• Aucun résultat trouvé

High-Voltage SiC-JFET Fabrication and Full Characterization

N/A
N/A
Protected

Academic year: 2022

Partager "High-Voltage SiC-JFET Fabrication and Full Characterization"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-02428523

https://hal.archives-ouvertes.fr/hal-02428523

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High-Voltage SiC-JFET Fabrication and Full Characterization

Besar Asllani, Pascal Bevilacqua, A. Zaoui, G Grosset, Dominique Planson, Hervé Morel

To cite this version:

Besar Asllani, Pascal Bevilacqua, A. Zaoui, G Grosset, Dominique Planson, et al.. High-Voltage SiC- JFET Fabrication and Full Characterization. ECSCRM’18, Sep 2018, Birmingham, United Kingdom.

pp.TU.P_BP5. �hal-02428523�

(2)

ID: 1099

High-Voltage SiC-JFET Fabrication and Full Characterization

B. Asllani1, P. Bevilacqua1, A. Zaoui1, G. Grosset2, D. Planson1 and H. Morel1

1) Univ Lyon, INSA Lyon, CNRS, AMPERE, F-69621 Villeurbanne, France 2) ION BEAM SERVICES, F-13790 PEYNIER , France

herve.morel@insa-lyon.fr

Silicon Carbide (SiC) enables to develop high-voltage devices. The present study focuses on JFETs. The targeted rating was 3300 V, 20 A.

To reach these characteristics a vertical structure with vertical and lateral channels was designed as shown in Fig. 1. The lateral channel enables an easy design with a low absolute value of the gate-source threshold voltage. It is easier to manufacture but yields a higher on-state resistance (RON) in comparison with a pure vertical channel.

Devices are fabricated on a n-type epitaxial layer (supplied by Showa Denko) with a thickness of 32.7 µm and a doping concentration of 9.7x1014 cm-3. 13 photolithography mask levels were used. A double gate structure one buried gate fabricated by ion implantation and a surface gate obtained by epitaxy regrowth. The edge termination of the JFETs includes a MESA structure and junction termination extension (JTE). The front side and back side metalizations are in Ag. The second passivation uses polyimide.

Electrical

characteristics Die dimensions (mm)

Source pad dimensions

(mm)

Gate pad dimensions (mm)

3300V/20A 5,8 x 5,8 3,91x2,21 0,96x0,96

Best dies were diced and packaged to enable high current measurements. The packaging was an optimization of Iso4 standard package made by DeepConcept Company as shown in Fig. 2. The size is the same but the internal design is optimized for SiC and for 3300 V voltage. The package can operate up to 200°C. In this case, the support is a metal one: (Cu, Al + termination Ni, Au, Ag).

The electrical characterization includes: standard static characteristics as the output characteristic (Fig.

3), the transfer characteristic, dynamic characteristics like Crss, Ciss. For such standard characterization a Keysight B1506A curve tracer was used. An IWATSU CS-5400 curve tracer was used for measuring the on-resistance versus the temperature. A specific test-bench for high voltage double pulsed test was used for the switching characterization (Fig. 4) and the associated turn-on and turn-off switching energy.

The final paper will present with further details, the main device characteristics for a datasheet like construction, the measurement protocols, and the associated test benches. Moreover turn-on and turn-off switching losses will be included in the range 500 V – 2000 V.

Acknowledgments: the authors would like to thank FilSiC project in the framework of the French research program, Investments for the Future, for fnancial support (FilSiC:

Convention n°O13953-410188).

(3)

Fig. 1: Schematic of the designed JFET structure

Fig. 2: A JFET die on its package

Fig. 3: Output Characteristics @ 25 °C – 32-J4 - B1506

Parameter Symbol Conditions Min Avr Max Units

Drain-source voltage vDS 2000 V

Gate-Source voltage vGS -20 to 2 V

Continuous drain current iD TJ=150 °C 13 A

Drain-source breakdown voltage BVDS VGS= -20 V, TJ=25 °C, iD= 1 mA 1950 2650 3300 V Drain-source on-resistance RONDS VGS= 0 V, TJ=25 °C, iD= 5 A 0.49 0.52 0.58 Ω Gate threshold voltage VTH VDS=20 V, iD= 100 mA -18.5 -18 -17.2 V Input capacitance CISS VGS= -20 V, VDS= 100 V, TJ=25

°C,

1470 pF

Output capacitance COSS 170 pF

Reverse transfer capacitance CRSS 160 pF

Thermal resistance, junction-to-

case RTHJC Estimated 0.26 °C/W

Fig. 4: Double pulse test measurements 2 kV, ~ 12 A

Double Pusle Switching

vDS (V)

0 500 1,000 1,500 2,000

iD (A)

0 10 20

t (µs)

0 2 4 6 8 10

vDS

iD

Douple Pulse Switching (control)

vGS (V)

−40

−30

−20

−10 0 10 20 30

iG (A)

−0.5 0 0.5

t (µs)

0 2 4 6 8 10

iG

vGS

Références

Documents relatifs

La figure 11 montre la comparaison entre le modèle pro- posé (section II) et les pertes statiques mesurées dans un interrupteur composé de quatre JFET et d’une diode pour

Figure 20 : Comparaison entre le résultat de simulation et le mesure expérimentale du courant de saturation en fonction de la tension grille source appliquée à la température

In view of the integration of a low noise preamplifier on the high resistivity fully depleted silicon wafer of a radiation detector, the required JFETs have

The OBIC measurements performed on our planar SiC-6H bipolar diodes have indicated the JTE influence on electric field distribution and the place of breakdown.. These

The paper presents the main characterization results with classical static and dynamic measurements as well as double pulse tests for switching characterization.. The study

This paper reports the design, the processing, the static characterisation, the switching behaviour and the high current stress test of 10 kV aimed 4H-SiC

8 : ( a) Schéma de principe de la mesure du courant de grille, (b) Courant de fuite de grille en fonction de la tension V GS du JFET SiC SemiSouth. L I GSS au cours du

1) SiC Power Devices: SiC devices have recently become commercially available items. Because they can operate at junction temperatures as high as 450 ◦ C [2], it has now become