• Aucun résultat trouvé

Comparative conductimetric studies of salicylic acidin methanol—water mixtures at 25 

N/A
N/A
Protected

Academic year: 2021

Partager "Comparative conductimetric studies of salicylic acidin methanol—water mixtures at 25 "

Copied!
4
0
0

Texte intégral

(1)

Russ

ian

Chem

ica

l

Bu

l

le

t

in

,

In

terna

t

iona

l

Ed

i

t

ion

,

Vo

l

.

62

,

No

.

7

,

pp

.

1595—1598

,

Ju

ly

,

2013

1595

Publishedin Russianin Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1595—1598, July, 2013.

10665285/13/62071595 © 2013 Springer Science+Business Media, Inc.

Comparat

ive

conduct

imetr

ic

stud

ies

o

f

sa

l

icy

l

ic

ac

id

in

methano

l—water

m

ixtures

at

25

C

Z

.

Chaaraou

i

,

а

A

l

i

H

.

A

lTa

iar

,

b

and

Ad

i

l

A

.

O

thman

b

a

Depar

tmen

t

o

f

Phys

ics

,

Facu

l

ty

o

f

Sc

iences

,

Un

ivers

i

ty

o

f

Sc

iences

and

Techno

logy

o

f

Oran

"Mohamed

Boud

ia

f"

,

P

.O

.B

.

1505

E

l

M´naouar

,

31003

Oran

,

A

lger

ia

.

Fax

:

00213

4156

0353

.

Ema

i

l

:

zahraaz@yahoo

.com

b

Depar

tmen

t

o

f

Chem

is

try

,

Facu

l

ty

o

f

Sc

iences

,

Un

ivers

i

ty

o

f

Sc

iences

and

Techno

logy

o

f

Oran

"Mohamed

Boud

ia

f"

,

P

.O

.B

.

1505

E

l

M´naouar

,

31003

Oran

,

A

lger

ia

.

Fax

:

00213

4142

5763

.

Ema

i

l

:

ade

la

l

io

thman@gma

i

l

.com

The conductivity of salicylic acid in methanol—water mixtures was measured at 25 C. Experimental data were analyzed usingthe Hsia—Fuoss and Fuoss78 conductance equations and a comparison was made. The Hsia—Fuoss and Fuoss78 methods were also usedto deter mine the thermodynamic association constants and the limiting molar conductivities for all solvent compositions. The limiting equivalent conductance decreases with an increase in the methanol contentinthe binary mixtures overthe whole range of solvent compositions, butthe variation does not give a constant value of Walden product. The electrolytes werefoundto be practically completely associated in all solvent mixtures studied. The association constant of salicylic acid decreases asthe dielectric constants ofthe mixturesincrease.

Key words: salicylic acid, association constants, Walden product, electrolyte conductivity.

Sa

l

icy

l

ic

ac

id

(SA

,

ohydroxybenzo

ic

ac

id)

is

a

pheno

l

ic

compound

presen

t

in

p

lan

ts

.

I

t

is

an

impor

tan

t

in

termed

ia

te

in

the

produc

t

ion

o

f

asp

ir

in

,

and

i

ts

der

iva

t

ives

are

a

lso

used

in

pharmaceu

t

ica

l

and

po

lymer

indus

tr

ies

to

manu

fac

ture

d

is

in

fec

tan

ts

,

an

t

isep

t

ics

,

and

de

tergen

ts

.

Thermodynam

ic

assoc

ia

t

ion

cons

tan

t

va

lues

o

f

SA

in

some

a

lcoho

l—wa

ter

so

lu

t

ions

were

de

term

ined

po

ten

t

iome

tr

ica

l

ly

.

1—3

There

are

a

few

s

tud

ies

on

the

conduc

tome

tr

ic

behav

ior

o

f

SA

in

so

lven

t

m

ix

tures

.

4—9

In

th

is

paper

,

we

presen

t

the

conduc

tance

da

ta

o

f

sa

l

icy

l

ic

ac

id

a

t

25

C

in

me

tha

no

l—wa

ter

m

ix

tures

con

ta

in

ing

from

0

to

90

.59

we

igh

t

%

o

f

MeOH

.

To

de

term

ine

the

thermodynam

ic

assoc

ia

t

ion

cons

tan

ts

,

K

A

,

the

l

im

i

t

ing

mo

lar

conduc

t

iv

i

t

ies

,

0

,

and

the

Wa

lden

produc

t

va

lues

,

the

conduc

tance—MeOH

con

cen

tra

t

ion

da

ta

were

ana

lyzed

us

ing

the

Hs

ia—Fuoss

and

Fuoss78

equa

t

ions

.

Exper

imenta

l

Salicylic acid (puriss. p.a., >99.5%, Aldrich) was used with out purification. Methanol (purity > 99%) and triply distilled water with a specific conductivity of less than 1 S cm–1 was used for the preparation of binary mixtures. Densities of the mixtures were determinedin a 20 mL pycnometer at 25.00±0.05 C. Viscosities of the mixtures were measured with a Falling Ball viscometer (Gilmont Instruments) to an accuracy of 0.2—1%. The densities, viscosities, and dielectric constants ofthe solvent mixtures arelistedin Table 1.

Conductivity measurements were carried out using a CDM230 conductivity meter (Radiometer Analytical SAS, France) equipped with a CDC641T cell comprising two platinized platinum electrodes. Taking into account the sources of er ror (calibration, measurements, impurities), the molar con ductivity values are accurate to within 0.02%. During the ex periments, the cell was calibrated using aqueous KCl solu tion at least five times and then immersed in a thermo stat where the temperature was maintained with an accuracy T = ±0.05C.

All solutions were made up by weight. The volume concen trations (in mol L–1) were calculated usingthe densities ofthe solvent mixtures. The molar conductivities, , were calculated

Table 1. Properties of methanol—water mixtures at 25 C a b/g cm–3 c/P Dd 0 0.9958 0.00891 78.48 19.79 0.9714 0.01526 69.85 37.54 0.9345 0.01572 61.50 49.97 0.9186 0.01569 55.76 72.55 0.8686 0.01356 45.32 90.59 0.8223 0.01033 36.63 aWeightfraction of MeOH (%).

bDensity of solvents. c Viscosity of solvents. dDatatakenfrom Ref. 10.

(2)

Chaaraou

i e

t

a

l

.

1596 Russ

.Chem

.Bu

l

l

.

,

In

t

.Ed

.

,

Vo

l

.

62

,

No

.

7

,

Ju

ly

,

2013

from the experimental electrolyte conductivities corrected for the electrolyte conductivity ofthe pure solvent.

Experimental data were analyzed using the Hsia—Fuoss 11 and Fuoss78 12 conductance equations.

The Hsia—Fuoss method is based on the assumption11 that the conductance of a partially dissociated (1: 1) electrolyteis relatedtoits concentration с:

 = [0 –S(c)1/2 +E(c)ln(c) +

+ J1(c) + J2(c)3/2]/(1 + KAcf2), (1) where  isthe degree of dissociation,KAisthe association con stant ofion pairs, and fisthe mean activity coefficient offreeions.

The activity coefficient was calculated accordingto Ref. 13: f = exp{–A(c)1/2/[1 + BR(c)1/2]}, (2) where A = 2.791•106(DT)–3/2, B = 50.29(DT)–1/2, R is the di

ameter of the Gurney cosphere of the ion, D is the dielectric constant, and T is absolutetemperature.

The S, E, J1, andJ2 values were calculated usingthe known equations.14

Equation (1) is resolved for 0 and KA which minimize the standard deviation

2 =[

jcalc –jexp]2/(n – 3), (3) where n isthe number of data points.

The Fuoss78 method. The limiting molar conductivity, 0, andthe association constant, KA, were deducedfromthefollow ing equations:

 =p[0(1 + RX) + EL], (4)  = 1 –KAc2f2, (5) lnf = –/[2(1 + R)],  = e2(DkT)–1 (6) andthenthe standard deviation was minimized:

2 =(jcalcjexp)2/(n – 2). (7) The expressions for RX and EL in Eq. (4) are the explicit relaxation and hydrodynamicterms, respectively.12

Resu

lts

and

D

iscuss

ion

The

conduc

t

iv

i

ty

o

f

SA

in

me

thano

l—wa

ter

m

ix

tures

(36

.63

D

78

.48

;

0

.0089

P



0

.0157

P)

was

measured

a

t

25

C

in

the

concen

tra

t

ion

range

2

.29

10

–6

mo

l

L

–1 

c

1

.12

10

–2

mo

l

L

–1

.

A

t

a

me

thano

l

concen

tra

t

ion

o

f

90

.59%

,

the

resu

l

ts

were

uns

tab

le

;

hence

we

take

the

aver

age

va

lue

o

f

the

conduc

t

iv

i

ty

.

Ca

lcu

la

t

ions by bo

th me

thods revea

led no m

in

imum

in

R—

% p

lots

in accordance w

ith pub

l

ished data

12

(R va

lues

were

used

equa

l

to

the

B

jerrum

d

is

tance

,

see

Re

fs

6

,

8

,

and

15)

.

The

in

i

t

ia

l

0

and

K

A

va

lues

were

es

t

ima

ted

us

ing

the

Os

twa

ld

law

. The mo

lar conduc

tance o

f SA a

t

in

f

in

i

te

d

i

lu

t

ion

,

0

,

the

s

tandard

dev

ia

t

ions

%

based

on

the

ob

served and ca

lcu

la

ted

va

lues

, and

the SA assoc

ia

t

ion

cons

tan

ts ob

ta

ined us

ing

the

two me

thods are

l

is

ted

in

Tab

le

2

.

From

the

da

ta

o

f

Tab

le

2

i

t

fo

l

lows

tha

t

a

t

me

tha

no

l

concen

tra

t

ions

h

igher

than

50%

,

the

%

va

lues

found

by

the Hs

ia—Fuoss me

thod are

larger

than

those de

ter

m

ined

us

ing

the

Fuoss 78

equa

t

ion

.

The

0

va

lues

ca

lcu

la

ted

by

bo

th

me

thods

are

approx

i

ma

te

ly

equa

l

.

The

l

im

i

t

ing

conduc

tance

o

f

SA

in

aqueous

so

lu

t

ion

ca

lcu

la

ted

by

the

Hs

ia—Fuoss

equa

t

ion

is

in

good

agreemen

t w

i

th

the pub

l

ished da

ta (384

.2

,

9

385

.2

,

4

and

384

.23

S

cm

2

mo

l

–1

(see

Re

f

.

6)

.

In

F

ig

.

1

,

the

0

va

lues

o

f

SA

in

me

thano

l—wa

ter

m

ix

tures

are

compared

w

i

th

those

found

ear

l

ier

.

9

The

l

im

i

t

ing

equ

iva

len

t

conduc

tance

decreases

as

the

con

ten

t

o

f

me

th

ano

l

in

wa

ter

increases

,

thus

sugges

t

ing

s

tronger

ion—so

l

ven

t

and

so

lven

t—so

lven

t

in

terac

t

ions

.

F

igure

2

shows

tha

t

the

mo

lar

conduc

tance

o

f

SA

de

creases

w

i

th

increas

ing

the

concen

tra

t

ion

o

f

me

thano

l

in

wa

ter

as

a

resu

l

t

o

f

reduc

t

ion

o

f

the

d

issoc

ia

t

ive

power

o

f

the

so

lven

t

.

A

t

me

thano

l

concen

tra

t

ions

above

50%

,

sma

l

l

er

conduc

tance

var

ia

t

ions

are

observed

.

The

p

lo

t

o

f

the

Wa

lden

produc

t

vs.

compos

i

t

ion

o

f

the

so

lven

t

m

ix

tures

(F

ig

.

3)

passes

through

a

max

imum

be

tween

12

and

20%

o

f

me

thano

l

,

as

was

found

in

th

is

b

inary

m

ix

ture

for

var

ious

e

lec

tro

ly

tes

.

16—18

The

presence

o

f

th

is

max

imum

shows

tha

t

the

l

im

i

t

ing

conduc

tance

o

f

the

so

lu

t

ions

decreases

more

s

low

ly

w

i

th

increas

ing

the

me

tha

no

l

concen

tra

t

ion

in

the

m

ix

ture

than

i

t

wou

ld

be

expec

t

ed

from

the

increase

in

v

iscos

i

ty

o

f

the

so

lven

t

m

ix

tures

in

the

wa

terr

ich

reg

ion

.

The

cons

tancy

o

f

the

Wa

lden

prod

uc

t

a

lso

fa

i

ls

in

genera

l

for

sma

l

l

ions

in

m

ixed

so

lven

ts

.

19

In

F

ig

.

4

,

the

dependences

o

f

the

thermodynam

ic

d

is

soc

ia

t

ion

cons

tan

t

PK

a

o

f

SA

on

the

inverse

d

ie

lec

tr

ic

con

stant of so

lut

ions ca

lcu

lated by the Hs

ia—Fuoss and

Table 2. Conductance parameters of salicylic acidin methan ol—water mixtures at 25 C calculated usingthe Hsia—Fuoss (in numerator) and Fuoss78 (in denominator) equations  0 KA•10–3  (%) R/Å /S cm2 mol–1 /dm3 mol–1 0 385.60±0.02 0.985±0.001 0.026 3.57 386.06±0.04 1.004±0.001 0.024 3.57 19.79 249.89±0.01 1.676±0.003 0.022 4.01 249.99±0.02 1.699±0.002 0.002 4.01 37.54 170.00±0.01 3.963±0.009 0.038 4.56 170.03±0.01 4.000±0.005 0.022 4.56 49.97 150.16±0.01 5.966±0.009 0.068 5.02 150.16±0.02 6.013±0.006 0.054 5.02 72.55 106.87±0.01 19.735±0.071 0.080 6.43 105.45±0.01 19.126±0.007 0.042 6.43 90.59 71.05±0.01 925.222±1.754 0.087 7.65 70.29±0.01 900.897±0.215 0.076 7.65

(3)

E

lec

troconduc

tance

o

f

sa

l

icy

l

ic

ac

id

Russ

.Chem

.Bu

l

l

.

,

In

t

.Ed

.

,

Vo

l

.

62

,

No

.

7

,

Ju

ly

,

2013

1597

var

ia

t

ions

were

a

lso

found

for

SA

in

wa

ter

m

ix

tures

w

i

th

e

thano

l

,

5

1propano

l

,

8

and ace

tone

.

6

The PK

a

va

lues

in

aqueous so

lu

t

ions ca

lcu

la

ted by

the

two me

thods are

in

exce

l

len

t

agreemen

t

w

i

th

those

found

by

o

ther

me

thods

o

f

ana

lys

is

.

4,7—9

Increased assoc

ia

t

ion upon add

ing me

tha

no

l

was

exp

la

ined

by

s

tab

i

l

iza

t

ion

o

f

an

ion

ow

ing

to

for

ma

t

ion

o

f

an

in

terna

l

hydrogen

bond

be

tween

the

carboxy

l

and

hydroxy

l

groups

.

4,7,8

Fig. 1. Limiting equivalent conductance (0) plotted vs. methanol content () in methanol—water mixtures: published data6 (1) and results of calculations bythe Fuoss78 (2) and Hsia—Fuoss (3) methods. 400 350 300 250 200 150 100 50 1 2 3 0/S cm2 mol–1 0 20 40 60 80 100  (%)

Fig. 2. Molar conductance plotted vs. solvent mixture com positions at 25 C:  = 0 (1), 19.79 (2), 37.54. (3), 49.97 (4), 72.55 (5), and 90.59% (6). 350 300 250 200 150 100 50 0 1 /S cm2 mol–1 0.02 0.04 0.06 0.08 C1/2/mol0.5L–0.5 3 2 4 5 6

Fuoss78

me

thods

are

compared

w

i

th

the

va

lues

ob

ta

ined

us

ing

the

Lee—Whea

ton

conduc

tance

equa

t

ion

.

6

S

im

i

lar

Fig. 3. Walden product plottedvs. solvent mixture composition. 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 20 40 60 80 100  (%)

Fig. 4. PKa values plottedvs.inverse dielectric constant of solu tion: results of calculations carried out usingthe Lee—Wheaton conductance equation6 (1) and by the Hsia—Fuoss (2) and Fuoss78 (3) methods. 6.0 5.5 5.0 4.5 4.0 3.5 3.0 1 2 3 pKa 1.2 1.6 2.0 2.4 2.8 D–1102

(4)

Chaaraou

i e

t

a

l

.

1598 Russ

.Chem

.Bu

l

l

.

,

In

t

.Ed

.

,

Vo

l

.

62

,

No

.

7

,

Ju

ly

,

2013

Summ

ing up

,

the conduc

t

iv

i

ty o

f SA

in me

thano

l—

wa

ter

m

ix

tures

was

measured

a

t

25

C

and

the

resu

l

ts

ob

ta

ined were ana

lyzed by

the Hs

ia—Fuoss and Fuoss78

me

thods

.

I

t

was

found

tha

t

the

l

im

i

t

ing

conduc

tances

and

assoc

ia

t

ion cons

tan

ts d

i

f

fer s

l

igh

t

ly

from

those ob

ta

ined

by

o

ther

me

thods

o

f

ana

lys

is

.

The

0

va

lues

de

term

ined

by

the

Hs

ia—Fuoss

,

Fuoss78

,

and

Lee—Whea

ton

6

me

thods

vary

w

i

th

the

concen

tra

t

ion

o

f

me

thano

l

in

the

m

ix

tures

in

the

same

way

.

Th

is

con

f

irms

the

va

l

id

i

ty

o

f

app

l

ica

t

ion

o

f

the

former

two

me

thods

.

The

0

va

lue

changes

as

the

so

l

ven

t compos

i

t

ion changes

,

thus

ind

ica

t

ing ra

ther s

trong

ion—so

lven

t

in

terac

t

ions

.

20—25

I

t seems necessary

to s

tudy

the

tempera

ture depen

dence

o

f

conduc

t

iv

i

ty

to

ge

t

more

in

forma

t

ion

on

the

be

hav

ior

o

f

SA

in

b

inary

m

ix

tures

.

The

lack

o

f

trans

ference

da

ta

in

the

l

i

tera

ture

prec

ludes

de

ta

i

led

in

terpre

ta

t

ion o

f

the concen

tra

t

ion dependence

o

f

conduc

tance

.

Re

ferences

1. E. Grunwald, B. J. Berkowitz, J. Am. Chem. Soc., 1951, 73, 4939.

2. K. T. Novгk, K. J. Box, A. Avdeef, Int. J. Pharm., 1997, 151, 235.

3. G. Völgyi, R. Ruiz, K. Box, J. Comer, E. Bosch, K. T. Novãk, Anal. Chim. Acta., 2007,583, 418.

4. L. G. Bray, J. F. J. Dippy, S. R. Hughes, L. W. Laxton, J. Chem. Soc., 1957, 2405.

5. A. K. Mandal, S. C. Lahiri, Bull. Chem. Soc. Jpn, 1976, 49, 1829.

6. M. S. K. Niazi, S. S. Shah, M. Z. I. Khan, J. Chem. Eng. Data, 1993,38, 288.

7. J. F. J. Dippy, S. R. C. Hughes, B. C. Kitchiner, J. Chem. Soc., 1964, 1275.

8. N. Papadoupolis, A. Avarans, J. Solution. Chem., 1991, 20, 293.

9. M. S. K. Niazi, M. Z. I. Khan, J. Solution. Chem., 1993, 22, 437.

10. Y. Xue, S. J. Traina, Environ. Sci. Technol., 1996,30, 3177. 11. R. M. Fuoss, K. L. Hsia, Proc. Natl. Acad. Sci., 1967,

57, 1550.

12. R. M. Fuoss, J. Phys. Chem., 1978,82, 2427.

13. K. Agniszka, E. Hawlicka, Phys. Chem. Chem. Phys., 2003, 5, 4858.

14. R. F. Prini, Trans. Faraday. Soc., 1969,65, 3311. 15. J. C. Justice, Electrochim. Acta, 1971,16, 701.

16. T. L. Broadwater, R. L. Kay, J. Phys. Chem., 1970,74, 3802. 17. R. L. Kay, T. L. Broadwater, Electrochim. Acta., 1971,

16, 667.

18. R. L. Kay, T. L. Broadwater, J. Solution. Chem., 1976, 5, 57.aaa

19. J. F. Skinner, R. M. Fuoss, J. Phys. Chem., 1966,70, 1426. 20. R. M. Fuoss, Proc. Nat. Acad. Sci., 1959,45, 807.

21. A. D’Aprano, R. M. Fuoss,J. Phys. Chem., 1963,67, 1722. 22. R. Zwanzig, J. Chem. Phys., 1963,38, 1603.

23.R. Zwanzig, J. Chem. Phys., 1970,52, 3625. 24. P. Hemms, J. Phys. Chem., 1974,78, 907.

25. A. D´Aprano, R. M. Fuoss, J. Solution. Chem., 1975,4, 175.

Références

Documents relatifs

Because lipid interfacial response to perturbation by hydrostatic pressure is largely unknown, we have made similar studies of multilamellar lipid vesicles in aqueous dispersion

By calculating the surface tensions between these phases along their coexistence triple line, we find that the disordered phase wets the water-oil interface when it is an

A considerable amount of experimental work has been carried out in the past at room temperature: it shows large positive deviations of both sound velocity and

From static point of view, the most important result of this study is concomitant decrease of the water concentration fluctuations with decreasing temperatures, while a broad cluster

In particular, we have explored the two limiting cases of low-velocity neutral and high- velocity charged projectiles for which one can re- duce the dynamics to Born-Oppenheimer or

Using X ray surface diffraction we have investigated crystalline monolayers of short alcohols (1-decanol to 1-tetradecanol) at the air-water interface in the vicinity of the first

equivalent alkane carbon number (EACN) concept [9] inferred from phase diagram studies and interfacial tension measurements is valid for the bending elastic modulus of the

possible that even less is removed, since, in this experiment, we probably do not measure the thickness of the water removed with the electrode, but rather, the equi- librium