• Aucun résultat trouvé

LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS

N/A
N/A
Protected

Academic year: 2021

Partager "LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226922

https://hal.archives-ouvertes.fr/jpa-00226922

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS

C. Jørgensen

To cite this version:

C. Jørgensen. LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS. Journal de

Physique Colloques, 1987, 48 (C7), pp.C7-447-C7-450. �10.1051/jphyscol:19877106�. �jpa-00226922�

(2)

JOURNAL DE PHYSIQUE

C o l l o q u e C7, s u p p l b m e n t a u n 0 1 2 , Tome 4 8 , dBcembre 1 9 8 7

LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS

Section d e Chimie, Universite de Geneve, 30, Quai Ansermet, CH-1211 Geneve 4 , Switzerland

A b s t r a c t

-

F l u o r i d e g l a s s e s o f t h e z i r c o n i u m b a r i u m l a n t h a n i d e t y p e ( i n v e n t e d R e n n e s , 1 9 7 5 ) a n d l e a d g a l l i u m z i n c ( o r m a n g a n e s e ) t y p e ( i n v e n t e d Le Mans, 1 9 7 9 ) show l u m i n e s c e n c e of l a n t h a n i d e J- L e v e l s s i t u a t e d a t l e a s t 2000 c m - ' a b o v e t h e c l o s e s t l o w e r l e v e l

( t h i s l i m i t i s a f e w t i m e s l a r g e r i n m o s t o t h e r m a t e r i a l s ) . N o t o n l y i s t h e n o n - r a d i a t i v e d e - e x c i t a t i o n a s weak a s i n c r y s t a l l i n e LaF3 ( s t u d i e d by Weber) b u t e n e r g y t r a n s f e r b e t w e e n neodymium a n d y t t e r b i u m ( I I I ) , o r f r o m m a n g a n e s e ( I I ) , a n d t o some e x t e n t f r o m c h r o m i u m ( I I I ) , t o l u m i n e s c e n t J - l e v e l s o f n e o d y m i u m ( I I I ) ,

e r b i u m ( I I 1 ) a n d t h u l i u m ( I I 1 ) i s h i g h l y e f f i c i e n t e v e n a t low c o n c e n t r a t i o n s . O n e a d v a n t a g e f o r l a s e r a p p l i c a t i o n s i s t h a t t h e l o w e s t q u a r t e t s t a t e o f m a n g a n e s e ( I 1 ) h a s a l i f e - t i m e 10 t o 1 5 m i l l i s e c o n d s ( l i k e i n many p h o s p h a t e g l a s s e s a n d c r y s t a l l i n e compounds) a l l o w i n g e n e r g y t r a n s f e r , e x t e n d i n g by h u g e f a c t o r s t h e a v e r a g e l i f e - t i m e o f t h e e m i t t i n g J - 1 e v e l s . T h o u g h t h e t e r a - w a t t l a s e r s (Livermore,California,1978) i n d u c i n g d e u t e r i u m - t r i t i u m f u s i o n a r e s i l i c a t e g l a s s c o n t a i n i n g n e o d y m i u m ( I I 1 )

,

f l u o r i d e g l a s s e s s h o u l d b e p r e f e r a b l e f o r many p u r p o s e s . T h e e v a l u a t i o n o f l a s e r p a r a m e t e r s from s m a l l - s c a l e e x p e r i m e n t a t i o n i s f e a s i b l e .

One n e c e s s a r y c o n d i t i o n f o r l a s e r a c t i o n i s p o p u l a t i o n i n v e r s i o n . F u r t h e r o n , t h e m u l t i f a r i o u s p r o c e s s e s o f n o n - r a d i a t i v e d e - e x c i t a t i o n may d e c r e a s e t h e quantum y i e l d o f l u m i n e s c e n c e t o a n e x t e n t i m p a i - r i n g l a s e r a c t i o n [ l ] . G a s e o u s a t o m s , a n d l u m i n e s c e n t s p e c i e s i n w a t e r a n d o t h e r s o l v e n t s o f low v i s c o s i t y , h a v e a l a r g e p a r t o f t h e non- r a d i a t i v e d e a c t i v a t i o n ( i n c l u d i n g p h o t o c h e m i c a l r e a c t i o n s ) i n d u c e d by c o l l i s i o n s . I n h i g h - v i s c o s i t y v i t r e o u s m a t e r i a l s [ 2 1 a n d i n s o l i d s , t h e c o l l i s i o n s p l a y n o r 6 1 e r b u t W e b e r [ 3 ] f o u n d t h a t e x c i t e d J - l e v e l s o f t r i v a l e n t l a n t h a n i d e s i n c o r p o r a t e d i n c r y s t a l l i n e LaF3 a n d Y203 show a r a t e o f m u l t i - p h o n o n d e - e x c i t a t i o n W = B e x p [ -

a(&)

1 w h e r e &

( h a v i n g t h e d i m e n s i o n o f a r e c i p r o c a l e n e r g y ) m u l t i p l i e s t h e e n e r g y g a p

A E

b e t w e e n t h e e m i t t i n g J - l e v e l a n d t h e c l o s e s t l o w e r J - l e v e l . A c l o s e r a n a l y s i s [ 4 , 5 ] s u g g e s t s t o r e w r i t e

.

,

l o g l o ~ * = l o g B

-

0 . 8 6 0 ~ % 0 = l o g l O B

-

( 0 . 8 6 / a ) 10

a l s o a p p l i c a b l e t o g l a s s e s [ l , 2 ] a n d s o l u t i o n s . T h e c h a r a c t e r i s t i c phonon e n e r g y

h~

i s t h e h i g h e s t v i b r a t i o n a l n o r m a l mode o f a p o l y - a t o m i c s p e c i e s , o r t h e h i g h e s t f r e q u e n c y i n . a c r y s t a l . T h e s m a l l c o n s t a n t a i n t h e d e f i n i t i o n a%&)= ( I / C C ) i s 0 . 4 f o r H20 a n d D20 a q u a i o n s , v a r i e s i n c r y s t a l s f r o m 0.25 i n L a c 1 t o 0 . 5 i n Y203,and i s t y p i c a l l y 0 . 2 t o 0 . 5 i n g l a s s e s . T h e Weber t r e a 2 m e n t o f m u l t l - p h o n o n r e l a x a t i o n i s i n d e p e n d e n t o f t h e l a n t h a n i d e c o n s i d e r e d , i n c o n t r a s t t o t h e J u d d - O f e l t t h e o r y f o r r a d i a t i v e t r a n s i t i o n p r o b a b i l i t i e s b e t w e e n J - l e v e l s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19877106

(3)

JOURNAL DE PHYSIQUE

[ 1 , 2 , 6 - 8 1 i n v o l v i n g t h r e e s q u a r e d m a t r i x e l e m e n t s U, ( t = 2 , 4 , 6 ) d e t e r - m i n e d b y e l e c t r i c ~ ~ - ~ o l a r t r a n s i t i o n s b e t w e e n t w o i i v e n J - l e v e l s t a n d t h r e e m a t e r i a l p a r a m e t e r s Q r a t h e r c o m p a r a b l e t o M h e r e , t h o u g h t h e y v a r y w i t h t h e l a n t h a n i d e . t ~ o r o u r p , u r p o s e s , t h e J u d d - O f e l t p a r a m e t - r i z a t i o n i s i m p o r t a n t b y t r e a t i n g s i m u l t a n e o u s l y a b s o r p t i o n b a n d i n t e n s i t i e s ( f r o m w h i c h Q a r e e v a l u a t e d f r o m e x p e r i m e n t a l l y o v e r - d e t e r m i n e d sums U

9

) a n 5 r a d i a t i v e p r o b a b i l i t i e s . E v e n when t h e p r o b a b i l i t y x o f t n o n - r a d i a t i v e d e - e x c i t a t i o n t i s v e r y c l o s e t o 1 , t h e b r a n c h i n g r a t i o s o f l u m i n e s c e n c e f r o m a g i v e n l e v e l t o s e v e r a l l o w e r l e v e l s r e m a i n t h e s a m e , w i t h a l l t h e r a d i a t i v e

7

m u l t i p l i e d by ( 1 - x ) . Many s o l i d - s t a e l a s e r s u s e t h e t r a n s i t i o n f r o m 4~ t o t h e f i r s t e x c i t e d l e v e l 'Il i 2 o f neodymium (111) i n t h e g a r n ~ i 2 ~ d x ~ 3 - x ~ 1 5 0 1 2 t t h e p e r o v s k i t e NdxY1-xA103 o r t h e u n d i l u t e d p e n t a p h o s p h a t e NdP 0

5 1 4 ' N e v e r t h e l e s ~ ~ t h e t e r a w a t t l a s e r s [ 9 , 1 0 ] p r o v i d i n g n a n o s e c o n d 1 0 0 0 0

j o u l e p u l s e s f o r i n d u c i n g t h e r m o n u c l e a r f u s i o n i n d e u t e r i u m - t r i t i u m p e l l e t s a r e r a t h e r s p e c i a 1 , o p t i r n i z e d s i l i c a t e g l a s s 1 a s e r s . A ~ a l r e a d y s u g g e s t e d [ 3 ] b y t h e c r y s t a l l i n e f l u o r i d e s , t h e r e a r e g o o d r e a s o n s t o e x p e c t t h a t f l u o r i d e g l a s s e s may b e g o o d candidates.ActuallyIeight J- l e v e l s o f h o l m i u m (111) [ 11 -1 31 show p e r c e p t i b l e l u m i n e s c e n c e , a n d p e r f o r m c a s c a d e t r a n s i t i o n s ( l i k e g a s e o u s a t o m s ) i n ZBLA g l a s s o f t h e t y p e i n v e n t e d b y L u c a s [ l 4 ] w i t h m o l e c o m p o s i t i o n c l o s e t o 5 7 Z r F 4 : 34 BaF2 : 5 LnF3 : 4 A1F3 ( w h e r e t h e l a n t h a n i d e s Ln may i n c l u d e c o l o u r l e s s l a n t h a n u m ) . E r b i u m ( I I I ) i n ZBLA g l a s s I1 5 , 1 6 I s h o w s a l s o q u i t e e f f i c i e n t l u m i n e s c e n c e , a n d t h e p a r a m e t e r s o f e q . ( l ) a r e p r a c t i - c a l l y i d e n t i c a l w i t h t h o s e f o u n d f o r h o l m i u m ( I I I ) . T h e l o w e r l i m i t o f t h e e n e c y y g a p E s t i l l a l l o w i n g d e t e c t a b l e l u m i n e s c e n c e i s 1 9 0 0 t o 2 0 0 0 c m ( 0 . 2 4 eV) i n b o t h c a s e s , w h e r e a s m o s t 5 0 t h e r m t e r i a l s [ 2 ] h a v e t h i s l i m i t 2 t o 4 t i m e s h i g h e r . N o t o n l y DO a n d 'D b u t a l s o 5 D 2 a n d

50)

l u m i n e s c e s t r o n g l y o f e u r o p i u m ( I I 1 ) i n ZBLA g ! a s s [ l 7 1 . T h e c r i t l c a l e n e r g y g a p i s e v e n n a r r o w e r [ l 8 ] i n a g l a s s ( i n m o l e p e r c e n t )

2 7 . 5 ThF4 : 2 6 . 8 7 5 ZnF2 : 9 BaF2 : 6 Z r F 4 : 5 NaF : 3 L i F : 0 . 1 2 5 LnF3 w h e r e t h r e e h o l m i u m ( I I 1 ) l e v e l a n d o n e e r b i u m ( I I 1 ) l e v e l h a v e e n e r g y g a p s m a r g i n a l l y b e l o w 1 8 0 0 c m

-7

a n d l i f e - t i m e s o f o r d e r 1 m i c r o s e c o n d . C o m p a r a b l e g l a s s e s c o n t a i n i n g a l a r g e n u m b e r o f m i x e d f l u o r i d e s a r e r e p o r t e d [ l 8 ] t o show s i m i l a r b e h a v i o u r .

I t w o u l d b e c o n c e i v a b 3 e t h a t t h e f i r s t e x c i t e d q u a r t e t s t a t e 4 ~ 2 a n d l o w e s t d o u b l e t s t a t e E o f o c t a h e d r a l c h r o m i u m f I I I ) w o u l d h a v e q u i t e h i g h y i e l d s o f l u m i n e s c e n c e , a s known f r o m p h o s p h a t e g l a s s e s [ l 9 , 2 0 ] a n d v a r i o u s t r a n s l u c e n t ( a n d m e n l i m p i d ) g l a s s - c e r a m i c s [ 2 1 - 2 3 1 b u t t h e y i e l d i s v e r y l o w i n f l u o r i d e g l a s s e s [ 2 4 ] . T h e f i r s t e x c i t e d ( q u a r t e t )

s t a t e o f ( n o t n e c e s s a r i l y o c t a h e d r a l ) m a n g a n e s e ( I 1 ) h a s t h e same o r d e r o f ( m e a n ) l i f e - t i m e i n f l u o r i d e g l a s s e s a s 1 0 t o 1 5 m i l l i s e c o n d s i n a l a r g e n u m b e r o f p h o s p h a t e g l a s s e s [ 2 5 ] . T h i s l o n g - l i v e d q u a r t e t s t a t e o p e n s t h e p o s s i b i l i t y o f e n e r g y s t o r a g e f a c i l i t a t i n g l a s e r a c t i o n i n f l u o r i d e g l a s s e s containing,simultaneously,manganese(II) a n d t r i v a l e n t l a n t h a n i d e s . T h u s , Z B L A g l a s s c o n t a i n i n g o n e m o l e p e r c e n t e a c h o f MnF

s h o w s t h e l i f e - t i m e 0 . 3 4 m s o f t h e d i r e c t l u m i n e s c e n c e o f 2 e x t e n d e d t o a b o u t 1 . 5 m s b y e n e r g y t r a n s f e r f r o m m a n g a n e s e [ 2 4 ] .

$;d NdF3

s u S A 2 e f f e c t s w e r e a l s o o b s e r v e d [ 2 6 - 2 8 1 i n g l a s s e s o f t h e t y p e 36 PbF2 : 35 GaF3 : 24 MnF2 : 2 A1F3 : 3 YF3 : ( 4 - x ) LaF3 : x NdF3 w h e r e t h e l i f e - t i m e o f 4~ i n c r e a s e s f r o m 0 . 3 t o a l m o s t 1 m i l l i s e - c o n d b y e x c i t a t i o n i n t h e 3 / $ a n g a n e s e (11) a b s o r p t i o n b a n d s . S i m i l a r g l a s s e s ( p r e p a r e d b y J a c o b o n i a t U n i v e r s i t k d e M a i n e , L e Mans)

(4)

containing ZnF2 (rather than MnF ) and simultaneously NdF and4YbF allowed a detall d comparison[297 of the energy transfer 2rom F 3 of neodymium to 'F of ytterbium(II1) .Such energy transfer was 3/2 studied earlier[30y'$n a less quantitative way between several J- levels of erbium(II1) and (in both directions) the lowest quartet of simultaneously present manganese(I1) in a lead gallium fluoride glass containing also some A1(P03!3.Recently,there has been some interest in fluoride glasses containing uranyl ions[31] having the longest observed life-time 0.63 ms in a glass,to be compared[32] with 1 to 2 milliseconds in some crystalline uranyl compounds.

When prospecting for potential laser materialsfit is very helpful that small-scale e ~ p e r i m e n t a t i o n [ l , 2 ~ 2 8 ~ 3 3 ] mainly involving the time-evolution of spectroscopic properties can serve as a reliable guide-line for predicting laser performance.At the moment,the major technological interest in fluoride glasses is centered on optical fibers for infrared long-distance transmission of signals[34].

However,as already widely elaborated,they have outstanding luminescent properties,when containing 1anthanides.Besid.e~ the low vibrational frequencies expressed in eq.(l),the electron transfer bands of fluorides[35] have higher energy than of any other kind of ligands

(when connected to a given oxidizing transition-group atom with an empty or partly filled 3d14d,5d,4f or 5f shell) and it is known[361 that the de-excitation of excited J-levels of europium(II1) in mixed oxides is connected with the potential surfaces of the electron transfer states.The oxidizing character of a given trivalent or quadrivalent lanthanide as a function of the number of 4f electrons is rationalized [I ,37,38] by the spin-pairing energy treatment .It is also specific for fluoride glasses[28,39] that they do not contain network-formers in the same sense as silicate and phosphate glasses, and that the local symmetry and coordination number N of incorporated luminescent ions can be quite versatile,and in the case of lanthanides probably assume all N values from 7 to 12 without pronounced energetic preference.

Acknowledgements.

I am grateful to Professor Renata Reisfeld for valuable discussions.

This collaboration were supported by 2.820-0.85 (and previous grants) from the Swiss National Science Foundation.

References.

I.Reisfeld,R. and Jbrgensen,C.K.,"Lasers and Excited States of Rare Earths" (Springer-Verlag,Berlin and New York, 1977)

.

2.Reisfeld1R. and C.K.Jdrgensen,in: Handbook on the Physics and Chemistry of Rare Earths (eds. K.A.Gschneidner and L. Eyring)

,

Vol. 9,Chapter 58. (North-Holland Publ.Co.,Amsterdam,in press).

3.~eberT~.J. ,Phys.Rev.~(l967)262 & 2 ( 1 9 6 8 ) 2 8 3 .

4.Schuurmans,M.F.H. and van Dijk,J.M.F.,Physica 123 B(1984)131.

5.J~rgensen,C.K.,J.Physique(Coll.) 46-C 7(1985)409.

6.Carnall,W.T.,Fields,P.R. and Rajnak,K.,J.Chem.Phys.fi(1968)4412, 4424,4443,4447 & 4450.

7.Peacock,R.D. ,Structure and Bonding g ( 1 9 7 5 ) 83.

8.J@rgensen,C.K. and Reisfeld,R.,J.Less-Common Metals 93(1983)107.

9.Holzrichter,J.F.,Nature =(1985)309.

lO.H~lzrichter,J.F.~Campbell,E.M.,Lindl,J.D. and Storm,E.,Science 229(1985) 1045.

1 1 .=imura ,K., Shinn ,M.D. ,Sibley *.A. ,Drexhage M . G. and Brown, R. N., P h y s . R e v . B ( l 9 8 4 ) 2429.

(5)

JOURNAL DE PHYSIQUE

12.Reisfeld,R.,Eyal,M.,Greenberg,E. and J~rgensen,C.K.,Chem.Phys.Lett.

118(1985)25.

1 3 . ~ g e n s e n , C . K . , R e i s f e l d , R . and Eyal,M.,J.Electrochem.Soc.

133(1986)1961.

14.=as,J. ,J.Less-Common Metals u ( 1 9 8 5 ) 27.

15.Reisfeld,R.,KatzIGGIJacoboni,C.,DePape,R.,Drexhage,M.G.,Brown,R.N., and J~rgensen,C.K.,J.Solid State Chem. s(19831323.

16.Shinn,M.D.,SibleyrWwAAIDrexhage,M.G. and Brown,R.N.,Phys.Rev.

B 27 (1983)6635.

17.Reisfeld,R.,Greenberg,E.,Brown,R.N.,DrexhagerM.G and Jdrgensen, C.K.,Chem.Phys.Lett. E(1983)91.

18.Eyal,M.,Reisfeld,R.,J~rgensen,C.KK and Bendow,B.,Chem.Phys.Lett., in press.

19.Kisilev,A. and Reisfeld,R.,Solar Energy =(1984)163.

ZO.Reisfeld,R. and Kisilev,A.,Chem.Phys.Lett. =(1985)457.

21.Rei~feld,R.,Kisilev,A.~Greenberg,E.,Buch,A. and Ish-Shalom,M., Chem.Phys.Lett. z ( 1 9 8 4 ) 153.

22.Bouderba1a,M.,Bou1on,G.,Reisfe1d,R.,Buch~A11sh-Sha1om~M. and Lejus,A.M.,Chem.Phys.Lett. =(1985)535.

23.Ka1isky,Y.,Poncon,V.,Bou1on,G.,Rei~fe1dR.BuchA. and Ish-Shalom,M.,Chem.Phys.Lett. =(1987)368.

24.Reisfeld,R.,EyalIMM,Jdrgensen,C.K.,GuentherfA.H. and Bendow,B., Chimia g(1986)403.

25.Reisfeld,R.,Kisilev,A. and J@rgensen,C.K,,Chem.Phys.Lett.

1 1 1 (1984)19.

26.Reisfeld,R.,Eyal,M.,Jq5rgensen,C.K. and Jacoboni,C.,Chem.Phys.Lett.

129 (1986) 392.

2 7 . m g e n s e n , C . K . , R e i s f e l d , R . and Eyal,M.,J.Less-Common Metals 126(1986)181.

28.=sfeld,R.,Eyal,M. and J+rgensen,C.K.,Materials Science Forum.

29.Eyal,M.,ReisfeldIRRIJ@rgensen,C.K. and Jacoboni,C.,Chem.Phys.Lett.

129(1986) 550.

30.~sfeld,R.,Greenberg,E.,Jacoboni,C.,DePape~R. and J4rgensen,C.K., J.Solid State Chem. g(1984)236.

31.Reisfeld,R.,Eyal,M. and Jdrgensen,C.K.,Chem.Phys.Lett.

132(1986)252.

32.mgensen,C.K. and Reisfeld,R.,Structure and Bonding 50(1982)121.

33.Reisfeld,R.,Eyal,M. and J@rgensen,C.K.,J.Less-Common Metals 126 (1986) 187.

34.Reisfeld,R.,in: Halide Glasses for Infrared Fiberoptics (ed.Rui M.

Almeida) NATO AS1 Series E,=;237 (Martinus Nijhoff Publishers, Dordrecht ,1987).

35.J~rgensen,C.K.,Progress Inorg.Chem.~(l970)101.

36 .Blasse,G. ,Structure and Bonding z ( 1 9 7 6 ) 43.

37.Jdrgensen,C.K.,in: Handbook on the Physics and Chemistry of Rare Earths (eds. K.A.Gschneidner and L.Eyring),Vol. =,Chapter 75.

(North-Holland Pub1

.

Co. ,Amsterdam, in press)

.

38.J@rgensen,C.K.,"Differential Ionization Energies and Non-classical Aspects of Quantum Electrostatics", Quimica Nova ( S ~ O Paulo) in press.

39.J~rgensen,C.K.,Revue Chimie min. z(1986)614.

Références

Documents relatifs

– By studying model systems consisting of poly(ethyl acrylate) polymer chains covalently bound to silica particles, we show here how the temperature dependence of the modulus of

Keywords: Behavioural Science, Behavioural Economics, Health Promotion, Public Health, Nudge.. David McDaid is Senior Research Fellow at LSE Health and Social Care and at

If the energy of the atom excitation from an f" s 2 into f - 1 ds 2 state is used as a measure of stability of the element in the oxidation state 2 + , a big similarity in

In the first part, by combining Bochner’s formula and a smooth maximum principle argument, Kr¨ oger in [15] obtained a comparison theorem for the gradient of the eigenfunctions,

ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS ---..

This model of intermittent exposure to palatable diets has the benefit of being more clinically relevant to cases of eating disorders that feature normal eating habits and

KEYWORDS carbon nanotubes, luminescence, single molecule spectroscopy, excitons, environmental effects, water-filling... Single-walled carbon nanotubes (SWCNTs) have

It also seemed relevant to examine the value attributed to this belief in itself, therefore we asked: is having to work with a colleague who believes (vs. who does not believe) in