• Aucun résultat trouvé

Scalar meson contributions to a μ from hadronic light-by-light scattering

N/A
N/A
Protected

Academic year: 2021

Partager "Scalar meson contributions to a μ from hadronic light-by-light scattering"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01863060

https://hal.archives-ouvertes.fr/hal-01863060

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Scalar meson contributions to a µ from hadronic

light-by-light scattering

M. Knecht, S. Narison, A. Rabemananjara, D. Rabetiarivony

To cite this version:

M. Knecht, S. Narison, A. Rabemananjara, D. Rabetiarivony.

Scalar meson contributions to

a µ from hadronic light-by-light scattering.

Physics Letters B, Elsevier, 2018, 787, pp.111-123.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Scalar

meson

contributions

to

a

μ

from

hadronic

light-by-light

scattering

M. Knecht

a

,

S. Narison

b,

,1

,

A. Rabemananjara

c

,

D. Rabetiarivony

c,2

aCentredePhysiqueThéoriqueUMR7332,CNRS/Aix-MarseilleUniv./Univ.duSudToulon-Var,CNRSLuminyCase907,13288MarseilleCedex 9,France bLaboratoireParticulesetUniversdeMontpellier,CNRS-IN2P3,Case070,PlaceEugèneBataillon,34095Montpellier,France

cInstituteofHigh-EnergyPhysics(iHEPMAD),UniversityofAntananarivo,Madagascar

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received14August2018

Receivedinrevisedform11October2018 Accepted23October2018

Availableonline26October2018 Editor:A.Ringwald

Keywords:

Anomalousmagneticmoment Muon

Scalarmesons Radiativewidth Nonperturbativeeffects

Usinganeffective

σ

/f0(500)resonance,whichdescribesthe

π π

π π

and

γ γ

π π

scatteringdata,

weevaluateitscontributionandtheonesoftheotherscalarmesonstothehadroniclight-by-light(HLbL)

scatteringcomponentoftheanomalousmagneticmomentofthemuon.Weobtaintheconservative

rangeofvalues:Salblμ|S −(4.51±4.12)×10−11,whichisdominatedbythe

σ

/f0(500)contribution

(50%∼98%),andwhere thelargeerrorisduetotheuncertaintiesontheparametrisationofthe form

factors.Consideringournewresult,weupdatethesumofthedifferenttheoreticalcontributionsto

withinthestandardmodel,whichwethencomparetoexperiment.Thiscomparisongives(aexpμaSMμ)=

+(312.1±64.6)×10−11,wherethe theoreticalerrorsfrom HLbLare dominatedbythe scalarmeson

contributions.

©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The anomalous magnetic moments a (



e

,

μ

) of the light

charged leptons, electron and muon, are among the most accu-rately measured observablesin particlephysics. The relative pre-cision achievedby the latest experiments to date is of0.28 ppb inthecaseoftheelectron [1,2], and0.54 ppm inthecaseofthe muon[3].AnongoingexperimentatFermilab[4–6],andaplanned experimentatJ-PARC[7],aimatreducingtheexperimental uncer-taintyonaμ to thelevelof0.14 ppm, andthere isalsoroom for futureimprovementson theprecision ofae.The confrontationof

theseveryaccuratemeasurementswithequallyprecisepredictions fromthestandardmodelthenprovidesastringenttest ofthe lat-ter,and,astheexperimentalprecisionisfurtherincreasing,opens up the possibility ofindirectly revealingphysics degreesof free-domthatevengobeyondit.

Fromthislast pointofview,thepresentsituationremains un-conclusiveinthecaseofthemuon(inthecaseoftheelectron,the

*

Correspondingauthor.

E-mailaddresses:marc.knecht@cpt.univ-mrs.fr(M. Knecht),snarison@yahoo.fr

(S. Narison),achrisrab@gmail.com(A. Rabemananjara),rd.bidds@gmail.com

(D. Rabetiarivony).

1 MadagascarconsultantoftheAbdusSalamInternationalCentreforTheoretical

Physics(ICTP),viaBeirut6,34014Trieste,Italy.

2 PhDstudent.

measured value of ae agreed with the predicted value obtained

from themeasurement of the fine-structure constant of Ref. [8]; however,themorerecentdeterminationof

α

[9] nowresultsina tensionatthelevelof2

.

5 standarddeviationsbetweentheoryand experiment). Indeed,the lateststandard model evaluationsof

(Ref. [10] providesarecentoverview,aswell asreferencesto the literature;see alsoSection 10 atthe endofthis article)reveal a discrepancybetweentheoryandexperiment,whichhoweverisat thelevelof

3

.

5 standarddeviationsonly.Itistherefores manda-tory, as the experimental precision increases, to also reduce the theoreticaluncertaintiesintheevaluationofaμ.

Presently,thelimitationinthetheoreticalprecisionofaμ isdue tothecontributionsfromthestronginteractions, whichare dom-inated by the low-energy, non perturbative, regime of quantum chromodynamics(QCD).Thepresentworkisdevotedtoahadronic contribution arising at order

O(

α

3

)

, and currently refered to as

hadroniclight-by-light (HLbL), seeFig. 1.More precisely, we will be concerned witha particular contribution to HLbL, dueto the exchange of the 0++ scalar states

σ

/

f0

(

500

)

, a0

(

980

)

, f0

(

980

)

,

f0

(

1370

)

, and f0

(

1500

)

. In earlier evaluations of the HLbL part

of aμ, some of these states were either treated in the frame-workoftheextended Nambu–Jona-Lasiniomodel[11,12],orthey weresimplyomittedaltogether[13,14].Morerecently,inRef. [15] the contributions from the

σ

/

f0

(

500

)

and a0

(

980

)

scalars have

been reconsidered in the framework of the linearized Nambu– Jona-Lasiniomodel.InRef. [16],thecontributionfromthea0

(

980

)

,

https://doi.org/10.1016/j.physletb.2018.10.048

(3)

Fig. 1. Light-by-lightHadronscatteringcontributiontoal.Thewavylinesrepresent

photon.Thecrosscorresponds totheinsertionoftheelectromagneticcurrent.The shadedboxrepresentshadronssubgraphs.

Fig. 2. Scalarmesonexchange(dottedlines)toLight-by-lightscatteringcontribution to.Thewavylinesrepresentphoton.Theshadedblobrepresentsformfactors. ThefirstandseconddiagramscontributetothefunctionT1,andthethirdtothe

functionT2definedinEq. (3.11).

f0

(

980

)

, f0

(

1370

)

stateswereevaluatedassingle-mesonexchange

termswithphenomenologicalformfactors,seeFig.2.Finally,the contribution fromthe lightest scalar, the

σ

/

f0

(

500

)

is contained

inthedispersiveevaluationofthecontributiontoHLbLfrom two-pionintermediatestateswith

π π

rescatteringofRefs. [17,18].

Theapproach consideredhereforthetreatment ofthe contri-bution from scalar states to HLbL has, to some extent, overlaps with both of the last two of these more recent approaches. It restsonasetofcoupled-channeldispersionrelationsforthe pro-cesses

γ γ

π π

,

KK ,

¯

where thestrong S-matrixamplitudes for

π π

π π

,

KK are

¯

represented by an analytic K-matrix model, firstintroduced inRef. [19],andgraduallyimprovedover timein Refs. [20–22],asmoreprecise dataon

π π

scatteringandonthe reactions

π π

γ γ

became available. The details of the model willnot bediscussed here,asthey areamply documentedinthe quoted references. The interest for our present purposes of the analysis of the data within this K-matrix framework is twofold. First, it contributes to our knowledge of the two-photon widths of some of the scalar states, which we will need asinput. Sec-ond, through the fit to data of the K-matrix description of

π π

scattering, it provides information on the mass and the total hadronic width of the

σ

/

f0

(

500

)

resonance, which will also be

needed.

Therestofthisarticleisorganizedasfollows.Section2briefly recalls the basic formalism describing the hadronic light-by-light contribution to the anomalous magnetic moment of a charged lepton. This is then specialized to the contribution due to the exchange of a narrow-width scalar state (Section 3). Some rele-vant properties of the vertex function involved are discussed in Section 4, where a vector-meson-dominance (VMD) representa-tion satisfying its leading short-distance behaviour is also given. Three sections are devoted to a review of the properties (mass andwidth)ofthe f0

/

σ

scalar,comingeitherfromsumrules

(Sec-tion 6) or fromphenomenology (Section7). In Section 7we fur-thermoredescribehowourformalismalsoallowstohandlebroad resonances like

σ

/

f0

(

500

)

or f0

(

1370

)

. The values of the mass

andofthewidthofthe

σ

/

f0

(

500

)

retainedforthepresentstudy

aregiveninthelast ofthesethree sections(Section 8). The two-photon widths of the remaining scalar mesons are discussed in Section 9.Ourresultsconcerning the contributionsof thescalars to HLbL are presented and discussed in Section 10. Finally, we summarizethepresentexperimentalandtheoreticalsituation con-cerningthestandard-modelevaluationoftheanomalousmagnetic

moment ofthe muon (Section11) andend thisarticleby giving ourconclusions(Section12).

2. Hadroniclight-by-lightcontributiontoal

The hadronic light-by-lightcontribution to the muon anoma-lousmagneticmoment,illustratedinFig.1,isequalto[24]:

alblμ

F2

(

k

=

0

)

=

1

48mtr



(

p

/

+

m

)[

γ

ρ

,

γ

σ

](

p

/

+

m

)

ρσ

(

p

,

p

)



(2.1)

wherek isthemomentumoftheexternalphoton,whilem and p

denotethemuonmassandmomentum.Furthermore[p

=

p

+

k]



ρσ

(

p

,

p

)

≡ −

ie6



d4q 1

(

2

π

)

4



d4q 2

(

2

π

)

4 1 q2 1q22

(

q1

+

q2

k

)

2

×

1

(

p

q1

)

2

m2 1

(

p

q1

q2

)

2

m2

×

γ

μ

(

/

p

q

/

1

+

m

)

γ

ν

(

p

/



/

q1

/

q2

+

m

)

γ

λ

×

μνλσ

(

q1

,

q2

,

k

q1

q2

) ,

(2.2)

withq1

,

q2

,

q3 themomentaorthevirtualphotonsand

μνλρ

(

q1

,

q2

,

q3

)

=



d4x1



d4x2



d4x3ei(qx1+qx2+qx3)

× 

0

|

T

{

(

x1

)

(

x2

)

(

x3

)

(

0

)} |

0

(2.3)

the fourth-rank light quark vacuum polarization tensor, jμ the

electromagneticcurrentand

|

0

theQCDvacuum.

In practice,the computationofalblμ involvesthe limitk

p

p

0 ofanexpressionofthetype:

F

(

p

,

p

)

= −

ie6



d4q1

(

2

π

)

4



d4q2

(

2

π

)

4

J

μνρσ τ

(

p

,

p

;

q 1

,

q2

)

×

F

μνρσ τ

(

q1

,

q2

+

q1

+

k

,

q2

,

k

),

(2.4) where

J

μνρσ τ

(

p

,

p

;

q 1

,

q2

)

=

1

(

p

+

q1

)

2

m2 1

(

p

q2

)

2

m2 1 q2 1q22

(

q1

+

q2

+

k

)

2

×

1 48mtr

[(

/

p

+

m

)

[

γ

σ

,

γ

τ

](

/

p

+

m

)

γ

μ

(

/

p

+

q

/

1

+

m

)

×

γ

ν

(

p

/

q

/

2

+

m

)

γ

ρ

].

(2.5)

Thistensorhasthesymmetryproperty

J

μνρσ τ

(

p

,

p

;

q1

,

q2

)

=

J

ρνμτ σ

(

p

,

p

;

q2

,

q1

)

, while, due to Lorentz invariance,

F(

p

,

p

)

dependsonthemomenta p and p throughtheir invari-ants only. For on-shell leptons, p2

=

p2

=

m2, this amounts to

F(

p

,

p

)

F(

k2

)

=

F(

p

,

p

)

. 3. Scalarmesoncontributionstoalblμ

Let us focus on the contribution to albl

 due to the exchange

of a 0++ scalar meson S. We first discuss the situation where the width of this scalar meson is small enough so that its ef-fects can be neglected. As a look to Table 1 shows, thiswill be thecaseforS

=

a0

(

980

),

f0

(

980

),

f0

(

1500

)

.Thecircumstances

un-derwhichthequitebroad

σ

/

f0

(

500

)

resonance,andpossiblyalso

the f0

(

1370

)

state,canbetreatedinasimilarmannerwillbe

(4)

Table 1

Thescalarstatesweconsidertogetherwiththeestimatesoraveragesforthemass andwidth,asgivenbythe2018EditionoftheReviewofParticlePhysics[25].In thecasesoftheσ/f0(500)and f0(1370)states,therangesrepresenttheestimates

oftheBreit–Wignermassesandwidths.

Scalar Mass [MeV] Width [MeV]

σ/f0(500) 400–550 400–700 a0(980) 980(20) 50–100 f0(990) 990(20) 10–100 f0(1370) 1200–1500 200–500 a0(1450) 1474(19) 265(13) f0(1500) 1504(6) 109(7) The contribution

(μνρσS)

(

q1

,

q2

,

q3

)

due to the exchange of

a scalar one-particle state

|

S

(

pS

)

to the fourth-order

vacuum-polarization tensor

μνρσ

(

q1

,

q2

,

q3

)

(see Fig. 1) is described by

theFeynmandiagramsshowninFig.2.Itinvolvestheformfactors describingthephoton–photon-scalarvertexfunction



Sμν

(

q1

;

q2

)

i



d4x eiqx



0

|

T

{

j μ

(

x

)

(

0

)}|

S

(

pS

)

=

P

(

q21

,

q22

)

Pμν

(

q1

,

q2

)

+

Q

(

q21

,

q22

)

Qμν

(

q1

,

q2

),

(3.1) where q2

pS

q1. This decomposition of



μνS

(

q1

;

q2

)

follows

fromLorentz invariance,invariance underparity, andthe conser-vationofthecurrent

(

x

)

.Thetensors

Pμν

(

q1

,

q2

)

=

q1,νq2

η

μν

(

q1

·

q2

),

Qμν

(

q1

,

q2

)

=

q22q1,μq1

+

q21q2,μq2

− (

q1

·

q2

)

q1,μq2

q21q22

η

μν

,

(3.2)

aretransverse,

1,,2νPμν

(

q1

,

q2

)

=

0

,

1,,2νQμν

(

q1

,

q2

)

=

0

,

(3.3)

andsymmetricunderthesimultaneousexchangesofthemomenta

q1 and q2 and of the Lorentz indices

μ

and

ν

. The two

off-shell scalar-photon–photon transition form factors

P(

q1

,

q2

)

and

Q(

q1

,

q2

)

depend onlyonthe twoindependent invariantsq21 and

q22,and,aresymmetricunderpermutationofthemomentaq1 and

q2. Itis importantto point out that theamplitude for thedecay

S

γ γ

, which is proportional to

P(

0

,

0

)

M2

S

(



1

·



2

)

[



i denote

the respective photon polarization vectors, which are transverse,

qi

·



j

=

0],providesinformationon

P(

0

,

0

)

only.

Inorderto simplifysubsequentformulas,we willusethe fol-lowingshort-handnotation:

Pμν

(

qi

,

qj

)

Pμν(i,j)

,

Qμν

(

qi

,

qj

)

Qμν(i,j)

,

(3.4) and

P

(

q2i

,

q2j

)

P

(i,j)

;

P

[

q2i

, (

qj

+

qk

)

2

] ≡

P

(i,jk)

,

Q

(

q2i

,

q2j

)

Q

(i,j)

;

Q

[

q2i

, (

qj

+

qk

)

2

] ≡

Q

(i,jk)

,

P

(

q2i

,

0

)

P

(i,0)

;

Q

(

q2i

,

0

)

Q

(i,0)

.

(3.5) The contribution albl

μ

|

S to alblμ from the exchange of the scalar S

isthenobtainedupon replacing,inthegeneralformula(2.3),the tensor

μνρσ

(

q1

,

q2

,

q3

,

q4

)

by i

(μνρσS)

(

q1

,

q2

,

q3

,

q4

)

=

D

(1,2) S



P

(1,2)Pμν(1,2)

+

Q

(1,2)Qμν(1,2)



×



P

(3,4)Pρσ(3,4)

+

Q

(3,4)Qρσ(3,4)



+

D

(1,3) S



P

(1,3)Pμρ(1,3)

+

Q

(1,3)Qμρ(1,3)



×



P

(2,4)Pνσ(2,4)

+

Q

(2,4)Qνσ(2,4)



+

D

(1,4) S



P

(1,4)Pμσ(1,4)

+

Q

(1,4)Qμσ(1,4)



×



P

(2,3)Pνρ(2,3)

+

Q

(2,3)Qνρ(2,3)



i



μνρσ(S;P P)

+

μνρσ(S;P Q)

+

(μνρσS;Q Q)

,

(3.6)

where4

≡ −(

q1

+

q2

+

q3

)

μ.Thescalar-mesonpropagatorinthe

NarrowWidthApproximation(NWA)reads

D

(i) S

1 q2i

M2S

;

D

(i,j) S

1

(

qi

+

qj

)

2

M2S

,

(3.7)

withi

,

j

=

1

,

..

4.Inthelast line, thefirst(third) termcollectsall the contributions quadratic in the form factor

P

(

Q

), while the second term collects all the contributions involving the products

PQ

ofthetwokindsofformfactors.Correspondingly,weperform thedecompositionalblμ

|

S

=

alblμ

|

SP P

+

alblμ

|

P QS

+

alblμ

|

Q QS .

Starting from the representation (3.6), it is a straightforward exercise to insert it into the generalexpression inEq. (2.3), and thentocomputetheprojectiononthePauliformfactorasdefined in Eq. (2.1). Forfurther use, we introduce the tensor

F

μαβ

(

q

)

=

η

μβqα

η

μαqβ,andtheamplitude

AP PS

(

q1

,

q2

,

q3

,

q4

)

D

S(1,2)

P

(1,2)

P

(3,4)

,

(3.8)

andsimilarlyforotherproductsofformfactors P Q

,

Q Q .

Thepartofthescalar-exchangetermthatinvolvestheform fac-tor

P

alonethenreads

alblμ

|

P PS

= −

e6



d4q 1

(

2

π

)

4



d4q 2

(

2

π

)

4

J

μνρσ τ

(

p

,

p

;

q 1

,

q2

)

×

2 AP PS

(

q1

,

q1

+

q2

,

q2

,

0

)

F

μνα

(

q1

)(

q1

+

q2

)

α

×

F

ρσ τ

(

q2

)

+

AP PS

(−

q1

,−

q2

,

q1

+

q2

,

0

)

×

F

μρα

(

q1

)

q2α

F

νσ τ

(

q1

+

q2

)

,

(3.9)

wherethesymmetrypropertiesoftheintegrand,andofthe ampli-tude AS

(

q1

,

q2

,

q3

,

q4

)

,aswell as

F

ρσ τ

(

q

)

= −

F

ρτ σ

(

q

)

havebeen

used. Noticing that Q μν

(

q

,

k

)

is quadratic in the components of the momentum kμ, one sees that all of

μνρσ(S;Q Q)

(

q1

,

q2

,

q3

)

and

halfofthe termsin

(μνρσS;P Q)

(

q1

,

q2

,

q3

)

willnotcontribute to the

Pauliformfactoratvanishingmomentumtransfer.Thepartofthe scalar-exchangetermthatinvolvesbothformfactors

P

and

Q

thus reducesto alblμ

|

P QS

= −

e6



d4q1

(

2

π

)

4



d4q2

(

2

π

)

4

J

μνρσ τ

(

p

,

p

;

q 1

,

q2

)

×

2 ASP Q

(−

q2

,

0

,−

q1

,

q1

+

q2

)

F

ρσ τ

(−

q2

)

×

Qμν

(

q1

,

q1

+

q2

)

+

ASP Q

(

q1

+

q2

,

0

,

q1

,

q2

)

×

F

νσ τ

(

q1

+

q2

)

Qμρ

(

q1

,

q2

)

,

(3.10) whereas albl μ

|

Q Q

S

=

0.The trace calculation3 leads tothe final

ex-pression

3 ThecorrespondingDiractraceshavebeencomputedusingtheFeynCalc

(5)

alblμ

|

S

= −

e6



d4q 1

(

2

π

)

4



d4q 2

(

2

π

)

4

×

1 q2 1q22

(

q1

+

q2

)

2 1

(

p

+

q1

)

2

m2 1

(

p

q2

)

2

m2



D

(2) S

P

(1,12)

P

(2)T1P P,S

+

P

(2)

Q

(1,12)T1P Q,S

+

D

(1,2) S

P

(1,2)

P

(12,0)T2P P,S

+

P

(12,0)

Q

(12,0)T2P Q,S

,

(3.11) where the amplitudes Ti,S are given in Table 2 and the

func-tions

P

(i,j) and

Q

(i,j) in Eq. (3.5). Letus simply note here that

T1(P P)

(

q1

,

q2

)

andT1(P Q)

(

q1

,

q2

)

comefromthesumofthetwo

di-agrams

(

a

)

and

(

b

)

of Fig. 2 (they give identical contributions), while T2(P P)

(

q1

,

q2

)

and T2(P Q)

(

q1

,

q2

)

represent thecontributions

from diagram

(

c

)

. Apart from the presence of two form factors, the situation, at this level, is similar to the one encountered in thecaseoftheexchangeofapseudoscalarmeson,seeforinstance Ref. [28].

4.



S

μν atshortdistanceandvectormesondominance

Inordertoproceed,someinformationaboutthevertexfunction



μνS

(

q

,

pS

q

)

is required. In particular, the question about the

relative sizes ofthe contributions to alblμ

|

S comingfrom the two

formfactorsinvolvedinthedescriptionofthematrixelement(3.1) needs to be answered. Inorder tobriefly addressthis issue,one firstnoticesthatatshortdistancesthevertexfunction



Sμν

(

q

,

pS

q

)

hasthefollowingbehaviour (in thepresentdiscussionqμ isa spacelikemomentum): lim λ→∞



S μν

q

,

pS

− λ

q

)

=

1

λ

2



1 q2



2



μνS;∞

(

q

,

pS

)

+

O



1

λ

2



3

,

(4.1) with



μνS;∞

(

q

,

pS

)

= (

qμqν

q2

η

μν

)

A

+

(

q

·

pS

)

qμpS,ν (4.2)

q2pS,μpS,ν

+ (

q

·

pS

)(

qνpS,μ

q

·

pS

η

μν

)

B

.

The structure of



μνS;∞

(

q

,

pS

)

follows from the requirements



μνS;∞

(

q

,

pS

)

=

0,



μνS;∞

(

q

,

pS

)

=

0,andthecoefficients A and B are combinations of the four independent “decay constants” whichdescribethematrixelements



0

| :

¯ψ

Q2

γ

σ

ψ

: (

0

)|

S

(

pS

) , 

0

| : ¯ψ

Q2

M

ψ

: (

0

)|

S

(

pS

) ,



0

| :

GaμνGρσa

: (

0

)|

S

(

pS

) ,

(4.3) ofthethreegaugeinvariantlocaloperatorsofdimensionfourthat can couple to the 0++ scalar states. Here Q

=

diag

(

2

/

3

,

1

/

3

,

1

/

3

)

denotes the charge matrix of the light quarks, whereas

M

=

diag

(

mu

,

md

,

ms

)

standsfortheirmassmatrix.Thethird

ma-trixelement,involvingthegluonicoperator

:

Ga

μν Gaρσ :,onlyoccurs

totheextent thatthescalarstate possessesa singletcomponent. For a pure octet state, and in the chiral limit, only one “decay constant”, coming from the first operator, remains, and one has

A

/

B

= −

M2S

/

2.TheasymptoticbehaviourinEq. (4.2) leadstothe suppressionof

Q(

q1

,

q2

)

withrespectto

P(

q1

,

q2

)

athigh

(space-like)photonvirtualities( Q2

i

= −

q2i):

Q

(

q1

,

q2

)

 −

2

P

(

q1

,

q2

)

Q12

+

Q22

.

(4.4)

Thisshort-distancebehaviourcanbe reproducedbyasimple vec-tormesondominance(VMD)-typerepresentation,

P

VMD

(

q 1

,

q2

)

= −

1 2 B

(

q2 1

+

q22

)

+ (

2 A

+

M2SB

)

(

q21

M2V

)(

q22

M2V

)

,

Q

VMD

(

q 1

,

q2

)

= −

B

(

q21

M2V

)(

q22

M2V

)

,

(4.5)

whichleadsto:

κ

S

≡ −

M2 S

Q

VMD

(

0

,

0

)

P

VMD

(

0

,

0

)

= −

2B M2 S B M2S

+

2 A

.

(4.6)

Incidentally,similarstatementscanalsobeinferredfromRef. [29], where the octet vector–vector-scalar three-point function



V V S

was studiedin thechirallimit.From theexpressions giventhere, oneobtains M2S

Q

(

q1

,

q2

)

P

(

q1

,

q2

)

= −



9 5 M4V F2 π

(

M2K

M2π

)

˜

c

1 2

+

Q12

+

Q22 2M2 S



−1

 −

2M2S 2M2S

+

Q12

+

Q22

,

(4.7) with[30]

˜

c

=

5 16

π α

2





ρ→e+e

3



ω→e+e

3



φe+e



 (

4

.

6

±

0

.

8

)

·

10−3

.

(4.8)

Numerically, this would correspond to A

/

B

= −

2M2

S (

κ

S

=

1),

ratherthanto A

/

B

= −

M2

S

/

2,which,asmentioned above,should

holdpreciselyfortheconditionsunderwhichtheanalysiscarried outinRef. [29] isvalid.Thisdiscrepancyillustratesthewell-known [31,32] limitation ofthe simple saturation by a single resonance in each channel, which in generalcannot simultaneously accom-modatethe correctshort-distancebehaviour ofa givencorrelator andof thevarious relatedvertexfunctions. Letusalso pointout that A

/

B

= −

M2S

/

2 corresponds to

P(

0

,

0

)

=

0, i.e. to a vanish-ing two-photon width. This either means that scalars without a singlet component decay into two photons through quark-mass and/orthroughisospin-violatingeffects,or,morelikely,showsthe limitation oftheVMDpicture,which provides,inthiscase, atoo simplistic description of a more involved situation. The second alternative would then require to go beyond a single-resonance description,asdescribed,forinstance,inRef. [32] forthe photon-transitionform factorofthe pseudoscalarmesons. Followingthis path would, however, lead us too far astray, and in the present studywewillkeepthediscussionwithintheframeworksetbythe VMDdescriptionofthetwoformfactors

P(

q1

,

q2

)

and

Q(

q1

,

q2

)

.

Forlateruse,likeforinstancethederivationofEq. (5.4) below,it is also ofinterest to parameterizethe VMD formfactors directly in terms of

P(

0

,

0

)

, which givesthe two-photon width, and the parameter

κ

S asdefinedbythefirstequalityinEq. (4.6):

(6)

Table 2

Expressions,inMinkowskispace,oftheamplitudesdefinedinEq. (3.11).

T1P P,S(q1,q2)= 16 3  q22(p·q1)2+q21(p·q2)2− (qq2)(p·q1)(p·q2)+ (p·q1)(p·q2)q22+ (p·q1)(qq2)q22− (p·q2)(qq2)2−m2q 2 1q22−m2(qq2)q22  +8(p·q1)q21q22−8q21(p·q2)(qq2), TP P 2,S(q1,q2)= 8 3  q2 2(p·q1)2+q21(p·q2)2−2(q1+q2)2(p·q1)(p·q2)+ (p·q1)(p·q2)q12+ (p·q1)(p·q2)q22+m2(qq2)(q1+q2)2  . T1P Q,S(q1,q2)= 16 3  (qq2)(p·q1)(p·q2)(q12+q22)+ (p·q1)(p·q2)(qq2)2+ (p·q2)(qq2)q12q22−q21q22(p·q1)2− q2 1q22(p·q2)2−q22(qq2)(p·q1)2−q21(qq2)(p·q2)2− (p·q1)2q42− (p·q2)2q41− (p·q1)q21q42− (p·q1)(p·q2)q21q22+m2q21q22(q1+q2)2 −40 3 (p·q1)(qq2)q21q22− (p·q2)(qq2)2q21  +8q4 1 (p·q2)(qq2)q22(p·q1) , T2P Q,S(q1,q2)= 4 3  2(qq2)(p·q1)(p·q2)(q21+q22)q 2 2(q1+q2)2(p·q1)2−q21(q1+q2)2(p·q2)2−q22(q 2 1+q22)(p·q1)2−q21(q21+q22)(p·q2)2+2m2q 2 1q22(q1+q2)2  .

Wemaydrawtwo conclusions fromtheprecedinganalysis. First, thatasensiblecomparisontobemade, forspace-likephoton vir-tualities, isthus notbetween

P(

q1

,

q2

)

and

Q(

q1

,

q2

)

,butrather

between

P(

q1

,

q2

)

and, say,

−(

2M2S

+

Q12

+

Q22

)

Q(

q1

,

q2

)/

2. At

high photon virtualities, their ratio tends to unity. Second, that

|

P(

0

,

0

)

|

and M2

S

|

Q(

0

,

0

)

|

may well be of comparable sizes. For

instance,withinVMD,weobtain

P

(

0

,

0

)

= −

M2S

Q

(

0

,

0

)

(4.10)

fromtheanalysisofRef. [29]. 5. Angularintegrals

Thenext stepconsistsintransformingthetwo-loopintegralin Eq. (3.11) into an integration in Euclidian space through the re-placement



d4qi

−→

i

(

2

π

2

)



0 d QiQi3



d



ˆ Qi 2

π

2

,

(5.1) withQi2

= −

q2i,i

=

1

,

2,and d



Qˆ i

=

d

φ

Qˆid

θ

1Qˆid

θ

2Qˆisin

1Qˆi

)

sin 2

2Qˆi

),



d



Qˆ i

=

2

π

2

,

(5.2)

wherethe orientation of the four-vector Q μ in four-dimensional Euclidianspaceisgivenby theazymuthal angle

φ

Qˆ andthe two polarangles

θ

1Qˆ and

θ

2Qˆ.Sincetheanomalousmagneticmoment isa Lorentz invariant, its value does not depend on the lepton’s four-momentumpμ beyonditsmass-shellcondition p2

=

m2.One may thus average, in Euclidian space, over the directions of the four-vector P (theEuclidiancounterpartofp,i.e.P2

= −

m2)

alblμ

|

S

=

1 2

π

2



d



Pˆalblμ

|

S

.

(5.3)

Thisallowstoobtainarepresentationofaμlbl

|

P PS +P Q asanintegral overthreevariables, Q1, Q2,andtheanglebetweenthetwo

Eu-clidianloopmomenta[33].Actually,intheVMDrepresentationof Eq. (4.5),theformfactorsbelongtothegeneralclassdiscussedin Ref. [28],forwhichonecanactuallyperformtheangularintegrals directly,withouthavingtoaverageoverthedirectionofthelepton four-momentumfirst.WithinthisVMDapproximationoftheform factors,theanomalousmagneticmomentthenreads

alblμ

|

VMDS

=



α

π



3

[

P

(

0

,

0

)]

2 ∞



0 d Q1 ∞



0 d Q2 M4V

(

Q2 1

+

M2V

)(

Q22

+

M2V

)





w1P P

(

MV

)

− 

wP P2

(

MV

)



+

κ

S 2

Q12

+

Q22 M2S



w1P P

(

MV

)

− 

w2P P

(

MV

)

M2V M2S

w12P P

(

MV

)

2



w1P Q

(

MV

)

2



w2P Q

(

MV

)

+

κ

S2 4



Q12Q22 M4S



w P P 1

(

MV

)

− ˜

w12P P

(

MV

)

2 Q 2 2 M2 S



w1P Q

(

MV

)

2 Q12

+

Q22 M2 S



w2P Q

(

MV

)





α

π



3

[

P

(

0

,

0

)]

2



I

p

+

κ

S

I

pq

+

κ

S2

I

q

,

(5.4)

where

κ

S wasdefinedinEq.4.6,andwith



w1P P,2,P Q

(

M

)

w1P P,2,P Q

(

M

)

w1P P,2,P Q

(

0

),

(5.5) w12P P

(

MV

)

=

w1P P

(

MV

)

w2P P

(

MV

),

(5.6)

˜

w12P P

(

MV

)

=

Q22M2V M4 S wP P1

(

MV

)

Q12

+

Q22 M2 S M2V M2 S w2P P

(

MV

).

The dimensionlessdensities (the overallsignhas beenchosen such that thesedensities are positive)occurring inthese expres-sions canbe found inTable 3.Theyare obtaineduponusing the angular integrals given in [28]. Some of their combinations are plottedin Figs. 3,4,and 5.Generically, they are peakedin a re-gionaround Q1

Q2

500MeV,andaresuppressedforsmaller

orlargervaluesoftheEuclidianloopmomenta. 6. I

=

0 scalarmesonsfromgluoniumsumrules

Theevaluationofalbl

μ

|

VMDS asgiveninEq. (5.4),requiresasinput

values for the masses and the two-photon widths of the vari-ous scalarresonances we wantto include.Forthe narrowstates, this information can be gathered from the review [25] or from other sources, which will be described in Section 9. In this sec-tion,wereviewtheinformationprovidedbyvariousQCDspectral sumrulesandsome low-energytheoremsonthemass,aswellas onthehadronicandtwo-photonwidths,ofthelightestscalar me-son

σ

/

f0

(

500

)

,the f0

(

1350

)

and f0

(

1504

)

interpretedasgluonia

states.

(7)

Fig. 3. The weight functions: a):wP P

1 and b):w2P Pas function of Q1and Q2. We have used MV==775 MeV and MS=960 MeV.

Fig. 4. The same as in Fig.3but for PQ.

Fig. 5. The same as in Fig.3but for the combinations wP P

(8)

Thenatureofthe isoscalarI

=

0 scalarstatesremains unclear as it goes beyond the usual octet quark model description due totheir U

(

1

)

component.Afour-quark descriptionofthesestates havebeenproposed within thebagmodel[34] and studied phe-nomenologically in e.g. Refs. [35,36]. However, its singlet nature has also motivated their interpretation as gluonia candidates as initiatedinRef. [37] andcontinuedinRefs. [38–42].4Recent anal-ysisofthe

π π

and

γ γ

scatteringdataindicatesaneventuallarge gluon component of the

σ

/

f0

(

500

)

and f0

(

990

)

states [19–23]

whilerecentdataanalysisfromcentralproductions[47] showsthe gluonium nature of the f0

(

1350

)

decaying into

π

+

π

− and into

the specific 4

π

0 states via two virtual

σ

/

f

0

(

500

)

states as

ex-pectedifitisa gluonium[40,41].The

σ

/

f0

(

500

)

areobservedin

thegluoniagolden J

and

ϒ

π π γ

radiativedecaysbutoften interpretedasS-wavebackgroundsduetoitslargewidth(seee.g. BESIII[48] andBABAR[49]).TheglueballnatureoftheG

(

1

.

5

1

.

6

)

hasbeenalsofoundby GAMS fewyears ago[50] onits decayto

η



η

andonthevalueofthebranchingratio

η



η

/

ηη

expectedfora high-massgluonium[40,41].

The

σ

/

f0massfromQCDspectralsumrules

Thesingletnatureofthe

σ

/

f0hasmotivatedtoconsiderthatit

maycontainalargegluoncomponent[39–41],whichmayexplain itslarge masscompared tothepion.Thisproperty isencodedin thetraceoftheQCDenergymomentumtensor:

θ

μμ

=

1 4

β(

α

s

)

G a μνGμνa

+

1

+

γ

m

(

α

s

)



u,d,s mq

¯ψ

q

ψ

q

,

(6.1)

where

β(

α

s

)

≡ β

1

(

α

s

/

π

)

+ · · ·

and

γ

m

(

α

s

)

γ

1

(

α

s

/

π

)

+ · · ·

are

theQCD

β

-functionandquarkmassanomalousdimension:

−β

1

=

(

1

/

2

)(

11

2nf

/

3

)

,

γ

1

=

2 for SU

(

3

)

c

×

SU

(

nf

)

. A QCD spectral

sumrule(QSSR) [51,52]5 analysisofthecorresponding two-point correlatorinthechirallimit(mq

=

0):

ψ

g

(

q2

)

=

i



d4x



0

|

T

θ

μμ

(

x

μμ

(

0

)|

0

(6.2)

fromthesubtractedandunsubtractedLaplacesumrules:

L

0

(

τ

)

=



0 dtetτ1

π

Im

ψ

g

(

t

)

L

−1

(

τ

)

= −ψ

g

(

0

)

+



0 dt t e 1

π

Im

ψ

g

(

t

)

(6.3)

leadstothepredictions

≈ (

0

.

95–1

.

10

)

GeV and MG

≈ (

1

.

5–1

.

6

)

GeV (6.4)

forthemassesofthe

σ

/

f0 andscalargluoniumstates.

σ

/

f0hadronicwidthfromvertexsumrules

The

σ

hadronicwidthcanbeestimatedfromthevertex func-tion:

V

q2

≡ (

q1

q2

)

2

= 

π

μμ

|

π

,

(6.5)

whichobeysaoncesubtracteddispersionrelation[40,41]:

4 Forrecentreviewsontheexperimentalsearchesandonthetheoreticalstudies

ofgluonia,seee.g.Refs. [43–46].

5 Forreviews,seethetextbooksinRefs. [53,54] andreviewsinRefs. [55,56].

V

(

q2

)

=

V

(

0

)

+

q2 ∞



4m2 π dt t 1 t

q2

i



1

π

ImV

(

t

)

(6.6)

Fromthelow-energyconstraints:

V

(

0

)

=

O

(

m2π

)

0

,

V

(

0

)

=

1

,

(6.7) onecanderivethelow-energysumrules:

1 4



S≡σ,... gSπ π

2 fS

=

0

,

1 4



S≡σ,... gSπ π

2 fS M2S

=

1

,

(6.8)

where fS isthescalardecayconstantnormalizedas



0

|

4

θ

μμ

|

S

=

2 fSM2S

,

(6.9)

with[41]:



1 GeV

,





0

.

6 GeV

,

fG



0

.

4 GeV

,

(6.10)

for



1GeV,



1

.

3GeV and MG



1

.

5GeV.Thefirstsum

rulerequirestheexistenceoftworesonances,

σ

/

f0 anditsradial

excitation

σ

, coupled strongly to

π π

.6 Solving the second sum rulegives,inthechirallimit,

|

gσ π+π

|  |

gσK+K

|  (

4–5

)

GeV

,

(6.11)

which suggests an universal coupling of the

σ

/

f0 to Goldstone

boson pairs asconfirmed fromthe

π π

and K K scatterings

¯

data analysis[22,23].Thisresultleadstothehadronicwidth:



σ→π π

|

gσ π+π

|

2 16

π



1

4m 2 π M2 σ



1/2

0

.

7 GeV

.

(6.12) Thislargewidthinto

π π

isatypicalOZI-violationexpectedtobe duetolargenon-perturbativeeffectsintheregionbelow1GeV.Its valuecomparesquitewellwiththewidthoftheso-calledon-shell

σ

/

f0 massobtainedinRef. [20–22] (seealsothenextsubsection).

σ

/

f0

γ γ

widthfromsomelow-energytheorems

Weintroducethegaugeinvariantscalarmesoncouplingto

γ γ

throughtheinteractionLagrangianandrelatedcoupling:

L

int

=

gSγ γ 2 FμνF μν

,

P

(

0

,

0

)

≡ ˜

g Sγ γ

=



2 e2



gSγ γ

,

(6.13)

where Fμν is thephotonfield strength.Inmomentum space,the correspondinginteractionreads7

L

int

=

2gSγ γPμν

(

q1q2

)

×



1μ



2ν

,

(6.14)

where



μi are the photon polarizations. With thisnormalization, thedecaywidthreads



= |

gSγ γ

|

2 M3S 8

π



1 2



=

π

4

α

2M3 S

gSγ γ

|

2

,

(6.15)

where 1/2 is the statisticalfactor for the two-photon state. One can for instance estimate the

σ γ γ

coupling by identifying the

6 TheG(1600)isfoundtocoupleweaklytoπ πandmightbeidentifiedwiththe

gluoniumstateobtainedinthelatticequenchedapproximation(forarecentreview ofdifferentlatticeresults,seee.g.[43]).

7 Weusethenormalizationandstructurein[57] foron-shellphotons.However,a

(9)

Table 3

ExpressionsoftheweightfunctionsdefinedinEq. (5.6) afterangularintegrationintheEuclidianspace[Dm1≡ (P+Q1)2+m2,Dm2≡ (PQ2)2+m2].

wP P 1 (M)= −  d 1 2π2  d 2 2π2 π2Q 1Q2 Dm1Dm2 T1ES;P P(Q1,Q2) (Q2 2+M2S)[(Q1+Q2)2+M2] = −2 3 π2Q 1Q2 Q22+MS2  1+Q2 2 2m2 l +Q22  Q12−Q22−M2   Q12−Q22−M2−4m2l  IM1 −  2Q12−Q22−M2+ Q12Q22 2m2 l Rm11 2m2 lQ22  2+Q2 2 2m2 l  Rm2−1 2m2 l −Q12−Q22+M2  I7M+Q22  3Q12−Q22−M2−4m2l+ Q12Q22 2m2 l Rm1−1 2m2 l Rm2−1 2m2 l +Q12+Q22+M2   2Q12−Q22−M2 Rm1−1 2m2 l IM7 −2Q22  Q12−M2 Rm2−1 2m2 l IM7  , wP Q1 (M)= −  d1 2π2  d2 2π2 π2Q 1Q2 Dm1Dm2 1 M2 S T1ES;P Q(Q1,Q2) (Q2 2+M 2 S)[(Q1+Q2)2+M2] = −1 3 π2Q 1Q2 MS2Q22+MS2  Q12+Q22−M2+2 Q12Q22 m2l4Q12Q22M2  Q12−2Q22−M2−4m2l  IM 1 −Q12  Q12 −3Q22−5M2+2 Q12Q22 m2 l Rm1−1 2m2 l4Q22  2Q12+ Q12Q22 2m2 l  Rm2−1 2m2 l −Q12−Q22+M2   Q12−Q22−M2  IM 7 +4Q12Q22  2Q12−Q22−M2−4m2l+ Q12Q22 2m2 l  Rm1−1 2m2 l Rm2−1 2m2 l +Q12   Q12−Q22 2 −4M2Q12−8Q22M2 −5M4Rm1−1 2m2 l IM7 +8M2Q12Q22 Rm2−1 2m2 l I7M  , w2P P(M)= +  d 1 2π2  d 2 2π2 π2Q 1Q2 Dm1Dm2 T2ES;P P(Q1,Q2) [(Q1+Q2)2+M2S][(Q1+Q2)2+M2] ≡w˜2P P(M)− ˜wP P2 (MS) M2 SM2 , wP Q2 (M)= −  d 1 2π2  d 2 2π2 π2Q 1Q2 Dm1Dm2 1 M2 S T2ES;P Q(Q1,Q2) [(Q1+Q2)2+M2S][(Q1+Q2)2+M2] ≡w˜ P Q 2 (M)− ˜w P Q 2 (MS) M2 S(M2SM2) , with ˜ wP P 2 (M)= 2 3π 2Q 1Q2  2M2Q 12Q22+ml2Q12+ml2Q22+ml2M2  IM 1 + Q12 2 Rm1−1 2m2 l +Q22 2 Rm2−1 2m2 l +M2IM 7 −Q12Q22+2m2lM 2Rm1−1 2m2 l Rm2−1 2m2 lQ12 2  Q12−Q22+3M2 Rm1−1 2m2 l IM7 − Q22 2  Q22−Q12+3M2 Rm2−1 2m2 l IM7  , ˜ wP Q2 (M)= − 1 3π 2Q 1Q2  −M2+2M2Q 12Q22(Q12+Q22+4m2l)I1M+ Q12 2  Q12+3Q22+M2 Rm11 2ml2 +Q22 2 (Q2 2+ 3Q12+M2) Rm2−1 2m2 l +M2(Q12+Q22+M2)IM7 −2Q12Q22  Q12+Q22+4ml2 Rm1−1 2m2 l Rm2−1 2m2 lQ12 2 × (Q14−Q24+2M2Q12+4M2Q22+M4) Rm1−1 2m2 l IM 7 − Q22 2 (Q2 4Q 14+2M2Q22+4M2Q12+M4) Rm2−1 2m2 l IM 7  , and IM 1 = 1 m2 lQ12Q22 ln[1−ZM Q1Q2Z ml P Q1Z ml P Q2], I M 7 = ZM Q1Q2 Q1Q2, Rmi≡    1+4m 2 l Q2 i , Zml P Qi= Qi 2P(1−Rmi), (Zml P Qi) 2=Qi P Z ml P Qi−1, Z ml P Q1Z ml P Q2= − Q1Q2 4m2 l (Rm1−1)((Rm2−1)), ZMK L= K2+L2+M2 (K2+L2+M2)24K2L2 2K L ,

Euler–HeisenbergLagrangian derived from gg

γ γ

via a quark constituentloop withthe interaction Lagrangian in Eq. (6.13). In thisway,onededucestheconstraint8:

gSγ γ



α

60

2 fSM2S



π

−β

1

 

u,d,s Qq2

/

M4q

,

(6.16)

where Qq is the quark charge in units of e; Mu,d

/

2 and

/

2 areconstituentquarkmasses.Then,oneobtains:

gσ γ γ

γ γ

gGγ γ

≈ (

0

.

4–0

.

7

)

α

GeV−1

,

(6.17)

whichleads,for



1GeV,tothe

γ γ

width:



σ→γ γ

 (

0

.

2–0

.

6

)

keV

.

(6.18)

A consistencycheck of the previous resultcan be obtained from the trace anomaly



0

μμ

|

γ γ

by matchingthe k2 dependence of

itstwosideswhichleadsto[58–61]:

8 Thissumrulehasbeenoriginallyusedby[39] inthecaseofacharmquark

loopforestimatingthe J/ψγ σradiativedecay.

1 4



S=σ··· gSγ γ

2 fS

=

α

R 3

π

,

(6.19) where R

3



Qq2.

7.

σ

/

f0

(500)

mesonfrom

π π

and

γ γ

scattering

The mass and the width of a broad resonance like the

σ

/

f0

(

500

)

stateingeneralturnouttoberatherambiguous

quan-tities. Anon ambiguous definitionis provided by the location of the poleoftheS-matrixamplitude onthesecond Riemannsheet [62].Thedifficultythenliesinrelatingthispoleinthecomplex do-maintothedescription,forinstanceintheformofaBreit–Wigner function,ofthedataonthepositiverealaxis.Thisissuehasbeen quiteextensivelydiscussedinthecontextoftheline-shapesofthe electroweakgaugeandscalarbosons9 [6369].

9 Theissuewasmainlycentred aroundthenecessitytodefinegauge-invariant

Références

Documents relatifs

We report the Bragg spectroscopy of interacting one-dimensional Bose gases loaded in optical lattices across the superfluid to Mott-insulator phase transition.. Elementary

possesses a coefficient 2"~, where n2 is the number of type-2 vertices in Di,I Hence, the coefficient that the diagram Di,i must get in the completely reduced series for

We study the optical response of two coupled oriented dipoles with the dimer axis perpendicular to the wave vector of light by analyzing how their scattering matrix can be

4, curve (a)), but with a damping (line width) that must increase towards critical as we approach the critical region. This is an example of a basic idea that there

Spinwaves in magnetic materials modulate the dielectric constant of the medium (via the spin orbit interaction) and so can scatter light. Early measLwements on YIG demonstrated

In this paper we wish to present first some prelimi- nary measurements of the Rayleigh linewidth in SF 6 along the critical isochore and then to interpret measurements of the

4 I shall try to show how Gilles Deleuze’s analyses of the figure in Bacon — and of its interactions with the background — shed light on what happens to language

Commissariat à l’Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz