• Aucun résultat trouvé

(1)equation AndrédeLaire(UniversitéLille1) JointworkwithPhilippeGravejat(Éolepolytehnique) Shrödingerequationsandappliations CIRMJune18th2014 (2)(3)Thedynamisofmagnetizationinaferromagnetimaterialisgivenbythe LandauLifshitzequation

N/A
N/A
Protected

Academic year: 2023

Partager "(1)equation AndrédeLaire(UniversitéLille1) JointworkwithPhilippeGravejat(Éolepolytehnique) Shrödingerequationsandappliations CIRMJune18th2014 (2)(3)Thedynamisofmagnetizationinaferromagnetimaterialisgivenbythe LandauLifshitzequation"

Copied!
42
0
0

Texte intégral

(1)

equation

AndrédeLaire(UniversitéLille1)

JointworkwithPhilippeGravejat(Éolepolytehnique)

Shrödingerequationsandappliations

CIRMJune18th2014

(2)
(3)

Thedynamisofmagnetizationinaferromagnetimaterialisgivenbythe

LandauLifshitzequation.

Themagnetizationisadiretioneld:

~

m

(x , t) : R D × R → S

2

⊂ R

3

,

m

~ = (m

1

, m

2

, m

3

)

|~

m

| = (m

21

+ m

22

+ m

23

)

1

/

2

=

1

(4)

3Dferromagnetimaterials

2D:Thinmaterials.

1D:CesiumnikeltriuorideCsNiF3,theouplingbetweentheNiionsismuh

strongerthantheotherouplingsinthelattie.

(5)

∂ t

m

~ = −β ~

m

× ~

h

eff (

m

~ )

| {z }

precession

~

h

eff (

m

~ )

: eetivemagnetield

(6)

∂ t

m

~ = −β ~

m

× ~

h

eff (

m

~ )

| {z }

precession

−α~

m

× (

m

~ × ~

h

eff (~

m

))

| {z }

damping

~

h

eff (

m

~ )

: eetivemagnetield

α >

0

:

Gilbertdampingoeient

β >

0,w.l.o.g.

α

2

+ β

2

=

1

(7)
(8)

~

h

eff (

m

~ ) = ∆

m

~ − λm

3

ˆ

e3 ,

∂ t

m

~ = −~

m

× (∆~

m

− λm

3

ˆ

e3

),

~

m

(x , t) : R D × R → S

2

, ~

m

= (m

1

, m

2

, m

3

)

(9)

~

h

eff (

m

~ ) = ∆

m

~ − λm

3

ˆ

e3 ,

∂ t

m

~ = −~

m

× (∆~

m

− λm

3

ˆ

e3

),

~

m

(x , t) : R D × R → S

2

, ~

m

= (m

1

, m

2

, m

3

)

∂ t m

1

= −m

2

(∆m

3

− λm

3

) + m

3

S∆m

2

∂ t m

2

= −m

3

∆m

1

− m

1

(∆m

3

+ λm

3

)

∂ t m

3

= −m

1

∆m

2

+ m

2

∆m

1

(10)

~

h

eff (

m

~ ) = ∆

m

~ − λm

3

ˆ

e3 ,

∂ t

m

~ = −~

m

× (∆~

m

− λm

3

ˆ

e3

),

~

m

(x , t) : R D × R → S

2

, ~

m

= (m

1

, m

2

, m

3

)

Theequationishamiltonian. TheonservedHamiltonianistheLandau-Lifshitzenergy

E (~

m

(t)) :=

1

2

Z

R N

|∇

m

~ (x , t)|

2

dx + λ

2

Z

R N

m

3

(x , t)

2

dx = E (~

m

(

0

)), ∀t ∈ R .

Theanisotropyparameter

λ ≥

0:

λ =

0

:

isotropiase,Shrödingermapequation

λ >

0

:

easy-planeorplanaranisotropy lim

|x|→∞ m

3

(x, t) =

0

Inthesequel,weonsider

λ =

1andsolutions

m

withniteLandau-Lifshitzenergy.

(11)

Whenthemap

m ˇ := m

1

+ im

2

doesnotvanish,itmaybewrittenas

ˇ m =

q

1

− m

2

3 exp

iϕ.

Thefuntions

v = m

3

and

w = ∇ϕ

aresolutionstothehydrodynamiLandau-Lifshitz equation

 

 

∂ t v = −

div

(

1

− v

2

)w ,

∂ t w = ∇

v (|w |

2

1

) + ∆v

1

− v

2

+ v |∇v |

2

(

1

− v

2

)

2

.

(HLL)

Thelinearizedequationaroundthezerosolutionisdispersivewithdispersionrelation

ω

2

= |k|

4

+ |k|

2

.

Dispersionveloityisatleastequaltothesoundspeed

c s =

1.

(12)

Welookfortravelingwavessolutionspropagatingalongthe

x

1

-axiswithspeed

c

,i.e.

~

m

(x ) = ~

u

(x

1

− ct , x

2

, . . . , x D ).

Thentheprole

~

usatises

−c ∂

1

~

u

+ ~

u

× (∆~

u

− u

3

ˆ

e3

) =

0

.

Taking

~

u

×

andusingthat

~

u

× (~

u

× ∆~

u

) = ~

u

(~

u

· ∆~

u

) − ∆~

u

(~

u

· ~

u

) = −~

u

|∇~

u

|

2

− ∆~

u

,

weobtain

− ∆ ~

u

= |∇~

u

|

2

~

u

+ u

23

~

u

− u

3

ˆ

e3

+ c~

u

× ∂

1

~

u

.

(TW

c

)

(13)

Welookfortravelingwavessolutionspropagatingalongthe

x

1

-axiswithspeed

c

,i.e.

~

m

(x ) = ~

u

(x

1

− ct , x

2

, . . . , x D ).

Thentheprole

~

usatises

−c ∂

1

~

u

+ ~

u

× (∆~

u

− u

3

ˆ

e3

) =

0

.

Taking

~

u

×

andusingthat

~

u

× (~

u

× ∆~

u

) = ~

u

(~

u

· ∆~

u

) − ∆~

u

(~

u

· ~

u

) = −~

u

|∇~

u

|

2

− ∆~

u

,

weobtain

− ∆ ~

u

= |∇~

u

|

2

~

u

+ u

23

~

u

− u

3

ˆ

e3

+ c~

u

× ∂

1

~

u

.

(TW

c

)

Trivialsolutions: onstantsin

S

1

× {

0

}

.

Itisenoughtoonsider

c ≥

0.

(14)

propertiesfor

D =

2

,

3. Theyderivednumeriallyabranhoftravelingwavesfor

subsonispeeds

|c | <

1.

LinandWei(2010)provedtheexisteneofsmallspeedtravellingwaveswitha

vortex-antivortexpairwhen

D =

2.

d.L.(2014): thenon-existeneofnon-onstantsubsonismallenergytravelling

waves for

D =

2

,

3

,

4.

d.L.(2014): alsosmoothnessandtheiralgebraideayatinnityfor

D ≥

2.

(15)

Somenumerial resultsfor

D =

2 (PapaniolaouSpathis)

0 15 30 45 60

15 30

p E

c → 0 c → 1

E = p

c≈ 0 . 78

(16)

Somenumerial resultsfor

D =

2 (PapaniolaouSpathis) Funtion

u

3

for

c =

0

.

5.

(17)

Somenumerial resultsfor

D =

2 (PapaniolaouSpathis) Figure(a): speed

c =

0

.

2. Figure(b): speed

c =

0

.

95.

(18)

Let

~

ubeasolutionof (TW

c

). Usingthestereographivariable

ψ = u

1

+ iu

2

1

+ u

3

,

wehavethat

ψ

satises

∆ψ +

1

− |ψ|

2

1

+ |ψ|

2

ψ + ic∂

1

ψ =

2

ψ ¯

1

+ |ψ|

2

(∇ψ · ∇ψ),

whihseemslikeaperturbedequationforthetravelingwavesforaNonlinearShrödinger

equation(GrossPitaevskiiequation).

(19)

Let

~

ubeasolutionof (TW

c

). Usingthestereographivariable

ψ = u

1

+ iu

2

1

+ u

3

,

wehavethat

ψ

satises

∆ψ +

1

− |ψ|

2

1

+ |ψ|

2

ψ + ic∂

1

ψ =

2

ψ ¯

1

+ |ψ|

2

(∇ψ · ∇ψ)

thatseemslikeaperturbedequationforthetravelingwavesforanonlinearShrödinger

equation(GrossPitaevskiiequation):

∆Ψ + (

1

− |Ψ|

2

)Ψ − ic ∂

1

Ψ =

0

.

(GP)

(20)
(21)

Solitonsfor

D =

1

Indimensionone,thetravelingwavesolutionsarethefollowingexpliitdarksolitons.

Lemma(The one-dimensionalase)

Let

D =

1and

c ≥

0. Assumethat

~

uisanontrivialniteenergysolutionof (TW

c

).

Then0

≤ c <

1and(uptoinvarianes)thesolutionisgivenby

u

1

= c

seh

( p

1

− c

2

x ), u

2

=

tanh

( p

1

− c

2

x), u

3

= p

1

− c

2seh

( p

1

− c

2

x).

(22)

Multisolitonsfor

D =

1

TheLandau-Lifshitzequationisintegrablebymeansoftheinversesatteringmethod. In

partiular,thereareexpliitformulaeformulti-solitons. Theybehavelikeasumof

orderedsolitonsas

t → ∞

.

(Loading...)

(23)

Multisolitonsfor

D =

1

TheLandau-Lifshitzequationisintegrablebymeansoftheinversesatteringmethod. In

partiular,thereareexpliitformulaeformulti-solitons. Theybehavelikeasumof

orderedsolitonsas

t → ∞

.

(Loading...)

(24)

For

c 6=

0,thesoliton

u ˇ =

1

− u

32

1

2

exp

i ϕ

isrepresentedinthehydrodynami frameworkbythepair

v c = v c , w c

= u

3

, ∂ x ϕ ,

where

v c (x) = (

1

− c

2

)

12

osh

((

1

− c

2

)

12

x ,

and

w c (x) = c v c (x )

1

− v c (x )

2

.

(25)

For

c 6=

0,thesoliton

u ˇ =

1

− u

32

1

2

exp

i ϕ

isrepresentedinthehydrodynami frameworkbythepair

v c = v c , w c

= u

3

, ∂ x ϕ ,

where

v c (x) = (

1

− c

2

)

12

osh

((

1

− c

2

)

12

x ,

and

w c (x) = c v c (x )

1

− v c (x )

2

.

Ahainofsolitonsisdenedasaperturbationofasumofsolitons

S c , a , s (x ) = X N

j=

1

s j v c j (x − a j ) = X N

j=

1

s j v c j (x − a j ), s j w c j (x − a j ) ,

with

a = (a

1

, . . . , a N ) ∈ R N

,

c = (c

1

, . . . , c N ) ∈ (−

1

,

1

) N

and

s = (s

1

, . . . , s N ) ∈ {±

1

} N

.

(26)
(27)

Theenergyspaeisdenedas

E ( R ) =

m : R → S

2

,

s

.

t

. m ∈ L

2

( R )

and

m

3

∈ L

2

( R ) .

Theorem(Zhou-Guo'84,Sulem-Sulem-Bardos'86)

Let

m

0

∈ E ( R )

. Thereexistsaglobalsolution

m ∈ L ( R , E( R ))

to

∂ t m + m × (∂ xx m − m

3

e

3

) =

0

,

(LL)

withinitialdatum

m

0.

Remark: nouniqueness

Theorem(Existeneanduniquenessofsmoothsolutions)

Let

k ≥

1and

m

0

∈ E ( R )

,with

[m

0

] ∈ H k ( R )

. Thereexistsauniqueglobalsolution

m : R × R → S

2to (LL)withinitialdatum

m

0,suhthat

(28)

Inthehydrodynamiframework, theLandau-Lifshitzenergyisequalto

E (v , w ) =

1

2

Z

R

(∂ x v )

2

1

− v

2

+ (

1

− v

2

)w

2

+ v

2

.

Thenon-vanishingspaeisdenedas

N V( R ) =

v = (v , w ) ∈ H

1

( R ) × L

2

( R ),

s

.

t

.

max

x∈R |v(x)| <

1

.

Anotheronservedquantityisthemomentum:

P(v , w ) = Z

R

vw.

Theorem1(d.L-Gravejat, 2014)

Let

v

0

= (v

0

, w

0

) ∈ N V( R )

.

(i )

Thereexistsanumber

T

max

>

0andauniquesolution

v ∈ C

0

([

0

, T

max

), N V( R ))

to

(HLL)withinitialdatum

v

0 suhthatthereexistsmoothsolutions

v n ∈ C ( R × [

0

, T ])

to(HLL)satisfying

v n → v

in

C

0

([

0

, T ], N V( R )),

as

n → ∞,

forany

T < T

max

.

(29)
(30)

For

c 6=

0,thesoliton

v c

isaminimizerofthevariationalproblem

E

min

(p c ) =

inf

E(v ), v : R → C

s

.

t

. P(v ) = p c .

Thespeed

c

isrelatedtothemomentum

p c

throughtheformula

p c =

2artan

(

1

− c)

12

c

.

TheEuler-Lagrangeequationisy

E (v c ) = cP (v c ).

E

E = p

2

(31)

Theorem2(d.L.-Gravejat 2014)

Let

c

0

∈ (−

1

,

1

) N

,

s

0

∈ {±

1

} N

,and

v

0

= (v

0

, w

0

) ∈ N V( R )

. Assumethat

c

10

< · · · <

0

< · · · < c N

0

.

Thereexistfournumbers

α >

0,

ν >

0 ,

A >

0and

L >

0 ,suhthat,if

v

0

− S c

0

,a

0

,s

0

H

1

×L

2

= α

0

< α ,

forpositions

a

0

∈ R N

suhthat min

a k+

0 1

− a

0

k ,

1

≤ k ≤ N −

1

= L

0

> L ,

thenthereexistauniquesolution

v ∈ C

0

( R + , N V( R ))

to (HLL)withinitialdatum

v

0,as

wellas

N

funtions

a k ∈ C

1

( R + , R )

,with

a k (

0

) = a

0

k

,suhthat

a k (t) − c k

0

≤ A α

0

+ e −ν L

0

,

(32)

Corollary3(d.L-Gravejat2014)

Let

c

0

∈ (−

1

,

0

) ∪ (

0

,

1

)

,

a

0

∈ R

,

s

0

∈ {±

1

}

,and

v

0

∈ N V( R )

. Thereexisttwonumbers

α >

0and

A >

0suhthat,if

v

0

− s

0

v c

0

(· − a

0

)

H

1

×L

2

< α ,

thenthereexistauniquesolution

v ∈ C

0

( R + , N V( R ))

to (HLL)withinitialdatum

v

0,as

wellasafuntion

a ∈ C

1

( R + , R )

,with

a(

0

) = a

0,suhthat

a (t) − c

0

≤ A α ,

and

v(·, t) − s

0

v c

0

(· − a(t))

H

1

×L

2

≤ A α ,

forany

t ∈ R +

.

(33)
(34)

Itfollowsfromtheexisteneofsmoothsolutionsto(LL).

Lemma

Let

k ≥

4andset

N V k ( R ) =

v = (v , w ) ∈ H k+

1

( R ) × H k ( R ),

s

.

t

.

max

x∈R |v(x)| <

1

.

Givenapair

v

0

∈ N V k ( R )

,thereexistsanumber

T

max

>

0andauniquesolution

v ∈ L ([

0

, T

max

), N V k ( R ))

to(HLL)withinitialdatum

v

0. Themaximaltime

T

max

is

haraterizedbytheondition

lim

t→T

max max

x∈R |v (x , t)| =

1

,

if

T

max

< +∞.

(35)

Givenasmoothsolution

v = (v , w )

to(HLL),wedenethemap

Ψ =

1

2

∂ x v

(

1

− v

2

)

12

+ i (

1

− v

2

)

12

w

exp

i θ,

wherethe phase

θ

isgivenby

θ(x , t) = −

Z x

−∞

v (y , t) w(y , t) dy.

Wealsoset

F (v , Ψ)(x ,t) = Z x

−∞

v(y, t) Ψ(y, t) dy.

Themap

Ψ

issolutiontothenonlinearShrödingerequation

i ∂ t Ψ + ∂ xx Ψ+

2

|Ψ|

2

Ψ +

1

2

v

2

Ψ

Re

Ψ(

1

2

F (v , Ψ))

(

1

2

F (v , Ψ)) =

0

,

whilethefuntion

v

satisesthesystem

(36)

owmaporrespondingtothissystem.

Lemma

Let

T >

0. Giventwosmoothsolutions

(v

1

, Ψ

1

)

and

(v

2

, Ψ

2

)

totheprevioussystem

withinitialdatum

(v j

0

, Ψ

0

j )

,thereexistanumber

τ >

0 ,dependingonlyon

k v j

0

k L

2 and

0

j k L

2,andauniversalonstant

K

suhthat

v

1

− v

2

C

0

([

0

,T],L

2

) +

Ψ

1

− Ψ

2

C

0

([

0

,T],L

2

)

≤ K v

10

− v

20

L

2

+ Ψ

01

− Ψ

02

L

2

,

forany

T ∈ [

0

,

min

{τ, T }]

.

Theorem1derivesfromexpressingthisontinuitypropertyintermsofthepair

v = (v , w )

.

(37)

ThestrategyissimilartotheonedevelopedbyMartel-Merle-Tsai'02,'05,forthe

Korteweg-deVriesandthenonlinearShrödingerequations(seealso

Béthuel-Gravejat-Smets'12).

Itresultsfromthefollowingquantiationoftheminimizingnatureofasoliton.

Lemma

Let

c ∈ (−

1

,

0

) ∪ (

0

,

1

)

,andset

H c = E ′′ (v c ) − cP ′′ (v c )

. Thereexistsanumber

Λ c >

0

suhthat

h H c (ε), εi L

2

≥ Λ c kεk

2

H

1

×L

2

,

foranypair

ε ∈ H

1

( R ) × L

2

( R )

suhthat

h∂ x v c , εi L

2

= hP (v c ), εi L

2

=

0

.

When

ε = v − v c

satisesthetwoorthogonalityonditions,wehave

E (v) − cP(v)= E (v c ) − cP(v c ) +

1

2

hH c (ε), εi L

2

+ O kεk

3

H

1

×L

2

Λ

(38)

Inordertoguaranteethetwoorthogonalityonditions,weintroduemodulation

parameters. Given

α >

0and

L >

0 ,weset

V(α, L) = n

v ∈ N V( R ),

s

.

t

.

inf

a k+

1

>a k +L kv − S c ∗ , a , s ∗ k H

1

×L

2

< α o .

Lemma

Thereexistnumbers

α

1

>

0,

ν

1

>

0and

L

1

>

0suhthat,givena solution

v ∈ C

0

([

0

, T ], H

1

( R ) × L

2

( R ))

to(HLL),with

v(·, t) ∈ V(α, L),

for

α < α

1and

L > L

1,

thereexisttwofuntions

a ∈ C

1

([

0

, T ], R N )

and

c ∈ C

1

([

0

, T ], (−

1

,

1

) N )

suhthatthe

map

ε(·, t) = v(·, t) − S c(t),a(t),s ,

satisestheorthogonalityonditions

∂ x v c k (t),a k (t) , ε(·, t)

L

2

=

P (v c k (t),a k (t) ), ε(·, t)

L

2

=

0

,

forany1

≤ k ≤ N

andany

t ∈ [

0

, T ]

. Moreover,wehave

kε(·, t)k H

1

×L

2

+

X N

k=

|c k (t) − c k

0

| = O(α),

(39)

For

ν

smallenough,weintroduethefuntions

φ

1

=

1,

φ N+

1

=

0,and

φ j (x) =

1

2

1

+

tanh

ν

x − a j−

1

(t) + a j (t)

2

,

for2

≤ j ≤ N

,andweset

F(v) = E (v) −

X N

j=

1

c j

0

P j (v),

where

P j (v) = Z

R

φ j − φ j+

1

vw.

Lemma

Thereexistnumbers

Λ >

0 ,

α

2

>

0,

ν

2

>

0and

L

2

>

0suhthat,givena solution

v ∈ C

0

([

0

, T ], H

1

( R ) × L

2

( R ))

to(HLL),with

v(·, t) ∈ V(α, L),

for

α < α

2 and

L > L

2,wehavefor

t ∈ [

0

, T ]

:

(40)

Theonservationlawforthemomentumwritesas

∂ t vw

=−

1

2

∂ x

v

2

+ w

2 1

3

v

2

+

3

− v

2

(

1

− v

2

)

2

(∂ x v )

2

1

2

∂ xxx

ln 1

− v

2

.

Lemma

Thereexistnumbers

α

3

>

0,

ν

3

>

0and

L

3

>

0suhthat,givena solution

v ∈ C

0

([

0

, T ], H

1

( R ) × L

2

( R ))

to(HLL),with

v(·, t) ∈ V(α, L),

for

α < α

3 and

L > L

3

,wehave

F (t) ≤ O

exp

(−ν

3

(L + t) ,

forany

t ∈ [

0

, T ]

.

(41)

Asymptotistabilityofthesolitons(YakineBahri,PhDThesis).

Construtionandorbitalstabilityofsolitonsinhigherdimension.

Asymptotistabilityinhigherdimension?

(42)

Références

Documents relatifs

- It is shown that, if the driving force and damping are sufficiently small, a small amplitude phase-locked soliton is a fixed point attractor of the

By using energy method we prove global existence of strong solutions for given initial data, existence of time-periodic solutions as well as existence of steady state solutions of

Thanks to the same estimate, we recover on one hand an explicit bound on the long time behavior of the spatially homogeneous equation, and on the other hand the strong L 1

We achieve this by a blow-up analysis similar to what has been done for harmonic maps by Jost [11] and for the harmonic map heat flow and Palais–Smale sequences for the Dirichlet

In this framework, we rely on the orbital stability of the solitons and the weak continuity of the flow in order to construct a limit profile.. We next derive a monotonicity formula

Concerning the Cauchy problem for the hydrodynamical Landau-Lifshitz equation, the main difficulty is to establish the continuity with respect to the initial datum in the energy space

However, due to the lack of regularity of the space time white noise, equation (1.3) is not expected to possess a well defined solution in this case, and we therefore consider in

We have proposed two application examples of the method in non-linear problems, one concerning the homogenization of the harmonic maps equation while the other deals with