• Aucun résultat trouvé

Irradiation damage in nuclear graphite at the atomic scale

N/A
N/A
Protected

Academic year: 2021

Partager "Irradiation damage in nuclear graphite at the atomic scale"

Copied!
24
0
0

Texte intégral

(1)

HAL Id: cea-02338969

https://hal-cea.archives-ouvertes.fr/cea-02338969

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Irradiation damage in nuclear graphite at the atomic

scale

A. Chartier, L. van Brutzel, J. Pageot

To cite this version:

A. Chartier, L. van Brutzel, J. Pageot. Irradiation damage in nuclear graphite at the atomic scale. 9th International Conference on Multiscale Materials Modeling, Oct 2018, Osaka, Japan. �cea-02338969�

(2)

Irradiation damage in nuclear graphite

at the atomic scale

Multiscale Materials Modeling|october 2018 |Alain Chartier

| PAGE 1

(3)

Framework: decommissioning of graphite from "UNGG"

 Graphite = moderator in "UNGG" → neutrons, temperature  In 11 years of exploitation 2.6 dpa

 Activation of some impurities

i-graphite contains 14C & 36Cl (½ life 5 500 & 3×105 years)

Foreseen Solutions:

 Decommissioning under water interaction: graphite ↔ H2O, O2, CO2

 Treatment to eliminate 14C & 36Cl, (3H) depends on the localization of 14C & 36Cl after

irradiation

Graphite microstructure evolution under irradiation?

 - radiation damages and swelling

 - link between XRD – HRTEM images and atomic scale structure

Irradiated graphite

(4)

| PAGE 3 MMM - 2018

cm

nm

pores close single crystals swell/shrink

Microstructure / swelling by irradiation

Shen et al (2015)

(5)

Scenario of swelling under irradiation

Scenario of swelling

1. point defects by irradiation 2. wrinkling

3. sliding

4. formation of dislocations

Based on:

 HRTEM observations

 Atomic scale (DFT – MD) calculations

 Wigner energy estimations Heggie & Telling (2007)

Our goals:

 Link between swelling – atomic configurations for irradiated single crystal

 Link between HRTEM images and atomic configurations for irradiated single crystal

(6)

| PAGE 5 MMM - 2018

Modelling radiation damages

Primary ballistic damage by displacement cascade,with primary knocked on atom with 0.5 to 10 keV

Dose effect by Frenkel pairs accumulation

-

Creation of Frenkel pairs every 2 ps

high dose rate - Dose up to 10 dpa

- constant pressure and constant temperature if point defects then

free atoms

point defects only No direct impact

amorphisation

frozen atoms

cascade

(7)

Analysis of MD snapshots

HRTEM simulation (NCEMSS or Multi-slice code)

Graphite incident e-transmitted e-transmitted incident e-La Lc

Scherrer’s formula Bragg’s law

XRD simulation (code Debyer) Graphite

FWHM

Topological analysis: local curvature criterion

(graphite if curvature > 32°)

Peak position

graphene sheets in red

(8)

| PAGE 7 MMM - 2018

a

c

a

b

Frenkel pairs accumulation

Shrinking in the basal plane Swelling along c-axis

defects in blue

graphene sheets in red 10 nm

10

(9)

1. Point Defects

interstitial

2. Pinning on small disordered cluster and Wrinkling of graphene sheets

swelling / shrinking

3. Growth of amorphous pockets

aand c from XRD - Bragg’s law

a

c

(10)

| PAGE 9 MMM - 2018

Decrease of graphene size with increasing dose → small graphene sheets in “noodles shape”

= BSU (Basic Structural Units) What simulations show:

graphite amorphizes

MD simulation exp. J. Pageot (CEA)

2 nm La and Lc – Scherrer’s formula

La

Lc

(11)

La Lc

Nano-crystalline graphite

Scherrer’s formula

Creation of 20 crystallites, stacked along c-axis, with angles randomly distributed between 0° and 20°

Scherrer  Lc = 7 nm, La = 22 nm

initial  Lc = 15 nm, La = 35 nm Close to experiments

(12)

| PAGE 11 MMM - 2018

HRTEM image shows dislocation (edge or screw)

MD snapshot shows wrinkles

HRTEM image shows nano-pore MD snapshot shows nano-pore

SIMULATION

70

nm

(13)

HRTEM images  dislocations

but

MD snapshots  wrinkles

HRTEM images of nano-crystalline graphite

(14)

| PAGE 13 MMM - 2018

Conclusion - summary

Irradiation damages in graphite single crystal: Frenkel Pair Accumulation method

 Scenario in 3 steps:

1. Point Defects

2. Pinning + Wrinkling of graphene sheets

3. Growth of amorphous pockets → Amorphisation

 Swelling due to both defects + wrinkling of graphene sheets

 Microstructure from XRD – HRTEM

1. Link dislocations – wrinkles ??

(15)

Direction de l’énergie Nucléaire

Département de Physico-Chimie Service de Corrosion et du Comportement des Matériaux dans leur Environnement

Alain Chartier

Commissariat à l’énergie atomique et aux énergies alternatives DEN/DANS/DPC/SCCME/LM2T bât. 450SudEsi

Centre de Saclay| 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 31 68 |F. +33 (0)1 69 08 92 21

| PAGE 14

réunion EdF - CEA | 13 Janvier 2014

A. Chartier, L. Van Brutzel and J. Pageot, Carbon 133 (2018) 224.

A. Chartier, L. Van Brutzel, B. Pannier, and Ph. Baranek, Carbon 91 (2015) 395.

(16)

| PAGE 15 MMM - 2018 axe a ax e c

Plans pinned by

disordered amorphous

zones

Graphene sheets

are discriminated by

local curvature

→ average curvature radius

→ size of graphene clusters

(17)
(18)

| PAGE 17 MMM - 2018

(19)
(20)

| PAGE 19 MMM - 2018

Graphite - Analysis with DXA, HRTEM and XRD

HRTEM SAED

→ Vizualization of defects in graphene planes (MD and HRTEM)

→ Vizualization of wrinkles (MD analysis)

→ Swelling from size of box (not easy from XRD)

→ amorphization at 0.10 dpa (SAED and XRD)

MD calculations Analysis of MD c c c c

XRD

(21)
(22)

| PAGE 21 MMM - 2018

equivalent to 3.50 dpa

equivalent to 1.00 dpa

equivalent to 0.50 dpa

equivalent to 2.50 dpa

equivalent to 1.2 dpa

0.00 dpa

5.

nm

5.

nm

(23)

5.

nm

5.

nm

equivalent to 3.50 dpa

equivalent to 1.00 dpa

equivalent to 0.50 dpa

equivalent to 2.50 dpa

equivalent to 1.2 dpa

0.00 dpa

(24)

| PAGE 23 MMM - 2018

equivalent to 3.50 dpa

equivalent to 1.00 dpa

equivalent to 0.50 dpa

equivalent to 2.50 dpa

equivalent to 1.2 dpa

0.00 dpa

Références

Documents relatifs

The qualitative application of the model under different complex cyclic loading situations reveals its ability to take into account correctly the principal phenomena observed in

This paper is organized as follows : section 2 presents the materials and simulation methods, section 3 investigates the size effects and stress concentration effects at the

This junction zone spanning on 9 to II observed at smaller scale (Fig. 2) shows numerous structural defects: 1) The emergence on the surface plane of edge dislocations fines,

- At low temperatures (around room temperature) a high density of unresol- vable strain centers are produced by electron irradia- tion. As the irradiation temperature

les voies biliaires commencent au canalicule biliaire qui vont se réunir pour former les canaux hépatiques gauche et droit qui renquillent la bile du lobe gauche et

Dans le contexte de désindustrialisation, ces villes industrielles ou villes- usines sont devenues, pour nombre d’entre-elles, des « espaces interfaces » entre

Demarche, J & Terwagne, G 2006, 'Precise measurement of the differential cross section from the16O(,)16O elastic reaction at 165° and 170° between 2.4 and 6.0 MeV', Journal

While the optical absorption experiments presented no energy plasmon shift, the STEM-EELS results presented a blue shift tendency with the decrease of particles size..