• Aucun résultat trouvé

Gestion des inondations: deux approches utilisant la théorie de la viabilité Xavier Litrico, Katrin Erdlenbruch, Sophie Martin UMR G-EAU, Montpellier LISC, Clermont-Ferrand

N/A
N/A
Protected

Academic year: 2022

Partager "Gestion des inondations: deux approches utilisant la théorie de la viabilité Xavier Litrico, Katrin Erdlenbruch, Sophie Martin UMR G-EAU, Montpellier LISC, Clermont-Ferrand"

Copied!
49
0
0

Texte intégral

(1)

Gestion des inondations: deux approches utilisant la théorie de la viabilité

Xavier Litrico, Katrin Erdlenbruch, Sophie Martin UMR G-EAU, Montpellier

LISC, Clermont-Ferrand

11 juin 2009

(2)

Plan de la présentation

! Introduction

! Théorie de la viabilité : concepts, intérêts et limitations

! Gestion en temps réel des barrages-réservoirs

! Gestion des zones inondables

! Notion de résilience

! Conclusion

(3)

Introduction: le risque inondation

! Concerne une commune sur trois

! Représente 80% du montant des dommages imputables aux risques naturels

! 460 millions ! par an

(4)

Introduction

! Politiques de gestion des inondations

" Aménagements de lutte contre les inondations,

" Réglementation de l’urbanisation des zones inondables,

" Incitation à la réduction de la vulnérabilité des enjeux

exposés

" Prévision des événements

" Organisation de la « gestion de crise »

" Système de compensation des sinistrés.

! Evolution liée au changement climatique et à l’évolution de l’occupation du sol hors zone

inondable (intensification du ruissellement) ou en zone inondable (expansion des enjeux exposés)

! Viabilité?

(5)

Objectifs de cette présentation

! Présenter les concepts de la viabilité

! Proposer deux approches possibles pour appliquer ces concepts à la gestion des inondations:

" Gestion en temps réel de barrages-réservoirs

" Gestion de zones inondables

! Pas (encore) de résultats à présenter, mais une première approche de modélisation

(6)

Théorie de la viabilité

! Nécessite de représenter le système étudié par :

" Une dynamique

" Un ensemble de contraintes

! Fournit ensuite des outils pour caractériser

" L’ensemble des états viables (noyau de viabilité),

" L’ensemble des états à partir desquels on peut

rejoindre une cible/ un objectif (bassin de capture)

" La résilience du système (capacité à revenir dans un

état viable)

(7)

Théorie de la viabilité

! Système dynamique contrôlé

! Ensemble des contraintes K sur l’état x(t)

! Ensemble des contraintes U(x(t)) sur la

commande u(t) applicable au système lorsqu’il est dans l’état x

! Ensemble cible C

(8)

Théorie de la viabilité

! Ensemble des contraintes K

(9)

Noyau de viabilité

! Noyau de viabilité: ensemble des points P tels qu’il existe une trajectoire partant de P et restant dans K.

(10)

Bassin de capture

! On ajoute une cible C

(11)

Bassin de capture

! Le bassin de capture de C dans K : ensemble des points P de K tels qu’il existe une trajectoire partant de P atteignant C en un temps fini

(12)

Noyau de viabilité et bassin de capture

! Partition du noyau de viabilité avec cible en un bassin de capture et un noyau de viabilité

(13)

! Pour le contrôle de systèmes environnementaux:

" Aller plus loin que le contrôle linéaire « classique » (prise

en compte de dynamiques non linéaires, de contraintes)

" Élargir le concept de « commande optimale » au concept

de « commande viable », permettant de rester dans un domaine de viabilité donné

" Permet de définir la notion de résilience

L’intérêt de la théorie de la viabilité

(14)

! Pour le contrôle de systèmes environnementaux:

" Algorithmes actuels limités à des systèmes de faibles

dimensions (<8)

" Comment obtenir des modèles pour la commande?

(réduction de modèle?)

" Comment définir le domaine viable?

Les limites de la théorie de la viabilité

Séminaire défi 3 - 12 mars 2009

(15)

Gestion en temps réel des barrages-réservoirs

! Contexte: barrages-réservoirs en amont à objectifs multiples:

" Protection contre les crues

" Soutien d’étiage

" Activités nautiques,

" Etc.

! Gestion en temps réel des lâchures pour satisfaire les objectifs,

! En respectant un ensemble de contraintes

(16)

Barrages-réservoirs du Bassin de la Seine

Source: www.iibrbs.fr

(17)

Problématique

! Gestion en temps réel des barrages-réservoirs pour minimiser l’impact d’une crue en aval (région parisienne)

! Ce problème a déjà été considéré:

" Gestion optimale stochastique

" Courbes objectifs de remplissage-vidange

! Quel pourrait être l’apport de la théorie de la viabilité?

" Élargir le concept de « gestion optimale » (unique) à

un ensemble de gestions viables, parmi lequel on peut choisir une gestion particulière

! Fournir un cadre de discussion pour la définition du domaine de viabilité (contraintes à définir)

(18)

Commande de barrages: modèle dynamique

" Différentes possibilités:

! Équations de l’hydraulique (Saint-Venant complet) pour représenter l’écoulement dans un cours d’eau

EDP non linéaires

Complexes à traiter avec le formalisme « viabilité »

! Modèles simplifiés : onde diffusante, onde cinématique

Linéaire ou non linéaire

Fonctions de transfert (distribuées ou non)

(19)

Commande de barrages: contraintes

" Contraintes sur l’état:

! Q!K K!Rn ,

! Vmin<V<Vmax

! Qmin<Q<Qmax

! Zmin<Z<Zmax

" Contraintes sur la commande

! Umin<U<Umax

(20)
(21)

« Tube de viabilité »

" Si l’état initial appartient à ce tube, il existe au

moins une stratégie de contrôle qui garantisse qu’on reste dans le tube

" S’il y en a plusieurs, on peut choisir parmi ces

stratégies celle minimisant un critère (nombre de manœuvres par ex.)

" Si l’état initial n’appartient pas au tube, la

contrainte de débit aval ne sera pas respectée.

On peut alors chercher à minimiser le temps pendant lequel cette contrainte sera violée.

(22)

Deux possibilités

" Imposer des contraintes statiques

" Imposer des contraintes variant dans le temps

! Les barrages sont généralement gérés selon des courbes-types de remplissage/vidange

(23)

Exemple: le cas du Dropt

" 4 barrages

" 9 objectifs de débit d’étiage

" Courbes de vidange

" Modèle d’Hayami (linéaire)

(24)

Contrôleur optimal LQG robuste

" Synthèse d’un contrôleur multivariable

(25)

Conclusions

" Limitations de la commande optimale:

! Pas de prise en compte explicite des contraintes

! Dynamique linéaire

! Une seule solution « optimale »

" Intérêts d’une approche de type viabilité

! Prise en compte des contraintes

! Dynamique non linéaire

! Un ensemble de solutions viables

(26)

Gestion de zones inondables

" Contexte:

! Urbanisation croissante

! Nombreuses implantations en zones inondables

! Dommages pris en charge par un fonds « CatNat »

" Question:

! Quelle est la dynamique de peuplement des zones inondables ou non?

! Quelle est la viabilité du fonds « CatNat »?

" Approche:

! Modélisation déterministe

! Comparaison avec une approche de type « contrôle optimal »

(27)

Modélisation

(28)

Modélisation

(29)

Modélisation

(30)

Modélisation

(31)

Modélisation

(32)

" Dynamique de la population en zone non inondable

" Dynamique de la population en zone inondable

" Dynamique du fonds d’indemnisation

Equations du modèle dynamique

(33)

Contraintes

" Contraintes sur l’état

" Contraintes sur la commande

(34)

Contrôle optimal

" On suppose que les personnes cherchent à

maximiser une fonction d’utilité

" Cette fonction d'utilité doit représenter le fait

que:

! Habiter en zone inondable est parfois plus agréable qu'habiter en zone non inondable (environnement naturel, proximité de la rivière...)

! Habiter en zone inondable coûte un peu plus cher tous les ans (intégration du coût moyen annuel dû aux inondations). On pourra tester l'effet de la présence ou non de ce coût dans le calcul.

! L'utilité marginale diminue si la population augmente (fonction concave).

! L'assurance aux dommages est prise en compte

(35)

Contrôle optimal

" Maximisation d’une fonction d’utilité

" avec BI>BNI, pour représenter le fait que s'installer en zone inondable apporte un avantage,

! cI<cNI, pour représenter le fait que cela a un coût inférieur

! cMA représente un coût moyen annualisé des dommages suite aux inondations.

! x(t) et y(t) sont solutions d’un problème de contrôle optimal

(36)

Approche par la viabilité

! Trouver l’ensemble des états initiaux, et les

commandes tels que le système reste viable, i.e.

que le fonds CatNat z(t) ne périclite pas

! Quantifier la résilience du système

(37)

Notion de résilience

! Le calcul du noyau de viabilité permet de répondre à la question : les contraintes peuvent elles être satisfaites?

" Si l’état considéré appartient au noyau de viabilité, la

réponse est oui

" L’algorithme de viabilité donne les commandes à effectuer

pour satisfaire effectivement ces contraintes.

" Il peut y avoir plusieurs commandes viables. Pour choisir

on peut rajouter une fonction de coût sur les commandes viables.

! Si l’état considéré n’appartient pas au noyau de viabilité, les contraintes seront nécessairement violées, la question qui se pose alors est celle de la résilience,

! Les contraintes peuvent-elles être satisfaites à nouveau et à quel prix?

(38)

Le concept de résilience

! L'idée commune : la capacité du système étudié à retrouver une propriété (caractéristiques d’état,

modes de fonctionnement,…) malgré des

bouleversements dus à des perturbations qu’il ne maîtrise pas

! L'étude de la résilience induit la définition du triplet

" dynamique du système

" propriété de ce système

" perturbations envisagées

(39)

Cadre d’étude de la résilience

! Système décrit par un vecteur x de Rn

(40)

Cadre d’étude de la résilience

! Système décrit par un vecteur x de Rn

! Dynamique : x’(t)=f(x(t),u(t))

Entrées U Sorties Y

Etat X

Système

dX/dt = f(X,U) Y = g(X,U)

Entrées U Sorties Y

Etat X

Système

dX/dt = f(X,U) Y = g(X,U)

(41)

Cadre d’étude de la résilience

! Système décrit par un vecteur x de Rn

! Dynamique : x’(t)=f(x(t),u(t))

! Propriété (domaine de fonctionnement K) : x!K K!Rn

(42)

Cadre d’étude de la résilience

! Système décrit par un vecteur x ! Rn

! Dynamique : x’(t)=g(x(t),u(t))

! Propriété du système : x ! K!Rn

! Perturbations : action directe sur l’état x résultat de la perturbation x!D(x) !Rn

(43)

Le problème de la résilience

(44)

Le problème de la résilience

(45)

Résultats: états résilients

(46)

Résultats: valeurs de résilience

! Coût du contrôle pour assurer la résilience face à une perturbation donnée

(47)

Conclusions

! Deux approches pour la gestion des inondations par la viabilité

" Gestion en temps réel des barrages-réservoirs

" Gestion des zones inondables et viabilité d’un

système de compensation

! Modélisation, système dynamique, contraintes

! Outil utile pour la gestion des systèmes environnementaux?

(48)

Pour obtenir de tels résultats

! Plusieurs activités de recherche

" formalisation du

problème de résilience

" résolution théorique

" résolution pratique

! Plusieurs compétences

" thématiques

" mathématiques

appliquées

" informatiques

(49)

Perspectives à court terme

! Etendre la définition et la résolution du

problème de résilience

" aux équations aux

dérivées partielles

" aux réseaux

" aux formes

! Déterminer des

politiques de contrôles qui préservent la

résilience des

propriétés souhaitées

Références

Documents relatifs

Un programme général d'études a été mis au point en 1990, par l'Institution en collaboration avec les Services de l'Agence de l'Eau Seine-Normandie, la Région Ile-de-France,

Dans le cadre d'une stratégie de gestion du risque de pollution, l'utilisation des stations d'observation de la qualité de l'eau donne un moyen supplémentaire pour anticiper

Les modifications du régime des plus hautes eaux et des basses eaux peuvent en effet avoir de multiples conséquen- ces: modification de l'utilisation des zones

Lors d'une étude de la gestion d'un barrage à Chambonchard sur le Cher, il est apparu que pour obtenir le même soutient d'étiage à Montjean, le volume nécessaire pouvait être

Ce document a été numérisé par le CRDP de Clermont-Ferrand pour la Base Nationale des Sujets d’Examens de l’enseignement professionnel.. Ce fichier numérique ne peut être

Ce document a été numérisé par le CRDP de Clermont-Ferrand pour la Base Nationale des Sujets d’Examens de l’enseignement professionnel.. Ce fichier numérique ne peut être

Ainsi le véhicule ne peut plus terminer sa route vers le site de l’appel de secours et contacte le centre de répartition de véhicules d’urgence, représenté par le SAGVU,

Ce document a été numérisé par le CRDP de Clermont-Ferrand pour la Base Nationale des Sujets d’Examens de l’enseignement professionnel.. Ce fichier numérique ne peut être