: Schematic drawing of the high repetition rate, high voltage flash x-ray device characterized in this work.. In operation, the Blumlein was resonantly pulse charged with a