• Aucun résultat trouvé

LIMITING TEMPERATURES OF EXCITED NUCLEI : STATIC AND DYNAMICAL ASPECTS

N/A
N/A
Protected

Academic year: 2021

Partager "LIMITING TEMPERATURES OF EXCITED NUCLEI : STATIC AND DYNAMICAL ASPECTS"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00225803

https://hal.archives-ouvertes.fr/jpa-00225803

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

LIMITING TEMPERATURES OF EXCITED

NUCLEI : STATIC AND DYNAMICAL ASPECTS

P. Bonche, D. Vautherin, M. Veneroni

To cite this version:

P. Bonche, D. Vautherin, M. Veneroni.

LIMITING TEMPERATURES OF EXCITED

NU-CLEI : STATIC AND DYNAMICAL ASPECTS. International Conference on Heavy Ion Nuclear

Collisions in the Fermi Energy Domain Hicofed 86, 1986, Caen, France.

pp.C4-339-C4-350,

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplément au n° 8, Tome 47, août 1986 C4-339

LIMITING TEMPERATURES OF EXCITED NUCLEI : STATIC AND DYNAMICAL ASPECTS

P. BONCHE, D. VAUTHERIN* and M. VENERONI*

DPhG/SPhT, CEW-Saclay, F-91191 Gif-sur-Yvette Cedex, France "Division de Physique Theorique* , Institut de Physique Nucleaire, F-91406 Orsay Cedex, France

Résumé - Des calculs statiques et dynamiques de noyaux à haute température sont présentés et discutés dans le cadre de l'approximation de champ moyen.

A b s t r a c t - Some s t a t i c and dynamical c a l c u l a t i o n s o f hot n u c l e i are discussed w i t h i n the framework o f the mean f i e l d approximation.

The phase diagram o f nuclear matter i s believed t o e x h i b i t the t y p i c a l s t r u c t u r e o f a Van der W a a l s ' f l u i d / I , 2 / . In p a r t i c u l a r t h i s diagram shows a c r i t i c a l p o i n t , whose temperature Tc i s about 20 MeV and below which the minimum

value o f the f r e e energy corresponds t o an e q u i l i b r i u m between a l i q u i d and a vapor phase. Whether the corresponding l i q u i d - v a p o r t r a n s i t i o n i s observable i n heavy-ion c o l l i s i o n s has been the s u b j e c t o f much d i s c u s s i o n . I n c o n t r a s t w i t h the case o f s t a t i c i n f i n i t e nuclear m a t t e r , a r e a l i s t i c d e s c r i p t i o n o f h i g h l y e x c i t e d n u c l e i , as they are produced i n heavy-ion c o l l i s i o n s , should include f i n i t e s i z e , surface and Coulomb e f f e c t s , as w e l l as the dynamics o f the c o l l i s i o n . With the aim o f e x p l o r i n g some o f these e f f e c t s , we i n t e n d i n the f o l l o w i n g t o compare the r e s u l t s o f some s t a t i c and dynamical c a l c u l a t i o n s w i t h i n the mean f i e l d approximation a t f i n i t e temperature. This approximation i s c h a r a c t e r i z e d by the replacement o f the exact d e n s i t y operator by an u n c o r r e l a t e d one o f the form

(1)

where a:- and a-j are the nucleon c r e a t i o n and a n n i h i l a t i o n operators i n the o r b i t a l s

| t f . > , Z being a n o r m a l i z a t i o n f a c t o r . We w i l l t h e r e f o r e assume t h a t the s i n g l e -p a r t i c l e degrees o f freedom have been thermalized a t some stage o f the c o l l i s i o n by the r e s i d u a l i n t e r a c t i o n s .

I - STATIC MEAN FIELD CALCULATIONS OF HOT NUCLEI

For Hartree-Fock c a l c u l a t i o n s a t f i n i t e temperature, the p o p u l a t i o n o f the i n d i v i d u a l s t a t e s i n the continuum, prevents t h e d i r e c t d e t e r m i n a t i o n o f D by minimizing the f r e e energy. A way t o solve t h i s problem i s t o perform mean f i e l d

c a l c u l a t i o n s f o r an e q u i l i b r i u m between a nucleus and an e x t e r n a l vapor / 3 / . (For an a l t e r n a t i v e approach see r e f . / 4 / ) . However t h i s method makes i t necessary t o i d e n t i f y unambiguously the nucleus and vapor c o n t r i b u t i o n s .

i ) I s o l a t i n g the nucleus from i t s vapor.

I t was shown i n r e f . / 3 / t h a t the Hartree-Fock equations a t f i n i t e temperature, f o r given values o f the chemical p o t e n t i a l \i and volume V, have i n general two s o l u t i o n s . One describes the nucleus-vapor system whereas the second describes the vapor o n l y . The nucleus grand p o t e n t i a l was defined i n r e f . / 3 / as the d i f f e r e n c e

+Laboratoire associe au CNRS

(3)

C4-340

JOURNAL DE

PHYSIQUE

between the grand p o t e n t i a l s o f these two s o l u t i o n s ; t h i s d i f f e r e n c e was shown t o have a w e l l d e f i n e d l i m i t when V goes t o i n f i n i t y .

For independent nucleons i n a p o t e n t i a l U ( r ) t h i s s u b t r a c t i o n procedure gives t h e f o l l o w i n g formula f o r the grand p o t e n t i a l o f t h e nucleus

where 6 = l / k T i s the i n v e r s e temperature and a/@ = p t h e chemical p o t e n t i a l , w h i l e

En and 6g(E) denote r e s p e c t i v e l y t h e energies o f the bound s t a t e s and the phase s h i f t s f o r the p o t e n t i a l U ( r ) . T h i s formula agrees w i t h t h e expression of t h e second o r d e r v i r i a l c o e f f i c i e n t d e r i v e d i n 1937 by Bethe and Uhlenbeck /5/.

The s u b t r a c t i o n procedure of r e f . /3/ a l s o c o n t a i n s as a s p e c i a l case t h e formula o f Tubbs and Koonin /6/, which was d e r i v e d i n t h e semi-classical approxima- t i o n f o r independent nucleons i n a p o t e n t i a l U ( r ) . It gives the nucleus grand p o t e n t i a l

R

as

- a 2

w i t h

where F 3 j 2 i s t h e Fermi i n t e g r a l o f o r d e r 3/2. This formula may be shown t o be t h e semi-classical l i m i t o f eq. ( 2 ) /3/.

ii ) L i m i t i n g temperature.

When a p p l i e d w i t h i n a Hartree-Fock framework the s u b t r a c t i o n procedure ( 3 ) p r e d i c t s t h e e x i s t e n c e o f a l i m i t i n g temperature Ti beyond which an e q u i l i b r i u m w i t h an e x t e r n a l vapor i s no l o n g e r p o s s i b l e . The value o f t h i s l i m i t i n g temperature has been found t o be o f the o r d e r o f 10 MeV : i n the case o f lead-208,TR = 11 MeV f o r t h e Skyrme I l l i n t e r a c t i o n w h i l e i t i s 8 MeV f o r t h e SKY i n t e r a c t i o n /3/. Because o f the Coulomb e f f e c t s , these values a r e a p p r e c i a b l y smal l e r than t h e corresponding ones i n ( n e u t r a l ) n u c l e a r m a t t e r . Systematic i n v e s t i g a t i o n s u s i n g t h e Thomas-Fermi approximation /7/ and t h e h o t l i q u i d drop model /8/ have shown t h a t TQ decreases from l i g h t t o heavy n u c l e i (see f i g . 1). This decrease i s a l s o due t o t h e Coulomb e f f e c t s .

I t can be shown t h a t t h e l i m i t i n g temperature TR i s n o t l a r g e r than the temperature To f o r which t h e nucleus b i n d i n g energy vanishes. Indeed when t h e energy o f t h e nucleus i s p o s i t i v e , i t becomes p o s s i b l e t o lower t h e f r e e energy by a scale t r a n s f o r m a t i o n on t h e o r b i t a l s , t h e occupation numbers ( i . e . t h e entropy) being k e p t fixed. I n p r a c t i c e , numerical c a l c u l a t i o n s have shown t h a t

T i s always s l i g h t l y s m a l l e r than To (see Table 2 o f r e f . /3/).

II

i i i ) L i f e t i m e s o f h o t n u c l e i .

(4)

Fig.

1

-

Limiting temperature obtained i n t h e hot l i q u i d drop model as a function of

the nucleus mass number

/ 8 / .

The r e s u l t s obtained f o r d i f f e r e n t e f f e c t i v e i n t e r -

actions (see ref.

/a/)

are compared. High values of a are associated w i t h high

incompressi bi 1 i t i e s i n nuclear matter.

f o r interaction

S I I I

and

f o r various temperatures

Table

1

-

Lifetime of lead-208, calculated i n r e f .

/3/

f o r interaction S I I I , a t

various temperatures.

I t may be noted t h a t l i f e t i m e s become comparable t o reaction times f o r temperatures

of the order of

5

MeV. The values in t a b l e

1

a r e , however, presumably underesti-

mated

131.

(5)

C4-342 JOURNAL

DE

PHYSIQUE

I 1

-

TIME DEPENDENT HARTREE-FOCK CALCULATIONS

The e v o l u t i o n o f h o t n u c l e i has recent1 y been i n v e s t i g a t e d by several v a r i a n t s of t h e dynamical mean-field approach. L e t us quote the constrairled Hartree-Fock method /9/, the time dependent Thomas-Fermi approximation

/ l o / ,

t h e Vlasov e q u a t i o n

/11/, the Monte-Carlo Hartree-Fock method /12/, and the time dependent Hartree-Fock (TDHF) approximation /13/. Ide w i l l now d e s c r i b e some r e s u l t s which were r e c e n t l y obtained b y the l a s t approach /14/.

L e t us f i r s t r e c p l l t h a t , i n TDHF, the d e n s i t y m a t r i x i s assumed, a t each time t, t o b$ o f the form given by eq. (1). The TDHF e v o l u t i o n equations f o r the o r b i t a l s p i ( r ) and f o r the q u a n t i t i e s a i a r i s i n g i n eq. ( 1 ) preserve t h e occupation numbers, t h e s i n g l e p a r t i c l e entropy, and the Hartree-Fock energy.

The r e s u l t s described below were obtained by numerical i n t e g r a t i o n o f t h e TDHF equations a 0.2 fm l a t t i c e c o n t a i n i n g 100 p o i n t s , w i t h a t i m e s t e p A t = 0.25 x s. The zero range d e n s i t y dependent f o r c e o f Jaquaman, l l e k j i a n and Zamick (JNZ) /15/ was used because o f i t s s i m p l i c i t y and a l s o because i t s parameters were a d j u s t e d t o reproduce t h e s a t u r a t i o n p r o p e r t i e s o f n u c l e a r m a t t e r :

b i n d i n g enerqy, d e n s i t y , and compression modulus. However i t overbinds l i g h t n u c l e i . For i n s t a n c e E/A =

-

11 MeV i n calcium-40.

I n f i g , 2 we show t h e e v o l u t i o n o f a h o t calcium-40, whose i n i t i a l temperature i s T = 6 MeV. The i n i t i a l wave f u n c t i o n s are taken t o be pure o s c i l l a t o r f u n c t i o n s , w i t h a parameter b =

-

= 1.7 fm a d j u s t e d t o reproduce t h e r o o t mean square

(rms) r a d i u s o f t h e Hartree-Fock ground s t a t e (3.08 fm). The i n i t i a l occupation numbers a r e determined from t h e Hartree-Fock s i n g l e p a r t i c l e energies associated t o t h e i n i t i a l wave functions. It i s assumed, i n o t h e r words, t h a t t h e r e s i d u a l i n t e r a c t i o n s , d u r i n g a f i r s t stage o f the r e a c t i o n , have t h e r m a l i z e d the s i n g l e p a r t i c l e degrees o f freedom, and t h a t t h e r a d i u s has n o t a p p r e c i a b l y changed. Fig. 2 e x h i b i t s (see a l s o f i g . 6 below) t h e existence o f a s i g n i f i c a n t Landau damping o f the monopole o s c i l l a t i o n : t h e d e n s i t y d i s t r i b u t i o n appears t o reach a l i m i t a f t e r two o s c i l l a t i o n s . T h i s damping was already observed and discussed i n zero temperature TDHF c a l c u l a t i o n s /16/. It a r i s e s because o f the c o u p l i n g t o t h e continuum s t a t e s . I t i s t h i s same c o u p l i n g which leads t o t h e emission o f p a r t i c l e s .

F i g s . 3, 4 and 5 d i s p l a y t h e e v o l u t i o n o f a h o t calcium-40 f o r h i g h e r values o f t h e i n i t i a l temperature, namely T = 10, 12 and 15 MeV. Here also, t h e i n i t i a l r a d i u s has been k e p t approximately equal t o t h e Hartree-Fock ground s t a t e rms r a d i u s . I t can be seen on f i g s . 3-5 t h a t t h e amplitude o f t h e monopole o s c i l l a t i o n increases r a p i d l y w i t h temperature. A t o t a l v a p o r i z a t i o n o f t h e nucleus occurs between 12 and 15 MeV ; i t w i l l be discussed f u r t h e r i n connection w i t h the e v o l u t i o n o f occupation numbers ( t a b l e 2).

It i s i n t e r e s t i n g t o compare t h i s r e s u l t w i t h t h a t o f t h e s t a t i c c a l c u l a t i o n s o f s e c t . I. For t h e zero range i n t e r a c t i o n we are u s i n g and f o r the case of calcium-40 the l i m i t i n g temperature TR discussed i n sect. I i s near 12 MeV. This value i s i n good agreement w i t h t h e r e s u l t s of f i g u r e s 4 and 5.

I n c a l c u l a t i o n s using t h e BKN force (and t h e Vlasov equation) a h i g h e r value o f t h e v a p o r i z a t i o n temperature was found (about 18 MeV) /11/. T h i s d i f f e - rence should probably be a t t r i b u t e d t o t h e BKN f o r c e . Indeed t h i s f o r c e leads t o a l a r g e value o f t h e compression modulus i n n u c l e a r m a t t e r ; and t h i s value i s expected t o produce a l a r g e value o f t h e l i m i t i n g temperature TR (see f i g . 1 ) .

I n f i g . 6 we show t h e e v o l u t i o n o f t h e rms r a d i u s o f t h e " r e s i d u a l nucleus" f o r t h e i n i t i a l c o n d i t i o n s T = 6, 10 and 15 MeV and an i n i t i a l calcium-40 nucleus. The r e s i d u a l nucleus i s d e f i n e d by t r u n c a t i n g t h e s i n g l e p a r t i c l e wave f u n c t i o n s p i ( r ) i n eq. ( 1 ) a t a c u t o f f r a d i u s c = 8 fm. T h i s c u t o f f r a d i u s c i s l a r g e r than

(6)
(7)
(8)
(9)

JOURNAL DE PHYSIQUE CALCIUM 40

-

T1,15MeV R b

,1.48

frn E

-

U-

-

interaction

JMZ

21 + rrns -3.06

fm

.-

V) C

8

-

-

-

081

-

-

-

t - 0

-

t = I X I O - ~ ~ S

.-.

t = 2 x 1 0 - ~ ' s

...

".

t 1 3 x 10-~'s

-

0

2

4

6

8

(10)

Fig.

6

-

Time evolution of the root mean square radius of the residual nucleus for

the i n i t i a l conditions

A

= 40,

T

=

6

MeV, b

=

1.7 fm

; T =

10 MeV,

b =

1.6 fm

;

T

=

15 MeV,

b =

1.48 fm.

T

of the monopole o s c i l l a t i o n . The corresponding energy

fi x 2 8 / ~

i s 23.7 MeV f o r

T = 6

MeV and 17.3 MeV f o r

T =

10 MeV. For

T =

15 MeV the radius shows a monotonic

increase with time, as can be expected from f i g .

5.

The p a r t i c l e emission leads of course t o a decrease i n time of the mass

number and a l s o of the energy per nucleon ( i .e. t o a cooling) of the residual

nucleus as i s i l l u s t r a t e d by f i g s .

6

and 7. (Recall t h a t the t o t a l mass and the

t o t a l Hartree-Fock energy a r e constants of the motion i n TDHF). For i n i t i a l

temperatures

up

t o 12 MeV the average mass of the residual nucleus appears t o

reach a 1

i m i

t

w i t h

time. The same remark holds f o r the energy per nucleon which

goes asymptotically t o a negative value. In c o n t r a s t , f o r an i n i t i a l temperature

T

=

15 MeV the residual nucleus eventually disappears, while the energy per nucleon

remains always positive. From figure

7

one can define schematically a l i f e t i m e

.r

of the hot nucleus as the time when the number of emitted p a r t i c l e s i s half i t s

asymptotic value. For T

= 6

MeV t h i s gives

T

-

1

x

10-z2 s i n agreement with the

value quoted i n t a b l e

2 .

For higher temperatures such a d e f i n i t i o n of T(T) i s no

longer meaningful since there i s an important cooling ( i .e. decrease i n

E/A)

over

a time s c a l e of 1 0 - ~ 2

s . The importance of t h i s cooling i n a s h o r t lapse of time

suggests t h a t the system may not have the opportunity t o reach an i n i t i a l condition

with temperatures greater than some value around 10 MeV.

(11)

JOURNAL

DE

PHYSIQUE

CALCIUM 40 ~nteroct~on JMZ

c = 8 f m

Fig.

7

-

Time evolution of the average mass of the residual nucleus f o r various

i n i t i a l temperatures. The i n i t i a l nucleus i s cal ci um-40 and the i n i t i a l radius

3.08

fm.

(12)

nucleus, a t time

t l =

to

+

3

x

s . Theil calculation requires some care

because the r e s t r i c t i o n s of the o r b i t a l s q ( r ) t o the sphere of radius c are no

longer orthogonal. I t

is thus necessary t o construct and diagonalize the r e s t r i c t i o n

of the single p a r t i c l e density matrix in t h i s sphere. In contrast with the global

occupation numbers (which are constants of the motion) t a b l e 2 shows t h a t the

occupation numbers in the residual nucleus are modified during the TDHF evolution

by the p a r t i c l e emission. I t i s worthwhile noting t h a t the main e f f e c t of the

p a r t i c l e emission i s t o empty unbound o r b i t s i n the i n i t i a l Hartree-Fock potential.

For T

=

12 MeV the entropy per nucleon decreases from S/A

=

2.09 t o S/A

=

1.51 because

the evaporated p a r t i c l e s are the most disordered. Notice t h a t f o r

T

greater than

10 MeV, the emitted p a r t i c l e s produce a d r a s t i c reduction of the mean f i e l d depth

;

a t T

=

15 MeV t h i s non-linear e f f e c t i s s u f f i c i e n t t o drive a l l the p a r t i c l e s i n t o

the continuum, leading t o t o t a l vaporization.

Table

2

-

Occupation numb

rs

ni of the lowest o r b i t a l s a t the i n i t i a l time

to,

and a t ti

=

to

+

3

x

s

in the residual nucleus. The i n i t i a l condition i s

A =

40, T

= 6

MeV, rms

=

3.08 fm. The Hartree-Fock single p a r t i c l e energies

Ei(MeV) a t time

to are also indicated.

CONCLUSION

AND OUTLOOK

The time dependent Hartree-Fock formalism provides, through p a r t i c l e emission,

a consistent dynamical treatment of the l i q u i d and vapor nuclear phases. While being

s t i l l numerically simple, i t allows a comparison with the r e s u l t s of e a r l i e r s t a t i c

calculations, whose conclusions are i n the overall c o n f i n e d .

(13)

C4-350 JOURNAL

DE

PHYSIQUE

Some aspects o f n u c l e a r fragmentation have a l r e a d y been i n v e s t i g a t e d by d i f f e r e n t techniques /12, 17-19/. I n t h e TDHF framework, an approximate way t o study t h i s q u e s t i o n i s through t h e random ~ h a s e approximation (RPA) a t f i n i t e temperature /13, 20/. I n t h i s approach and f o r a density-dependent i n t e r a c t i o n such as t h e JMZ f o r c e /15/, the e f f e c t i v e " p a r t i c l e - h o l e " i n t e r a c t i o n was found t o be r e p u l s i v e a t d e n s i t i e s h i g h e r than the normal n u c l e a r d e n s i t y and a t t r a c t i v e a t lower d e n s i t i e s . T h i s e f f e c t produces imaginary RPA r o o t s which may reveal t h e onset o f fragmentation a t low n u c l e a r density.

L e t us f i n a l l y r e c a l l t h a t TDHF i s o n l y one among p o s s i b l e mean-field t h e o r i e s . Using a time dependent v a r i a t i o n a ? p r i n c i p l e , i t has been shown t o be the "best" mean-field approximation f o r p r e d i c t i n g t h e average values o f s i n g l e - p a r t i c l e observables. When the q u a n t i t i e s o f i n t e r e s t , such as f l u c t u a t i o n s o r t r a n s i t i o n p r o b a b i l i t i e s , are no more o f t h e s i n g l e - p a r t i c l e type, more s o p h i s t i - cated mean-field t h e o r i e s (which a r e s u i t e d t o t h e e v a l u a t i o n o f these q u a n t i t i e s and which i n c o r p o r a t e some c o r r e l a t i o n e f f e c t s ) may be d e r i v e d from t h i s same v a r i a t i o n a l p r i n c i p l e /21/. I n t h e zero temperature case, t h e mass d i s p e r s i o n o f the r e s i d u a l n u c l e i has been evaluated by t h i s method and t h e c o r r e c t i o n s /22-24/ found t o improve s i g n i f i c a n t l y the "naive" TDHF e v a l u a t i o n s which g i v e t o o small values.

We hope t h a t i n v e s t i g a t i o n s , now i n progress along these l i n e s , w i l l h e l p t o a b e t t e r understanding o f these e x c i t i n g n u c l e a r blobs, which our e x p e r i m e n t a l i s t f r i e n d s e x c i t e , n o t f a r from here, w i t h a t o n i c excitement.

REFERENCES

/1/ Kiipper, W.A., Wegmann, G. and H i l f , E.R., Ann. Phys. (N.Y.) 88 (1974) 454. /2/ Sauer, G., Chandra, H. and Mosel, U., Nucl. Phys. A264 (1976 221,

6

/3/ Bonche, P., L e v i t , S. and Vautherin, D., Nucl. Ph~s.-A4?7 ( 1 841 278

-

.-

.

; A436 (1985) 265.

/4/ E m b e r g e r , E., B a r t e l

,

J., B l i n , A., H i l l e r , 6. and Brack, M., C o n t r i b u t i o n t o t h e p r e s e n t volume, p. 66.

/5/ Landau, L.D. and L i f s c h i t z , E.

,.

S t a t i s t i c a l Mechanics, M i r , Moscow, 1967, sect. 77.

/6/ Tubbs, D.L. and Koonin, S.E., Ap. J.

-

232 (1979) L59. /7/ Suraud, E., ISN p r e p r i n t , 1986.

/8/ L e v i t , S. and Bonche, P., Nucl. Phys. A437 (1985) 426. /9/ Sagawa, H. and Bertsch, G.F., Phys. Lett.1556 (1985) 11.

/ l o /

Pi, M., Barranco, M., Nemeth, J., Ng6, C. ~ o m a s i , E., Phys. L e t t . (1986) 1.

\ - - - - I - -

/11/ Vinet, L., S e b i l l e , F., Gregoire, C. and Schuck, P., P r e p r i n t GANIL P 86-01. /12/ Strack, B. and K n o l l , J., Z. Phys. A315 (1984) 249.

/13/ Vautherin, D. and Veneroni, M., J o u m de Physique, i n press. /14/ Vautherin, D. and Veneroni, M., p r e p r i n t IPNO/TH 86-39.

/15/ Jaquaman, H., Mekjian, A.Z. and Zamick, L., Phys. Rev. C27 (1983) 2782. /16/ S t r i n g a r i , S. and Vautherin, D., Phys. L e t t .

-

888 ( 1 9 7 9 ) T

/17/ Cugnon, J,, Phys. L e t t . 1358 (1984) 374.

/18/ Schulz, H., Gmpfer, B. ,-Barz, H.W., Ropke, G. and Bondorf, J., Phys. L e t t . 147B (1984) 17.

/19/ T T Z n t i n i , A., Jacucci

,

G. and Pandharipande, V.R., Phys. Rev. C31 (1985) 1783. /20/ Vautherin, D. and Vinh Mau, N., Nucl. Phys. A422 (1984) 140.

-

Références

Documents relatifs

Demande A1 : je vous réitère ma demande de prendre les dispositions organisationnelles nécessaires pour me transmettre à l’avenir les réponses aux lettres de

- réalisation d'un château de transfert de l'échantillon de l'enceinte de préparation vers la microsonde. Cette solution a été adoptée dans le cas de la microsonde blindée MS 46.

Le fonctionnement du palier hydrostatique pour pompes à fluide sous pression, alimenté au moyen du fluide pompé est assuré quelles qui soient les conditions

Dans le but de choisir les sorbants les plus efficaces pour la purification du caloporteur sodium de la présence du césium, on a effectué des essais où des échantillons de

L'expérience faite, en collaboration, par des laVx>ratoires du CERN, de Columbia, de Rockefeller et de Saclay (c.C.R.S.) a mesuré la production des j£- , js°. Le

existe des calculs faux, comme il *xiste des essais faux et que c'est parfois la confrontation des deux qui permet de mettre en évidence des erreurs qui seraient

The only possible way to do PT usefully in the sector of the non{leptonic weak interactions is to combine the chiral expansion with other approximation methods, like e.g., the 1=N

La prise en compte de la cinétique des variations de volume du combustible sous irradiation est moins importante pour l'influence directe qu'elle pourrait avoir sur l'intégrité de