• Aucun résultat trouvé

Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting

N/A
N/A
Protected

Academic year: 2022

Partager "Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting"

Copied!
29
0
0

Texte intégral

(1)

Data assimilation schemes

in numerical weather forecasting

and their link with ensemble forecasting

Gérald Desroziers

Météo-France, Toulouse, France

(2)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(3)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(4)

Global Arpège model : DX ~ 15 km

Numerical Weather Prediction at Météo-France

DX ~ 10 km

Arome : DX ~ 2,5 km

(5)

Initial condition problem

Observations yo

État atmosphérique à t0 Prévision état à t0 + h Ebauche xb = M (xa -)

(6)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(7)

Data coverage

05/09/03 09–15 UTC

(courtesy J-.N. Thépaut)

Radiosondes Pilots and profilers Aircraft

Synops and ships Buoys

ATOVS Satobs Geo radiances

Scatterometer

SSM/I Ozone

(8)

Satellites

(EUMETSAT)

(9)

Satellite data sources

(courtesy J-.N.Thépaut, ECMWF)

(10)

General formalism

Statistical linear estimation :

xa = xb + x =xb + K d = xb + BHT (HBHT+R)-1 d, with d = yoH (xb ), innovation, K,gain matrix,

B et R, covariances of background and observation errors,

H is called « observation operator » (Lorenc, 1986),

It is most often explicit,

It can be non-linear (satellite observations)

It can include an error,

Variational schemes require linearized and adjoint observation operators,

4D-Var generalizes the notion of « observation operator » .

(11)

Statistical hypotheses

Observations are supposed un-biased: E(o) = 0.

If not, they have to be preliminarly de-biased,

or de-biasing can be made along the minimization (Derber and Wu, 1998; Dee, 2005; Auligné, 2007).

Oservation error variances are supposed to be known ( diagonal elements of R = E(ooT) ).

Observation errors are supposed to be un-correlated : ( non-diagonal elements of E(ooT) = 0 ),

but, the representation of observation error correlations is also investigated (Fisher, 2006) .

(12)

Implementation

 Variational formulation:

minimization of J(x) = xT B-1x + (d-H x)T R-1 (d-H x)

 Computation of J’: development and use of adjoint operators

 4D-Var :

generalized observation operator H : addition of forecast model M.

 Cost reduction : low resolution increment x (Courtier, Thépaut et Hollingsworth, 1994)

(13)

9h 12h 15h Assimilation window

J

b

J

o

J

o

J

o

obs

obs

obs analysis

x

a

x

b

corrected forecast

« old » forecast

4D-Var : principle

(14)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(15)

A posteriori diagnostics

 Is the system consistent?

 We should have

E[J(xa) ] = p,

p = total number of observations,

 but also

E[Joi(xa) ] = pi – Tr(Ri-1/2 H i A HiT Ri-1/2 ),

pi : number of observations associated with Joi

(Talagrand, 1999) .

 Computation of optimal E[Joi(xa) ] by a Monte-Carlo procedure is possible.

(Desroziers et Ivanov, 2001) .

(16)

Application : optimisation of R

(Chapnik, et al, 2004; Buehner, 2005)

Optimisation of HIRS

o

One tries to obtain E[Joi (xa)] = (E[Joi (xa)])opt.

by adjusting the oi

∙ ∙

(17)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(18)

Ensemble of perturbed analyses

 Simulation of the estimation errors along analyses and forecasts.

 Documentation of error covariances – over a long period (a month/ a season), – for a particular day.

(Evensen, 1997; Fisher, 2004; Berre et al, 2007)

(19)

Ensembles Based on

a perturbation of observations

The same analysis equation and (sub-optimal) operators K and H are involved in the equations of xa and a:

xa = (I – KH) xb + K xo

a = (I – KH) b + K o

The same equation also holds for the analysis perturbation:

pa = (I – KH) pb + K po

(20)

Background error standard-deviations

Over a month Vorticity at 500 hPa

For a particular date 08/12/2006 00H Vorticity at 500 hPa

(21)

500 hPa vorticity error surface pressure

Ensemble assimilation:

errors 08/12/2006 06UTC

(22)

850 hPa vorticity error (shaded) sea surface level pressure (isoligns)

Ensemble assimilation:

errors 15/02/2008 12UTC

(Montroty, 2008)

(23)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(24)

Measure of the impact of observations

 Total reduction of estimation error variance:

r = Tr(K H B)

 Reduction due to observation set i : ri = Tr(Ki Hi B)

 Variance reduction normalized by B : riDFS = Tr(Ki Hi)

 Reduction of error projected onto a variable/area:

riP = Tr(P Ki Hi B PT)

 Reduction of error evolved by a forecast model:

riPM = Tr(P M Ki Hi B MT PT) = Tr(L Ki Hi B LT) (Cardinali, 2003; Fisher, 2003; Chapnik et al, 2006)

(25)

Randomized estimates of error reduction on analyses and forecasts

( L K

i

H B L

T

)

i

tr

r

It can be shown that

( H

i

B L

T

L K ).

tr

This can be estimated by a randomization procedure:

j o T

j i

T j o

i i

r

i

 (  y ) R

1

H B L L K (  y )

where

(  y

o

)

j is a vector of observation perturbations and

j a

)

(  x

the corresponding perturbation on the analysis.

j a i i

j

j

o

) R H B B L L ( )

(  y

1 1/2 1/2 * '

x

(Fisher, 2003; Desroziers et al, 2005)

(26)

Degree of Freedom for Signal (DFS)

01/06/2008 00H

(27)

Error variance reduction

% of error variance reduction for T 850 hPa by area and observation type

(Desroziers et al, 2005)

(28)

Outline

 Numerical weather prediction

 Data assimilation

 A posteriori diagnostics: optimizing error statistics

 Ensemble assimilation

 Impact of observations on analyses and forecasts

 Conclusion and perspectives

(29)

Conclusion and perspectives

 Importance of the notion of « observation operator » : - most often explicit,

- rarely statistical

 Large size problems : - state vector : ~ 10^7 - observations : ~ 10^6

 Ensemble assimilation:

– estimation error covariances

– measure of the impact of observations – link with Ensemble forecasting

(~ 40 members of +96h forecasts)

Références

Documents relatifs

Additionnaly the effect of a correlated noise resemble a (different) uncorrelated noise on each scale, meaning the diagonal approximation of the error covariance matrix will be a

Dans un article 5 paru dans La Liberté le 31 mars 1904 (reprenant en partie le contenu de l’article d’Hubert Savoy), il est écrit qu’après le décès de Joseph Grivel le 4

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’approche multi-agents se montre particuliè- rement intéressante pour modéliser, simuler et comprendre les systèmes particulaires. Elle per- met, via la modélisation

Elles ont été essentiellement effectuées à partir de modélisations numériques en 2D et n’ont pris en compte que les effets de certains processus considérés le plus souvent

Pour pouvoir se diriger vers une cible définie dans l’image il est nécessaire de valider l’existence d’une correspondance entre les mouvements de la sonde générés par le robot

Our first theorem extends this last result: for real-analytic Hamiltonians, or more generally Gevrey smooth Hamiltonians, under a generic condition, T (r) is at least

Cette approche repose sur plusieurs verrous scientifiques : le choix adéquat d’une interface haptique commandée, le développement d’un nouvel outil de mesure de microforces