• Aucun résultat trouvé

Resolution strategy for the Hybridizable Discontinuous Galerkin system for solving Helmholtz elastic wave equations

N/A
N/A
Protected

Academic year: 2021

Partager "Resolution strategy for the Hybridizable Discontinuous Galerkin system for solving Helmholtz elastic wave equations"

Copied!
46
0
0

Texte intégral

(1)

HAL Id: hal-01400643

https://hal.inria.fr/hal-01400643

Submitted on 24 Nov 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Resolution strategy for the Hybridizable Discontinuous

Galerkin system for solving Helmholtz elastic wave

equations

Marie Bonnasse-Gahot, Henri Calandra, Julien Diaz, Stephane Lanteri

To cite this version:

Marie Bonnasse-Gahot, Henri Calandra, Julien Diaz, Stephane Lanteri. Resolution strategy for the Hybridizable Discontinuous Galerkin system for solving Helmholtz elastic wave equations. Face to face meeting HPC4E Brazilian-European project, Sep 2016, Gramado, Brazil. �hal-01400643�

(2)

Resolution strategy for the Hybridizable

Discontinuous Galerkin system for solving

Helmholtz elastic wave equations

M. Bonnasse-Gahot1,2, H. Calandra3, J. Diaz1 and S. Lanteri2

1INRIA Bordeaux-Sud-Ouest, team-project Magique 3D 2INRIA Sophia-Antipolis-Méditerranée, team-project Nachos 3TOTAL Exploration-Production

(3)

Motivations

(4)

Motivations

(5)

Motivations

Imaging methods

I Reverse Time Migration (RTM) : based on the reversibility

of wave equation

I Full Wave Inversion (FWI) : inversion process requiring to

solve many forward problems

Seismic imaging : time-domain or harmonic-domain ?

I Time-domain : imaging condition complicatedbutquite low computational cost

I Harmonic-domain : imaging condition simplebuthuge computational cost

(6)

Motivations

Imaging methods

I Reverse Time Migration (RTM) : based on the reversibility

of wave equation

I Full Wave Inversion (FWI) : inversion process requiring to

solve many forward problems

Seismic imaging : time-domain or harmonic-domain ?

I Time-domain : imaging condition complicatedbutquite low computational cost

I Harmonic-domain : imaging condition simplebuthuge computational cost

(7)

Motivations

Imaging methods

I Reverse Time Migration (RTM) : based on the reversibility

of wave equation

I Full Wave Inversion (FWI) : inversion process requiring to

solve many forward problems

Seismic imaging : time-domain or harmonic-domain ?

I Time-domain : imaging condition complicatedbutquite low computational cost

I Harmonic-domain : imaging condition simplebuthuge computational cost

(8)

Motivations

Resolution of the forward problem of the inversion process

I Elastic wave propagation in the frequency domain : Helmholtz

equation

First order formulation of Helmholtz wave equations

x = (x , y , z) ∈ Ω ⊂ R3,

(

i ωρ(x)v(x) = ∇·σ(x) +fs(x)

(9)

Motivations

Resolution of the forward problem of the inversion process

I Elastic wave propagation in the frequency domain : Helmholtz

equation

First order formulation of Helmholtz wave equations

x = (x , y , z) ∈ Ω ⊂ R3, ( i ωρ(x)v(x) = ∇·σ(x) +fs(x) i ωσ(x) =C(x) ε(v(x)) I v : velocity vector I σ : stress tensor I ε : strain tensor

(10)

Motivations

Resolution of the forward problem of the inversion process

I Elastic wave propagation in the frequency domain : Helmholtz

equation

First order formulation of Helmholtz wave equations

x = (x , y , z) ∈ Ω ⊂ R3,

(

i ωρ(x)v(x) = ∇·σ(x) +fs(x)

i ωσ(x) =C(x) ε(v(x))

I ρ : mass density

I C : elasticity tensor I fs : source term, fs ∈ L

(11)

Approximation methods

Discontinuous Galerkin Methods

3unstructured tetrahedral meshes

3combination between FEM and finite volume method (FVM)

3hp-adaptivity

3easily parallelizable method

(12)

Approximation methods

Discontinuous Galerkin Methods

3unstructured tetrahedral meshes

3combination between FEM and finite volume method (FVM)

3hp-adaptivity

3easily parallelizable method

(13)

Approximation methods

Discontinuous Galerkin Methods

3unstructured tetrahedral meshes

3combination between FEM and finite volume method (FVM)

3hp-adaptivity

3easily parallelizable method

7 7large number of DOF as compared to classical FEM

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

(14)

Approximation methods

Hybridizable Discontinuous Galerkin Methods

3same advantages as DG methods : unstructured tetrahedral

meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions

3introduction of a new variable defined only on the interfaces

3lower number of coupled DOF than classical DG methods

(15)

Approximation methods

Hybridizable Discontinuous Galerkin Methods

3same advantages as DG methods : unstructured tetrahedral

meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions

3introduction of a new variable defined only on the interfaces

3lower number of coupled DOF than classical DG methods

7time-domain increases computational costs

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b bb b b b b b b bb b b b b b b b b b b b b b b b b b b b b

(16)

Approximation methods

Hybridizable Discontinuous Galerkin Methods

3same advantages as DG methods : unstructured tetrahedral

meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions

3introduction of a new variable defined only on the interfaces

3lower number of coupled DOF than classical DG methods

7time-domain increases computational costs

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b bb b b b b b b bb b b b b b b b b b b b b b b b b b b b b

(17)

Hybridizable Discontinuous Galerkin method

B. Cockburn, J. Gopalakrishnan and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM Journal

on Numerical Analysis, Vol. 47 :1319-1365, 2009.

S. Lanteri, L. Li and R. Perrussel. Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d

time-harmonic Maxwell’s equations. COMPEL, 32(3)1112-1138, 2013.

N.C. Nguyen, J. Peraire and B. Cockburn. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics, 230 :7151-7175, 2011

N.C. Nguyen and B. Cockburn. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics.

(18)

HDG method

Contents

Hybridizable Discontinuous Galerkin method Formulation

Algorithm

(19)

HDG method Formulation

HDG formulation of the equations

Local HDG formulation (

i ωρv− ∇ ·σ = 0

(20)

HDG method Formulation

HDG formulation of the equations

Local HDG formulation        Z K i ωρKvK · w + Z K σK : ∇w − Z ∂K b σ∂K · n · w = 0 Z K i ωσK : ξ + Z K vK · ∇ ·CKξ− Z ∂Kb v∂K ·CKξ · n = 0 b σK andbv

(21)

HDG method Formulation

HDG formulation of the equations

We define :

b

(22)

HDG method Formulation

HDG formulation of the equations

We define : bv ∂K = λF, ∀F ∈ F h, b σ∂K · n = σK· n − τ I vK −λF , on ∂K

(23)

HDG method Formulation

HDG formulation of the equations

Local HDG formulation        Z K i ωρKvK· w − Z K ∇ ·σK · w + Z ∂K τ I vK−λF · w = 0 Z K i ωσK: ξ + Z K vK· ∇ ·CKξ− Z ∂K λF ·CKξ· n = 0 We define : WK =VxK, VyK, VzK, σxxK, σyyK, σzzK, σxyK, σxzK, σyzK T Λ= ΛF1, ΛF2, ..., ΛFnfT , where nf = card(Fh)

(24)

HDG method Formulation

HDG formulation of the equations

Local HDG formulation        Z K i ωρKvK· w − Z K ∇ ·σK · w + Z ∂K τ I vK−λF · w = 0 Z K i ωσK: ξ + Z K vK· ∇ ·CKξ− Z ∂K λF ·CKξ · n = 0 We define : WK =VxK, VyK, VzK, σxxK, σyyK, σzzK, σxyK, σxzK, σyzK T Λ= ΛF1, ΛF2, ..., ΛFnfT , where nf = card(Fh)

Discretization of the local HDG formulation

AKWK+ X

F ∈∂K

(25)

HDG method Formulation

HDG formulation of the equations

Local HDG formulation        Z K i ωρKvK· w − Z K ∇ ·σK · w + Z ∂K τ I vK−λF · w = 0 Z K i ωσK: ξ + Z K vK· ∇ ·CKξ− Z ∂K λF ·CKξ · n = 0 We define : WK =VxK, VyK, VzK, σxxK, σyyK, σzzK, σxyK, σxzK, σyzK T Λ= ΛF1, ΛF2, ..., ΛFnfT, where nf = card(Fh)

Discretization of the local HDG formulation

(26)

HDG method Formulation

HDG formulation of the equations

Transmission condition

In order to determineλF, the continuity of the normal component

ofσb

∂K is weakly enforced, rendering this numerical trace

conservative : Z

F

[[bσ

∂K · n]] · η = 0

Discretization of the transmission condition

X

K ∈Th



(27)

HDG method Formulation

HDG formulation of the equations

Transmission condition

In order to determineλF, the continuity of the normal component

ofσb

∂K is weakly enforced, rendering this numerical trace

conservative : Z

F

[[bσ

∂K · n]] · η = 0

Discretization of the transmission condition

X

K ∈Th



(28)

HDG method Formulation

HDG formulation of the equations

Global HDG discretization        AKWK+CKΛ= 0 X K ∈Th  BKWK+LKΛ = 0

(29)

HDG method Formulation

HDG formulation of the equations

Global HDG discretization        WK = −(AK)−1CKΛ X K ∈Th  BKWK+LKΛ = 0

(30)

HDG method Formulation

HDG formulation of the equations

Global HDG discretization

X

K ∈Th

(31)

HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrixM

withM= X K ∈Th h −BK(AK)−1CK +LK i for K = 1 to Nbtri do

Computation of matrices BK, (AK)−1,CK andLK

Construction of the corresponding section ofM

(32)

HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrixM

(33)

HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrixM

2. Construction of the right hand sideS

3. Resolution MΛ = S, with a direct solver (MUMPS) or hybrid

(34)

HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrixM

2. Construction of the right hand sideS

3. Resolution MΛ = S, with a direct solver (MUMPS) or hybrid

solver (MaPhys)

(35)

HDG method Algorithm

Main steps of the HDG algorithm

1. Construction of the global matrixM

2. Construction of the right hand sideS

3. Resolution MΛ = S, with a direct solver (MUMPS) or hybrid

solver (MaPhys)

4. Computation of the solutions of the initial problem

for K = 1 to Nbtri do

ComputeWK = −(AK)−1CKΛ

(36)

HDG method Algorithm

MaPhys Vs MUMPS

Pattern of the HDG global matrix for P1 interpolation and for a 3D

(37)

HDG method Algorithm

MaPhys Vs MUMPS

Software packages for solving systems of linear equations Ax = b, where A is a sparse matrix

I MUMPS (MUltifrontal Massively Parallel sparse direct

Solver) :

I Direct factorization A = LU or A = LDLT

I Multifrontal approach

I MaPhys (Massively Parallel Hybrid Solver) :

I Direct and iterative methods

I non-overlapping algebraic domain decomposition method

(Schur complement method)

I resolution of each local problem thanks to direct solver such as

(38)

Numerical results 3D plane wave in an homogeneous medium

3D plane wave in an homogeneous medium

1000 m 1000 m 1000 m Configuration of the computational domain Ω . I Physical parameters : I ρ= 1 kg.m−3 I λ= 16 GPa I µ= 8 GPa I Plane wave : u = ∇ei (kxx +kyy +kzz) where kx = ω vp cos θ0cos θ1, ky = ω vp

sin θ0cos θ1, and

kz = ω vp sin θ1 I ω = 2πf , f = 8 Hz I θ0 = 30◦, θ1 = 0◦ I Mesh composed of 21 000 elements

(39)

Numerical results 3D plane wave in an homogeneous medium

Cluster configuration

Features of the nodes :

I 2 Dodeca-core Haswell Intel Xeon E5-2680

I Frequency : 2,5 GHz

I RAM : 128 Go

I Storage : 500 Go

I Infiniband QDR TrueScale : 40Gb/s

(40)

Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Memory consumption

48 96 192 384 576 1 10 # cores Memo ry (GB)

Maximum local memory for HDG-P2 method

MaPhys 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads MUMPS 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads (matrix order = 772 416, # nz=107 495 424)

(41)

Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Memory consumption

48 96 192 384 576 1 10 # cores Memo ry (GB)

Maximum local memory for HDG-P3 method

MaPhys 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads MUMPS 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads (matrix order = 1 287 360, # nz=298 598 400 )

(42)

Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Execution time

48 96 192 384 576 10 100 # cores Time (s)

Execution time for the resolution of the HDG-P2 system

MaPhys 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads MUMPS 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads (matrix order = 772 416, # nz=107 495 424 )

(43)

Numerical results 3D plane wave in an homogeneous medium

3D Plane wave : Execution time

48 96 192 384 576

100

# cores

Time

(s)

Execution time for the resolution of the HDG-P3 system

MaPhys 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads MUMPS 8 MPI, 3 threads 4 MPI, 6 threads 2 MPI, 12 threads (matrix order = 1 287 360, # nz=298 598 400 )

(44)

Conclusions-Perspectives

Conclusion-Perspectives

I HDG method implemented in Total program (WP6)

I more detailled analysis of the comparison between MUMPS

and MaPhys (WP3)

I comparison between to PaStiX solver

I extension to elasto-acoustic case

(45)

Conclusions-Perspectives

(46)

Conclusions-Perspectives

Factorization time (s) for the HDG-P2 system

(Matrix order = 772 416, # nz = 107 495 424)

2 nodes 4 nodes 8 nodes 16 nodes 24 nodes

Maphys Mumps Maphys Mumps Maphys Mumps Maphys Mumps Maphys Mumps

8 MPI/n., 21.77 42.55 7.18 35.06 2.62 37.54 1.32 43.47 0.37 43.47 3 t./MPI 4 MPI/n. 42.37 44.66 14.05 33.69 5.28 26.80 2.48 31.20 1.1 37.27 6 t./MPI 2 MPI/n. 70.20 69.48 29.11 49.69 10.79 33.44 4.22 27.57 2.69 24.58 12 t./MPI

Références

Documents relatifs

Par exemple, pour un dirigeant de la société A est nommé un adjoint de la société B et inversement, ce qui a pour conséquence d’alourdir l’organisation

(Slide 8) Donc, ce travail a été réalisé ou accompli au sein de ce même laboratoire LSTPA, laboratoire de recherche en sciences techniques et production animale, dans un

Il est possible que l’amélio ration de la compétitivité hors prix avant 2008 ait résulté essentiellement d’un eff et de sélection : compte tenu de la dégradation de

k 1 denotes the number of iterations in simple precision, k 2 the number of iterations in double precision, and k the number of total iterations when the solver (LDL-AMD

The new series expansion method was further numerically demonstrated to be very efficient especially beyond the asymptotic regime, thus making redun- dant solving multiple instances

Dans le paragraphe suivant, nous pr´ esentons la formulation de l’expression g´ en´ erale de l’´ energie d’interaction entre deux aimants en fonction du potentiel scalaire

locally the MP value is equal to the electronic density (local perfect Majorana character). These conditions need to both be satisfied in order that the sum of the MP vector over

In Section II we in- troduce the model on which we illustrate the main find- ings of this paper, we expect this picture to be generic and apply to all the models where the hard