• Aucun résultat trouvé

High dimensional fractional coupled systems: New existence and uniqueness results

N/A
N/A
Protected

Academic year: 2021

Partager "High dimensional fractional coupled systems: New existence and uniqueness results"

Copied!
13
0
0

Texte intégral

(1)

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW EXISTENCE AND UNIQUENESS RESULTS

LOUIZA TABHARIT1 AND ZOUBIR DAHMANI2

Abstract. In this paper, we study a class of high dimensional coupled fractional differential systems using Caputo approach. We investigate the existence of solutions using Schaefer fixed point theorem. Moreover, new existence and uniqueness results are obtained by using the contraction mapping principle. Finally, Some examples are presented to illustrate our main results.

1. Introduction and Preliminaries

Fractional differential equations have gained a great interest because of their many applications in modeling of physical and chemical processes and in engineering sci-ences. For the basic theory of fractional differential equations, see [1–10, 12–14, 17, 22]. Moreover, the nonlinear coupled systems involving fractional derivatives are also very important, since they occur in various problems of applied mathematics. In the litera-ture, we can find many papers dealing with the existence and uniqueness of solutions. For more details, we refer the reader to [11, 16, 18–21] and the references therein.

Motivated by cited coupled systems-papers, in this work, we discuss the existence and uniqueness of solutions for the following problem:

Key words and phrases. Banach contraction principle, Caputo derivative, fixed point, differential equation, existence, uniqueness.

2010 Mathematics Subject Classification. 30C45, 39B72, 39B82. Received: October 12, 2015.

Accepted: December 4, 2015.

(2)

                                               Dα1u 1(t) = l X i=1 fi1(t, u1(t) , . . . , um(t) , Dγ1u1(t) , . . . , Dγmum(t)) , t ∈ J, Dα2u 2(t) = l X i=1 fi2(t, u1(t) , . . . , um(t) , Dγ1u1(t) , . . . , Dγmum(t)) , t ∈ J, .. . Dαmu m(t) = l X i=1 fim(t, u1(t) , . . . , um(t) , Dγ1u1(t) , . . . , Dγmum(t)) , t ∈ J, uk(0) = ak0, u(j)k (0) = 0, j = 1, 2, . . . , n − 2, u(n−1)k (0) = Jrku k(τk), rk > 0, (1.1)

where k = 1, 2, . . . , m. We suppose that n − 1 < αk < n, γk ∈ ]0, n − 1[, k =

1, 2, . . . , m, n ∈ N∗− {1}, m, l ∈ N∗, τ ∈]0, 1[, J := [0, 1]. The derivatives Dαk, Dγk,

k = 1, 2, . . . , m, are taken in the sense of Caputo. For the functions fk i

k=1,2,...,m

i=1,...,l :

J × R2m→ R, we will specify them later.

The paper is organised as follows: We begin by introducing some definitions and lemmas that will be used in the proof of the main results. Then, in the Main Results Section, we prove the existence of solutions theorems. At the last section, some illustrative examples are treated. So, let us now present the basic definitions and lemmas [15].

Definition 1.1. The Riemann-Liouville fractional integral operator of order α > 0, for a continuous function f on [0, ∞[ is defined as:

Jαf (t) =    1 Γ (α) Z t 0 (t − s)α−1f (s) ds, α > 0, t ≥ 0, f (t), α = 0, t ≥ 0, (1.2) where Γ (α) :=R0∞e−xxα−1dx.

Definition 1.2. The Caputo derivative of order α for a function u : [0, ∞) → R, which is at least n-times differentiable can be defined as:

Dαu(t) = 1 Γ (n − α) Z t 0 (t − s)n−α−1u(n)(s) ds = Jn−αu(n)(t), for n − 1 < α < n, n ∈ N∗− {1}.

(3)

Lemma 1.1. For α > 0, the general solution of the fractional differential equation Dαu(t) = 0, is given by u(t) = n−1 X j=0 cjtj, where cj ∈ R, j = 0, . . . , n − 1, n = [α] + 1.

Lemma 1.2. Let α > 0. Then

JαDαu(t) = u(t) + n−1 X j=0 cjtj, where cj ∈ R, j = 0, 1, . . . , n − 1, n = [α] + 1.

Lemma 1.3. Let q > p > 0, g ∈ L1([a, b]). Then DpJqf (t) = Jq−pf (t), t ∈ [a, b].

Lemma 1.4 (Schaefer fixed point Theorem). Let E be Banach space and T : E → E is a completely continuous operator. If V = {u ∈ E : u = µT u, 0 < µ < 1} is bounded, then T has a fixed point in E.

The proof of the following auxiliary lemma is crucial for the problem (1.1).

Lemma 1.5. Assume that Qkik=1,...,mi=1,...,l ∈ C ([0, 1] , R), m, l ∈ N∗. And consider the problem (1.3) Dαku k(t) = l X i=1 Qki(t), t ∈ J, n − 1 < αk < n, n ∈ N∗− {1} ,

associated with the conditions:        uk(0) = ak0, u(j)k (0) = 0, j = 1, 2, . . . , n − 2, u(n−1)k (0) = Jrku k(τk), (1.4)

where k = 1, 2, . . . , m. Then for all k = 1, 2, . . . , m, we have uk(t) = − l X i=1 t Z 0 (t − s)αk−1 Γ (αk) Qki (s) ds + ak0 + Γ (rk+ n) t n−1 (n − 1)! τrk+n−1 k − Γ (rk+ n)  ×   l X i=1 τk Z 0 (τk− s) αk+rk−1 Γ (αk+ rk) Qki (s) ds − a k 0τ rk k Γ (rk+ 1)  . (1.5)

Proof. Thanks to (1.2) and by (1.3), we have (1.6) uk(t) = l X i=1 t Z 0 (t − s)αk−1 Γ (αk) Qki (s) ds − ck0− ck 1t − ck2t2− · · · − ckn−1tn−1,

(4)

where ckj ∈ R, j = 0, 1, 2, . . . , n − 1, k = 1, 2, . . . , m, m ∈ N∗, and n − 1 < αk < n,

n ∈ N∗− {1}.

For all k = 1, 2, . . . , m, we observe that        uk(0) = −ck0, u(j)k (0) = −j!ckj, j = 1, 2, . . . , n − 2, u(n−1)k (0) = − (n − 1)!ckn−1.

The conditions (1.4) will allow us to obtain

(1.7)            ck0 = −ak0, ckj = 0, j = 1, 2, . . . , n − 2, ckn−1 = Γ (rk+ n) Γ (n) τrk+n−1 k − Γ (rk+ n)  a k 0 τrk k Γ (rk+ 1) − l X i=1 Jαk+rkQk i (τk) ! , where k = 1, 2, . . . , m. The values of ckj given by (1.7) replaced in (1.6) imply (1.5).

This completes the proof of Lemma 1.5. 

Now, we consider the space:

S := {(u1, u2, . . . , un) : uk∈ C ([0, 1] , R) , Dγkuk∈ C ([0, 1] , R) , k = 1, 2, . . . , m} ,

endowed with the norm

k(u1, u2, . . . , um)kS = max1≤k≤m(kukk∞, kD γku

kk∞) .

This Banach space will be used in the proof of the theorems. 2. Main Results

We impose the following hypotheses: (H1): There exist nonnegative constants



µk, k,=1,2,...,mi, i=1,...,l 

j, j=1,2,...,2m, such that for all

t ∈ [0, 1] and for all (u1, u2, . . . , u2m), (v1, v2, . . . , v2m) ∈ R2m, we have

fik(t, u1, u2, . . . , u2m) − fik(t, v1, v2, . . . , v2m) ≤ 2m X j=1 µkij|uj− vj| . (H2): The functions fik k=1,2,...,m i=1,2,...,l : [0, 1] × R 2m→ R; m, l ∈ Nare continuous.

(H3): There exist nonnegative functions ωik

k=1,2...,m

i=1,...,l ∈ C ([0, 1]), such that: for all

t ∈ [0, 1] and for all (u1, u2, . . . , u2m) ∈ R2m

fik(t, u1, u2, . . . , u2m) ≤ ωki (t) , with sup t∈J ωik(t) = Cik.

(5)

Setting the following quantities: Σk = 2m X j=1 l X i=1 µkij, zk = 1 Γ (αk+ 1) + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) , z∗k := 1 Γ (αk− γk+ 1) + Γ (rk+ n) τ αk+rk k Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) , and Wk = ak0 + Γ (rk+ n) ak 0 τ rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) , Wk∗ = Γ (rk+ n) ak 0 τkrk Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) . We now prove the first main result.

Theorem 2.1. Assume that (H1) and the following are satisfied

(2.1) max

1≤k≤mΣk(zk, z ∗ k) < 1.

Then, the problem (1.1) has a unique solution on J . Proof. Let us take the operator P : S → S given by

P (u1, u2, . . . , um) (t) := (P1(u1, u2, . . . , um) (t) , . . . , Pm(u1, u2, . . . , um) (t)) , t ∈ J, such that Pk(u1, u2, . . . , um) (t) := − l X i=1 t Z 0 (t − s)αk−1 Γ (αk) fik(t, u1(t) , . . . , um(s) , Dγ1u1(s) , . . . , Dγmum(s)) ds + ak0 + Γ (rk+ n) t n−1 (n − 1)! τrk+n−1 k − Γ (rk+ n)  × l X i=1 τk Z 0 (τk− s) αk+rk−1 Γ (αk+ rk) fik(t, u1(t) , . . . , um(s) , Dγ1u1(s) , . . . , Dγmum(s)) ds − a k 0τ rk k Γ (rk+ 1) ! .

We shall prove that P is contractive: Let (u1, u2, . . . , um), (v1, v2, . . . , vm) ∈ S. Then,

for all k = 1, 2, . . . , m and t ∈ J , we get:

(6)

≤ 1 Γ (αk+ 1) sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  −fk i s, v1(s) , . . . , vm(s) , D γ1 v1(s) , . . . , Dγmvm(s)  + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) × sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  −fk i s, v1(s) , . . . , vm(s) , D γ1 v1(s) , . . . , Dγmvm(s)  . Using (H1), yields kPk(u1, u2, . . . , um) − Pk(v1, v2, . . . , vm)k∞ ≤ 1 Γ (αk+ 1) + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) ! × l X i=1 µki1+ µki2+ · · · + µki2m max 1≤k≤m(kuk− vkk∞, kD γk(u k− vk)k∞) . Thus, kPk(u1, u2, . . . , um) − Pk(v1, v2, . . . , vm)k∞ ≤ Σkzkk(u1− v1, . . . , um− vm, Dγ1(u1− v1) , . . . , Dγm(um− vm))kS. (2.2)

On the other hand, we have |DγkP k(u1, u2, . . . , um) (t) − DγkPk(v1, v2, . . . , vm) (t)| ≤ t αk−γk Γ (αk− γk+ 1) sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  −fik s, v1(s) , . . . , vm(s) , D γ1 v1(s) , . . . , Dγmvm(s)  + Γ (rk+ n) t n−γk−1ταk+rk k Γ (n − γk) τrk+n−1 k − Γ (r + n) Γ (αk+ rk+ 1) × sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  −fik s, v1(s) , . . . , vm(s) , D γ1 v1(s) , . . . , Dγmvm(s)  . Then, kDγkP k(u1, u2, . . . , um) − DγkPk(v1, v2, . . . , vm)k∞ ≤ 1 Γ (αk− γk+ 1) + Γ (rk+ n) τ αk+rk k Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) !

(7)

× 2m X i=1 l X i=1 µki k(u1− v1, . . . , um− vm, Dγ1(u1− v1) , . . . , Dγm(um− vm))kS. So, kDγkP k(u1, u2, . . . , um) − DγkPk(v1, v2, . . . , vm)k∞ ≤ Σkz∗kk(u1− v1, . . . , um− ym, Dγ1(u1− v1) , . . . , Dγm(um− vm))kS. (2.3)

Thanks to (2.3) and (2.2), we obtain

kP (u1, u2, . . . , um) − P (v1, v2, . . . , vm)kS ≤ max 1≤k≤nΣk(zk, z ∗ k) k(u1−v1, . . . , um−vm, Dγ1(u1−v1) , . . . , Dγm(um−vm))kS. (2.4)

By (2.1) the operator P is contractive. Hence, P has a unique fixed point which is a

solution of the system (1.1). This ends the proof. 

The following result presents new conditions to the existence of one solution. We prove the result by using Schaefer theorem:

Theorem 2.2. Let fikk=1,2,...,mi=1,2,...,l satisfied (H2) and (H3). Then, the problem (1.1)

has at least one solution on J .

Proof. First, we prove that P is completely continuous. We consider the set Ωσ := {(u1, u2, . . . , um) ∈ S; k(u1, u2, . . . , um)kS ≤ σ, σ > 0} ,

and we show that P maps bounded sets into bounded sets in S. Let (u1, u2, . . . , um) ∈ Ωσ. The hypothesis (H3) implies that

kPk(u1, u2, . . . , um)k∞ ≤ t αk Γ (αk+ 1) sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  + ak0 + Γ (rk+ n) tn−1 ak0 τ rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) + Γ (rk+ n) t n−1ταk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) × sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  ≤ 1 Γ (αk+ 1) + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) ! sup s∈J l X i=1 ωik(s) (2.5) + ak0 + Γ (rk+ n) ak 0 τ rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) .

(8)

Therefore, kPk(u1, u2, . . . , um)k∞ ≤ 1 Γ (αk+ 1) + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) ! × l X i=1 Cik+ ak0 + Γ (rk+ n) ak 0 τ rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) ≤ zk l X i=1 Cik+ Wk. (2.6) Furthermore, we get kDγkP k(u1, u2, . . . , um)k∞ ≤ t αk−γk Γ (αk− γk+ 1) sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  + Γ (rk+ n) t n−γk−1 ak 0 τkrk Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) + Γ (rk+ n) t n−γk−1ταk+rk k Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) × sup s∈J l X i=1 fik s, u1(s) , . . . , um(s) , D γ1 u1(s) , . . . , Dγmum(s)  ≤ 1 Γ (αk− γk+ 1) + Γ (rk+ n) τ αk+rk k Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) ! × l X i=1 ωik(t) + Γ (rk+ n) ak0 τkrk Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) . Hence, (2.7) kDγkP k(u1, u2, . . . , um)k∞ ≤ z ∗ k l X i=1 Cik+ Wk∗. From (2.6) and (2.7), we get

(2.8) kP (u1, u2, . . . , um)kS ≤ max1≤k≤m zk l X i=1 Cik+ Wk, z∗k l X i=1 Cik+ Wk∗ ! < ∞. So, P maps bounded sets into bounded sets in S.

(9)

The hypothesis (H2) implies that P is continuous on S. Now, let t1, t2 ∈ [0, 1] ; t1 < t2, and (u1, u2, . . . , um) ∈ S, we have: kPk(u1, u2, . . . , um) (t2) − Pk(u1, u2, . . . , um) (t1)k∞ ≤ 1 Γ (αk+ 1) 2 (t2− t1)αk + tα2k − t αk 1  l X i=1 Cik (2.9) + Γ (rk+ n) ak 0 τkrk (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) tn−12 − tn−1 1  + Γ (rk+ n) τ αk+rk k (n − 1)! τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) tn−12 − tn−11  m X i=1 Cik, and kDγkP k(u1, u2, . . . , um) (t2) − DγkPk(u1, u2, . . . , um) (t1)k∞ ≤ 2 (t2− t1) αk−γk + tαk−γk 2 − t αk−γk 1  Γ (αk− γk+ 1) l X i=1 Cik + Γ (rk+ n) ak 0 τkrk Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (rk+ 1) tn−γk−1 2 − t n−γk−1 1  + Γ (rk+ n) τ αk+rk k Γ (n − γk) τrk+n−1 k − Γ (rk+ n) Γ (αk+ rk+ 1) tn−γk−1 2 − t n−γk−1 1  l X i=1 Cik. (2.10)

The right-hand sides of the above inequalities (2.9) and (2.10) are independent of (u1, u2, . . . , um) and tend to zero as t2 − t1 → 0. Then the operator P , is

equi-continuous. Hence, the operator P is a completely equi-continuous. Finally we show that

λ := {(u1, u2, . . . , um) ∈ S, (u1, u2, . . . , um) = ηP (u1, u2, . . . , um) 0 < η < 1 }

is bounded.

For (u1, u2, . . . , um) ∈ λ, we have (u1, u2, . . . , um) (t) = ηP (u1, u2, . . . , um) (t), for

all t ∈ [0, 1]. Using (2.8), we get

k(u1, u2, . . . , um)kS ≤ η max1≤k≤m zk l X i=1 Cik+ Wk, z∗k l X i=1 Cik+ Wk∗ ! < ∞. Thus, λ is a bounded. By Lemma 1.4, the operator P has a fixed point which is a

solution of (1.1). Theorem 2.2 is thus proved. 

3. Examples

(10)

Example 3.1. Consider the following system: (3.1)                                                                  D113 u1(t) = 1 12π3(t + 1)  cos (u1(t)) + cos (u2(t)) + D 8 3u1(t) + D 5 2u2(t)  1 + D 4 3u1(t) + D 3 2u2(t)    + 1 64π (t + 1)  |u 1(t) + u2(t)| 2π (1 + |u1(t) + u2(t)|) + sin D83u1(t) + sin D 5 2u2(t)  , t ∈ [0, 1] , D195 u2(t) = 1 14π3et  |u 1(t) + u2(t)| 1 + |u1(t) + u2(t)| + sinD83u1(t)  + sinD52u2(t)  + t 2 6π3  

sin (u1(t)) + cos (u2(t)) + cos  D83u1(t)  + sin  D52u2(t)  1 +

sin (u1(t)) + cos (u2(t)) − cos  D83u1(t)  + sin  D52u2(t)   , t ∈ [0, 1] , u1(0) = √ 3, u(1)1 (0) = u(2)1 (0) = 0, u(3)1 (0) = J12  3 7  , u2(0) = √ 5, u(1)2 (0) = u(2)2 (0) = 0, u(3)2 (0) = J13  6 7  .

For this example, we have: n = 4, l = 2, α1 = 11/3, α2 = 19/5, γ1 = 8/3, γ2 = 5/2,

r1 = 1/2, r2 = 1/3, τ1 = 3/7, τ2 = 6/7, J = [0, 1], and f11(t, u1, u2, u3, u4) = 1 12π3(t + 1)  cos u1+ cos u2+ |u3+ u4| (1 + |u3+ u4|)  , f21(t, u1, u2, u3, u4) = 1 64π (t + 1)  |u1+ u2| 2π (1 + |u1+ u2|) + sin u3+ sin u4  , f12(t, u1, u2, u3, u4) = 1 14π3et  |u1 + u2| 1 + |u1+ u2| + sin u3 + sin u4  , f22(t, u1, u2, u3, u4) = t2 6π3 

|sin u1+ cos u2+ cos u3+ sin u4|

1 + |sin u1+ cos u2− cos u3+ sin u4|

 . For all t ∈ J and (u1, u2, u3, u4), (v1, v2, v3, v4) ∈ R4, we get:

f11(t, u1, u2, u3, u4) − f11(t, v1, v2, v3, v4) ≤ 1 12π3 |u1− v1| + 1 12π3 |u2− v2| + 1 12π3 |u3− v3| + 1 12π3 |u4− v4| , f21(t, u1, u2, u3, u4) − f21(t, v1, v2, v3, v4) ≤ 1 128π2 |u1− v1| + 1 128π2 |u2− v2| + 1 64π|u3− v3| + 1 64π|u4− v4| , f12(t, u1, u2, u3, u4) − f12(t, v1, v2, v3, v4) ≤ 1 14π3 |u1− v1| + 1 14π3 |u2− v2| + 1 14π3 |u3− v3| + 1 14π3 |u4− v4| ,

(11)

f22(t, u1, u2, u3, u4) − f22(t, v1, v2, v3, v4) ≤ 1 6π3 |u1 − v1| + 1 6π3 |u2− v2| + 1 6π3 |u3− v3| + 1 6π3 |u4− v4| . We can take: µ11 1 = µ 1 1  2 = µ 1 1  3 = µ 1 1  4 = 1 12π3, µ121 = µ122 = 1 128π2, µ 1 2  3 = µ 1 2  4 = 1 64π, µ211 = µ212 = µ213 = µ214 = 1 14π3, µ221 = µ222 = µ223 = µ224 = 1 6π3. Indeed, Σ1z1 = 0.001517, Σ2z2 = 0.001820, Σ1z∗1 = 0.022304, Σ2z∗2 = 0.027009. Thus, max (Σ1z1, Σ2z2, Σ1z∗1, Σ2z∗2) < 1.

Using Theorem 2.1, system (3.1) has a unique solution on J . Example 3.2. We consider the following system:

(3.2)                                                                                    D194 u1(t) = t sin  D72u1(t) + D 4 3u2(t) + D 15 4 u3(t)  1 + |sin (u1(t) + u2(t) + u3(t))| + etsinu1(t) D 7 2u1(t)  1 + cos  u2(t) + D 4 3u2(t) + u3(t) + D 15 4 u3(t)  , t ∈ [0, 1] , D174 u2(t) = e tsin (u 1(t) + u2(t) + u3(t)) 2 − sinD72u1(t) + D 4 3u2(t) + D 15 4 u3(t)  + sin (u2(t) u3(t)) π (t + 1) + sin  u1(t) D 7 2u1(t) D 4 3u2(t) + D 15 4 u3(t)  , t ∈ [0, 1] , D256 u3(t) = sin (u1(t) u2(t) u3(t)) et cos  D72u1(t)+D43u2(t)+D154u3(t)  + t sin (u1(t) u2(t) u3(t)) eD72u1(t)+D 4 3u2(t)+D 15 4u3(t) , t ∈ [0, 1] , u1(0) = 3 √ 2, u(1)1 (0) = u(2)1 (0) = u1(3)(0) = 0, u(4)1 (0) = J18  1 2  , u2(0) = √ 7, u(1)2 (0) = u(2)2 (0) = u2(3)(0) = 0, u(4)2 (0) = J12  2 3  , u3(0) = √ 5, u(1)3 (0) = u(2)3 (0) = u3(3)(0) = 0, u(4)3 (0) = J58  4 5  .

(12)

We have: n = 5, l = 2, α1 = 19/4, γ1 = 7/2, α2 = 17/4, γ2 = 4/3, α3 = 25/6,

γ3 = 15/4, r1 = 1/8, r2 = 1/2, r3 = 5/8, τ1 = 1/2, τ2 = 2/3, τ3 = 4/5, J = [0, 1].

And, for all (u1, u2, u3, u4, u5, u6) ∈ R6, for all t ∈ J , we get

f11(t, u1, u2, u3, u4, u5, u6) ≤ ω11(t) = t |sin u4+ u5+ u6| 1 + |sin (u1+ u2+ u3)| ≤ C1 1 = 1, f21(t, u1, u2, u3, u4, u5, u6) ≤ ω21(t) = et|sin (u 1u4)| 1 + |cos (u2+ u5+ u3+ u6)| ≤ C1 2 = e, f12(t, u1, u2, u3, u4, u5, u6) ≤ ω21(t) = et|sin (u 1+ u2+ u3)| 2 − sin (u4+ u5 + u6) ≤ C2 1 = e, f22(t, u1, u2, u3, u4, u5, u6) ≤ ω22(t) = |sin (u2u3)| π (t + 1) + sin (u1u4u5+ u6) ≤ C22 = 1 π − 1, f13(t, u1, u2, u3, u4, u5, u6) ≤ ω31(t) = |sin (u1u2u3)| et cos(u4+u5+u6)≤ C13 = e, f23(t, u1, u2, u3, u4, u5, u6) ≤ ω32(t) = t |sin (u1(t) u2(t) u3(t))| eu4t+u5+u6 ≤ C 3 2 = 1.

The functions fik are continuous and bounded on J × R6. Using Theorem 2.2, the system (3.2) has at least one solution on J .

References

[1] M. A. Abdellaoui and Z. Dahmani, Solvability for nonlinear systems of differential equations with two arbitrary orders, New Zealand J. Math. (to appear).

[2] A. P. Agrawal, M. Benchohra and B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differ. Equ. Math. Phys. 44 (2008), 1–21.

[3] D. Baleau, S. Z. Nazemi and S. Rezapour, The existence of solution for a n dimentional system of multiterm fractional integrodifferential equations with antiperiodic boundary value problems, Abstr. Appl. Anal. 2014 (2014), Article ID: 896871.

[4] S. Belarbi and Z. Dahmani, Existence of solutions for multi-points fractional evolution equations, Appl. Appl. Math. 9 (2014), 416–427.

[5] Z. Cui, P. Yu and Z. Mao, Existence of solutions for nonlocal boundary value problems of nonlinear differential equations, Adv. Dyn. Syst. Appl. 7 (2012), 31–40.

[6] Z. Dahmani and L. Tabharit, Fractional order differential equations involving caputo derivative, Theory Appl. Math. Comput. Sci. 4 (2014), 40–55.

[7] Z. Dahmani and A. Taieb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform. 30 (2015), 281–293.

[8] Z. Dahmani and A. Taieb, Solvability of a coupled systems of fractional differential equations with periodic and antiperiodic boundary conditions, Pure and Applied Mathematics Letters 1 (2015), 29–36.

[9] M. Gaber and M. G. Brikaa, Existence results for a coupled system of nonlinear fractional differential equation with three point boundary conditions, J. Fract. Calc. Appl. 21 (2012), 1–10. [10] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Rivers Edge, New

Jersey, 2000.

[11] M. Houas and Z. Dahmani, New results for a coupled system of fractional differential equations, Facta Univ. Ser. Math. Inform. 28 (2013), 133–150.

(13)

[12] M. Houas, Z. Dahmani and M. . Benbachir, New results for a boundary value problem for differential equations of arbitrary order, International Journal of Modern Mathematical Sciences 7 (2013), 195–211.

[13] W. H. Jiang, Solvability for a coupled system of fractional differential equations at resonance, Nonlinear Anal. Real World Appl. 13 (2012), 2285–2292.

[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differ-ential Equations, vol. 204 of North Holland Mathematics Studies, Elsevier, New York, 2006. [15] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear

Anal. 69 (2008), 2677–2682.

[16] M. Li and Y. Liu, Existence and uniqueness of positive solution for a coupled systems of nonlinear differential equation, Open Journal of Applied Sciences. 3 (2013), 53–61.

[17] F. Mainardi, Fractional calculus: some basic problems in continum and statistical mechanics, in: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus In Continum Mechanics, Springer-Verlag, Wien, 1997, pp. 291–248.

[18] K. S. Miler and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[19] M. D. Ortigueira and J. A. T. Machado, Fractional calculus applications in signals and systems, Signal Prossessing 86 (2006), 2503–2504.

[20] L. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[21] A. Taieb and Z. Dahmani, A coupled systems of nonlinear differential equations involving m nonlinear terms, Georgian Math. J. (2016), DOI: 10.1515/gmj-2016-0014.

[22] C. X. Zhu, X. Zhang and Z. Q. Wu, Solvability for a coupled systems of fractional differential equations with integer boundary conditions, Taiwanese J. Math. 17 (2013), 2039–2054.

1

Department of Mathematics and Informatics, Faculty SEI, University of Mostaganem,

Algeria

E-mail address: lz.tabharit@yahoo.fr

2

LPAM, Faculty SEI, UMAB of Mostaganem, Algeria

Références

Documents relatifs

Dans le cadre d’un marché du travail frictionnel comme celui analysé, une taxe progressive peut avoir des effets positifs sur le fonctionnement du marché, en particulier elle peut

Besides, thanks to the high quality of the results gained from this experimental loop together with the fact that the VERDON laboratory is unique in the world for studies

Though no major changes were made to the gamma spectrometry instrumentation of the CET compared with the previous VERDON tests [4], a new gamma device has

Armstrong ​et al ​ report no effect of white light on the activity of Chlamydomonas reinhardtii ​ ( ​Cr ​ ) and ​Clostridium acetobutylicum (​Ca ​

But there is another, more subtle, effect: a rise in t leads other firms to reduce the reach of their advertising, and therefore improves the outside option of all the

Il est à noter que cette microfissure (Photo III-74) épouse bien le contour des régions les plus fortement contraintes, comme le montre cette simulation numérique (Figure

Tableau 17 : Fréquence des étiologies selon le terme de survenue de l’hémorragie Tableau 18 : fréquence des étiologies selon l’abondance de l’hémorragie Tableau 19 :

Plus précisément, nous considérons dans le Chapitre 5, la contrôlabilité à zéro d’un système couplant les équations de Navier-Stokes à une équation différen- tielle