• Aucun résultat trouvé

THE ELECTRONIC AND OPTICAL PROPERTIES OF VANADIUM TELLURITE GLASSES

N/A
N/A
Protected

Academic year: 2021

Partager "THE ELECTRONIC AND OPTICAL PROPERTIES OF VANADIUM TELLURITE GLASSES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220848

https://hal.archives-ouvertes.fr/jpa-00220848

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE ELECTRONIC AND OPTICAL PROPERTIES OF VANADIUM TELLURITE GLASSES

B. Flynn, A. Owen

To cite this version:

B. Flynn, A. Owen. THE ELECTRONIC AND OPTICAL PROPERTIES OF VANADIUM TELLURITE GLASSES. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-1005-C4-1008.

�10.1051/jphyscol:19814219�. �jpa-00220848�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZdment au nOIO, Tome 42, octobre 1981 page C 4 - 1 0 0 5

THE ELECTRONIC

AND

OPTICAL PROPERTIES

OF

VANADIUM TELLURITE GLASSES

B.W. F l y n n and A.E. Owen

Department of Electrical Engineering, University of Edinburgh, King's Bui Zdings, Edinburgh EH9 3JL, Scot Zand, U. K.

Abstract. Data a r e presented on the d.c. conductivity, thermopower and optical absorpti' n of vanadium t e l l u r i t e glasses, particularly as a function of the r a t i o (V9+/VtOtal). The r e s u l t s a r e interpreted in terms of polaron theory and comparisons made with other data. Differences and s i m i l a r i t i e s a r e noted.

Introduction. Preliminary data on the e l e c t r o n i c properties of V205-x.Te02 glasses have already been reported ( 1 ) and recently Isard

( 2 )

has suggested t h a t the e l e c t - ronic behaviour

o f

these glasses corresponds more closely with simple polaron theory than any other t r a n s i t i o n metal oxide glass. This paper reports f u r t h e r measure- ments on the vanadium t e l l u r i t e glass system. Glasses were prepared a t i n t e r v a l s of 10 mole

%

between 10% and 50% V205, by melting a t approximately 900°C and quench- ing by pouring the melts onto a metal p l a t e a t room temperature. To control the valence r a t i o

[

(v4+/vTOtal)

=

c ] , the glasses were e i t h e r melted in a i r a t s l i g h t l y d i f f e r e n t temperatures or elemental Te was added t o t h e melt. After annealing a t 250°C f o r 2 hours, samples were ground and lapped t o give d i s c s of about 1 cm i n diameter and 1-2

mn

thick. Gold was deposited onto the f l a t faces of t h e d i s c s t o provide contacts f o r e l e c t r i c a l measurements. Analysis of the valence r a t i o ( c ) was carried out by chemical and colorimetric methods. Optical measurements were made with a Zeiss spectrophotometer, generally using thin glass samples prepared by breaking pieces from bubbles blown from molten g l a s s .

D.C.

Conductivity. Previous work ( 1 ) has shown t h a t above about 200

K

the d.c.

conductivity of vanadium t e l l u t i t e glasses follows the usual activated form

with a constant activation energy,

U,

while below 200

K W

decreases continuously.

This behaviour can be explained i n general terms by the thermally activated hopping of small polarons in a disordered s t r u c t u r e . In the high temperature regime

(T > 200

K )

the activation energy i s constant and probably a r i s e s from t h e hoppino

of c a r r i e r s plus a contribution (3 NO) from the s t r u c t u r a l disorder energy,

WD.

A t temperatures below 200

K

there i s a progressive reduction i n the a c t i v a t i o n energy a s expected from the continuous reduction in available phonon energy.

Conduction in transition-metal oxides may be described by the expression proposed by Mott ( 3 ) f o r conduction by hopping between localised s t a t e s ,

i . e .

2 2

U =

vo(ne a

/kT)[

c(1-c)] exp(-2aa)exp(-W/kT)

(2)

where

v6

i s a phonon frequency, n i s the number of t r a n s i t i o n metal ion s i t e s , a

i s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814219

(3)

C4- 1006 JOURNAL DE PHYSIQUE

t h e s i t e s e p a r a t i o n and a i s a t u n n e l l i n g f a c t o r . From d e n s i t y and c o m p o s i t i o n d a t a n u m e r i c a l v a l u e s f o r t h e second and t h i r d terms i n e q u a t i o n 2 can be c a l c u l a t e d and knowing a. i n e q u a t i o n 1, v a l u e s o f v, exp(-Zaa), t h e number o f s i t e t r a n s i t i o n s which a c a r r i e r makes p e r second, may be determined. An e s t i m a t e o f a and v. can be made f r o m F i g u r e 1 i n which l o g [ v o e x p ( - 2 a a ) l i s p l o t t e d v e r s u s a, t h e s i t e spacing. From t h e s l o p e o f t h i s graph a

-

0.097 m-', i n cjood agreement w i t h d a t a g i v e n by A u s t i n and G a r b e t t ( 4 ) , and v,

-

6 X 1013s-l.

F i g . 1 C a r r i e r t r a n s i t i o n p r o b a b i l i t ! ~ F i g . 2 C o n d u c t i v i t y as a f u n c t i o n o f v e r s u s s i t e spacing. t h e v a l e n c e r a t i o (v4+/VTota1),

f o r d i f f e r e n t t o t a l V205 c o n t e n t s (mole %)

.

The b a r s i n F i g u r e 1 i n d i c a t e t h e spread caused by t h e d i f f e r e n t v a l e n c e r a t i o s , c, o f t h e d i f f e r e n t g l a s s e s . One f e a t u r e w o r t h y o f n o t e i s t h a t t h e t u n n e l l i n g f a c t o r (and s i t e s p a c i n g ) i s o b v i o u s l y v e r y s i g n i f i c a n t i n t h e t e l l u r i t e g l a s s e s , i n marked c o n t r a s t t o t h e phosphate g l a s s e s where no dependence o f c o n d u c t i v i t y on s i t e s p a c i n g i s observed ( 5 ) . T h i s a n a l y s i s assumes t h a t t h e phonon f r e q u e n c y i s independent o f s i t e s p a c i n g b u t Sayer and Mansingh ( 5 ) f o u n d t h a t i t decreases as t h e s i t e s p a c i n g i s reduced. I f t h i s i s a l s o t h e case f o r t e l l u r i t e g l a s s e s t h e e s t i a t e o f t h e phonon f r e q u e n c y would be l o w e r e d f r o m t h e r a t h e r h i g h v a l u e o f 6 x 1 0 y 3 s - l . The reasons why t e l l u r i t e g l a s s e s s h o u l d be d i f f e r e n t f r o m phosphate g l a s s e s i n t h i s r e s p e c t a r e n o t obvious. One p o s s i b i l i t y i s t h a t Te s i t e s can p a r t i c i p a t e i n t h e c o n d u c t i o n process t o a l i m i t e d e x t e n t . T e l l u r i u m may e x i s t i n t h e v a l e n c e s t a t e s ~ e and ~~ - e as w e l l as ~ e 4 + . I n t h e process o f m e l t i n g i t i s l i k e l y t h a t ~ + a s m a l l p r o p o r t i o n o f t h e Te02 i s o x i d i s e d e i t h e r by r e a c t i o n w i t h a t m o s p h e r i c oxy- gen a b o v e t h e m e l t o r b y r e a c t i o n w i t h V2O5. Under t h e s e c o n d i t i o n s charge t r a n s f e r cou:d a l s o o c c u r between Te i o n s o r between Te and V i o n s , e n a b l i n q a d d i t i o n a l charge t r a n s f e r processes.

The dependence o f t h e c o n d u c t i v i t y on t h e v a l e n c e r a t i o c i s shown i n F i g u r e 2 where t h e c o n d u c t i v i t y a t 300 K i s p l o t t e d as a f u n c t i o n o f c f o r d i f f e r e n t t o t a l vanadium c o n c e n t r a t i o n s . The c o n d u c t i v i t y i n c r e a s e s w i t h i n c r e a s i n g

v4+

c o n t e n t u n t i l c

-

0 . 2 a f t e r w h i c h t h e c u r v e s l e v e l o u t and shown s i g n s o f a g r a d u a l decrease a t h i g h e r

v4+

c o n c e n t r a t i o n s . T h e o r i e s o f hopping c o n d u c t i o n i n mixed v a l e n c e semiconductors p r e d i c t a c o n d u c t i v i t y maximum when t h e r e a r e equal numbers o f

(4)

occupied and unoccupied s i t e s i . e . when c = 0.5. In t h e vanadium phosphate g l a s s system Linsley ( 6 ) found a well defined maximum i n c o n d u c t i v i t y a t c = 0.2 and t h i s discrepancy between theory and experiment has a l s o been observed by o t h e r work r s

( 7 , 8 , 9 ) . Three explanations have been advanced; ( i ) t h a t a p o r t i o n of t h e YE+

ions a r e bound i n s t r u c t u r a l complexes and a r e unable t o p a r t i c i p a t e i n t h e conduct- ion process ( 7 ) , ( i i ) Kinser and Wilson ( 8 ) have suggested t h a t t h e c o n d u c t i v i t y maximum a t

c

0.2 i s caused by t h e formation of a homogeneous g l a s s s t r u c t u r e around t h i s v a l u e , ( i i i b g l a s s - g l a s s phase s e p a r a t i o n occurs with one phase containing a l l of t h e V + ions while t h e o t h e r phase has only VS+ ions ( 9 ) . Information on t h e s t r u c t u r a l p r o p e r t i e s of V205

-

Te02 g l a s s e s i s s c a n t y , but t h e formation of l a r g e vanado-tel l u r i t e complexes seems l e s s l i k e l y than t h e formation of vanadophosphate complexes i n V205

-

P205 g l a s s e s .

Thermopower. The thermopower ( S ) was measured and i n t h e range 290 K t o 400 K i t i s ,

v i r t u a l l y independent of temperature. Generally t h e thermopower becomes s m a l l e r on reducing t h e V205 c o n t e n t of t h e g l a s s , probably i n p a r t because t h e r a t i o c

i n c r e a s e s a s t h e vanadium content of t h e g l a s s decreases. The r e s u l t s of t h e room temperature measurements of thermopower f o r g l a s s e s of d i f f e r e n t compositions a r e p l o t t e d i n Figure 3 a s a f u n c t i o n of t h e r a t i o c . Also shown i n t h i s graph i s a d o t t e d l i n e corresponding t o t h e equation proposed by Heikes and Ure (10) f o r t h e thermopower i n narrow-band semiconductors, i . e .

b u t assuming t h a t t h e entropy term (AS/k) i s n e g l i g i b l y small. Heikes and Ure (10) do not d e f i n e t h e term (AS/k) but Austin and Mott (11) suggest t h a t i t has a value between 0.1 and 0.2 and consequently can be neglected. The experimental r e s u l t s do not agree well with values of S c a l c u l a t e d from equation 3 but note t h a t S = 0 when c

-

0.2 which i s t h e same r a t i o a t which t h e c o n d u c t i v i t y goes through a maximum. S i m i l a r arguments a r e a p p l i c a b l e t o t h e v a r i a t i o n of t h e thermopower with valence r a t i o a s were a p p l i e d t o t h e c o n d u c t i v i t y .

Vanadium valence ratio Lc)

Fig. 3 Thermopower a s a f u n c t i o n of Fig. 4 Optical absorption versus photon

.p

valence r a t i o (v4+/vTOta, )

.

energy f o r two g l a s s e s containing 60 mole % V205, but d i f f e r i n g degrees of r e d u c t i o n , i . e . d i f f e r e n t (v4+/VTotal ) r a t i o s .

(5)

C4- 1008 JOURNAL DE PHYSIQUE

O p t i c a l Absorption. O p t i c a l a b s o r p t i o n measurements were made as a f u n c t i o n o f photon energy a t room temperature (a 300 K) and 77 K: and a steep a b s o r p t i o n edge i s observed f o r each g l a s s a t about 2.2 t o 2.4 eV, a t room temperature, w i t h a small s h i f t o f about 0.05 eV t o h i g h e r energies on l o w e r i n g t h e temperature t o 77 K. The p o s i t i o n o f t h e edge a t 2.2 eV was found t o be independent of t o t a l vanadium content and t h e percentage o f reduced vanadium, s u p p o r t i n g t h e conclusion t h a t t h e 5undament- a1 edge i s t h e r e s u l t o f d i r e c t f o r b i d d e n t r a n s i t i o n s between the oxygen 2p bands and t h e vanadium 3d band o f t h e V205. F u r t h e r support f o r t h i s view i s s u p p l i e d by t h e o p t i c a l a b s o r p t i o n o f c r y s t a l l i n e V2O5. Kenny e t a1 (12) measured the absorption c o e f f i c i e n t i n V205, along t h e d i f f e r e n t c r y s t a l axes, and found, f o r each, a fundamental a b s o r p t i o n edge i n c r e a s i n g from 2.2 eV, which they a t t r i b u t e t o d i r e c t forbidden t r a n s i t i o n s .

The a b s o r p t i o n o f glasses o f t h e composition (V205)40(Te02)60 was s t u d i e d a t low values o f aqpt i n t h e r e g i o n o f t h e a b s o r p t i o n t a i l i n order t o observe t h e effects o f v a r y i n g t h e r a t i o c and t y p i c a l r e s u l t s are shown i n F i g u r e 4. A t t h e lower end o f the a b s o r p t i o n curve a shoulder appears which increases i n i n t e n s i t y as t h e vanadium i s p r o g r e s s i v e l y reduced. T h i s shoulder i s i n t e r p r e t e d as being the combination o f a broad a b s o r p t i o n band and t h e t a i l o f t h e a b s o r p t i o n edge.

Small p o l a r o n theory p r e d i c t s (11) a s e r i e s o f a b s o r p t i o n l i n e s a t m u l t i p l e s o f t w i c e t h e polaron b i n d i n g energy (Wp), which a r e broadened by thermal motion o f the l a t t i c e , r e s u l t i n g i n a s e r i e s o f Gausslan a b s o r p t i o n peaks. T h i s a b s o r p t i o n a r i s e s from t h e o p t i c a l e x c i t a t i o n o f a c a r r i e r from i t s p o l a r i s a t i o n w e l l and subsequent t r a n s f e r t o another l a t t i c e s i t e , corresponding, i n a vanadate glass, t o t h e t r a n s f e r o f an e l e c t r o n from a ~ 4 + s i t e t o a VS+ s i t e . I n t h e vanadate glasses i t i s o n l y possible, i n p r a c t i c e , t o observe t h e f i r s t a b s o r p t i o n peak s i n c e t h e fundamental a b s o r p t i o n edge a r i s i n g from t h e 2p and 3d d i r e c t f o r b i d d e n t r a n s i t i o n s of t h e V205 masks t h e h i g h e r o r d e r peaks.

The p o s i t i o n o f t h e polaron a b s o r p t i o n peak can be r e l a t e d t o t h e d.c.

c o n d u c t i v i t y and t h e thermopower data through hv = Eopt = 2 Wp where Eopt i s t h e i n c i d e n t photon energy and Hp i s t h e polaron b i n d i n g energy. The p o l a r o n b i n d i n g energy i s r e l a t e d t o t h e hopping energy \*!H by (11) UH = $ Wp. Therefore,

hv = EoPt = 4 WH. But WH = (W

- :

WO) where G! i s t h e conduction a c t i v a t i o n energy and WD i s t h e d i s o r d e r energy. T y p i c a l l y f o r a 40 mole % V205 glass W i s 0.28 eV and t h e thermopower data gives a value o f 0.02 eV f o r WD ( 1 ) . Thus, Eopt = 1.1 eV.

This agrees w e l l w i t h t h e p o s i t i o n o f the shoulder i n t h e a b s o r p t i o n edge i n d i c a t i n g a polaron b i n d i n g energy o f 0.6

CV.

I t i s reasonable, t h e r e f o r e , t o i n t e r p r e t t h e shoulder i n terms o f polaron hopping b u t t h e present evidence i s n o t s u f f i c i e n t t o discount t h e p o s s i b i l i t y o f i t a r i s i n g from an i n t e r n a l d-d e x c i t a t i o n o f e l e c t r o n s i n t h e vanadium atoms.

References

1. FLYNN, B.W., OWEN, '.E. and ROBERTSON, J.M. Proc. 7 t h I n t . Conf. Amorphous and L i q u i d Semiconductors, (CICL, Univ. o f Edinburgh), (1977), 678.

2. ISARD, J.O. J. Non-cryst. Sol. 42, (1981), 371.

3. MOTT, N.F. J. Non-cryst. Sol. 1,(1968), 1.

4. AUSTIN, I . G . and GARBETT, E.S. - " E l e c t r o n i c and S t r u c t u r a l P r o p e r t i e s o f Amor-

~ h o u s Semiconductors1' E d i t o r s : LeComber, P.G. and Mort, J. (Academic Press). ,

-

(1973), 393.

5. SAYER, M. and MANSINGH, A. Phys. Rev. 66, (1972), 1629.

6. LINSLEY, G.S. " E l e c t r o n i c Conduction i n v a n a d a t e Glasses" (Ph.D. Thesis, S h e f f i e l d Univ.) (1968).

7. LINSLEY, G.S., OWEN, A.E. and HAYATEE, F.M. J. Non-cryst. Sol. 4, (1970), 208.

8. KINSER, D.L. and b!ILSON, L.K., Proc. 2nd C a i r o S o l i d S t a t e Conf.-(1973).

9. BOGOMALOVA, L.D. e t a l . Sov. Phys. Sol. S t a t e 16, (1974), 5.

10. HEIKES, R. R. and URE, R. " T h e r m o e l e c t r i c i t y : E i e n c e and Engineering"

( I n t e r s c i e n c e ) (1961), Chapter 4.

11. AUSTIN, I . G . and PIOTT, N.F. Adv. i n Phys. 18, (1969), 41.

12. KENNY, N., KANNEkIURF, C.R. and WHITMORE, D.H, J. Phys. Chem.

-

27, (1966), 1237.

Références

Documents relatifs

We previously defined the original cytotoxic mechanism of anticancerous N-phenyl-N’-(2-chloroethyl)ureas (CEUs) that involves their reactivity towards cellular proteins

Semiconducting SWCNT extraction efficiency plotted as a function of temperature for Pluronic F108 dispersed laser ablation, plasma torch, and arc discharge SWCNTs separated by DGU..

The results of our studies indicate that four factors must be considered when optimizing dye selection and loading to max- imize luminosity of a hybrid SNP dye : molecular

The following discussion will focus on the short to medium term impacts that could be realized within three areas of focus “ feedstock optimization, utilization of microorganisms

(a) Demand-driven (the default model in OpenMusic): The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in order to provide C

The current densities obtained here in the “physicochemical” synthetic seawater show the interest of going ahead with the design of a “biological” synthetic seawater, which would

The political and economic interconnections between the choice elements in long term planning are illustrated by the relations between the choice of