• Aucun résultat trouvé

A finite element based fast eigensolver for three dimensional anisotropic photonic crystals

N/A
N/A
Protected

Academic year: 2022

Partager "A finite element based fast eigensolver for three dimensional anisotropic photonic crystals"

Copied!
21
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A finite element based fast eigensolver for three dimensional anisotropic photonic crystals

So-Hsiang Chou

a,∗

, Tsung-Ming Huang

b,∗

, Tiexiang Li

c

, Jia-Wei Lin

d

, Wen-Wei Lin

d

aDepartmentofMathematicsandStatistics,BowlingGreenStateUniversity,OH,USA bDepartmentofMathematics,NationalTaiwanNormalUniversity,Taipei116,Taiwan cSchoolofMathematics,SoutheastUniversity,Nanjing211189,People’sRepublicofChina dDepartmentofAppliedMathematics,NationalChiaoTungUniversity,Hsinchu300,Taiwan

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received17December2017

Receivedinrevisedform3January2019 Accepted5February2019

Availableonline4March2019

Keywords:

Maxwell’sequations

Three-dimensionalanisotropicphotonic crystals

Face-centeredcubiclattice Finiteelementmethod

Null-spacefreeeigenvalueproblemandfast Fouriertransforms

ThestandardYee’sschemefortheMaxwelleigenvalueproblemplacesthediscreteelectric fieldvariable atthe midpointsoftheedges ofthegridcells.Itperformswell whenthe permittivityis ascalar field.However,when the permittivityis aHermitianfull tensor fielditwouldgenerateun-physicalcomplexeigenvaluesorfrequencies.Inthispaper,we proposea finiteelementmethod whichcanbe interpreted as amodifiedYee’sscheme toovercomethisdifficulty. ThisinterpretationenablesustocreateafastFFTeigensolver that cancomputeveryeffectivelythe bandstructureof theanisotropic photoniccrystal withSCandFCClattices.Furthermore,weovercometheusuallargenullspaceassociated with the Maxwelleigenvalue problem by derivinga null-space free discrete eigenvalue problemwhichinvolvesacrucialHermitianpositivedefinitelinearsystemtobesolvedin eachoftheiterationsteps.ItisdemonstratedthattheCGmethodwithoutpreconditioning convergesin37iterationsevenwhenthedimensionofamatrixisaslargeas5,184,000.

©2019ElsevierInc.Allrightsreserved.

1. Introduction

InthispaperweareconcernedwithafastnumericaleigensolverfortheMaxwelleigenvalueproblem

∇ × ∇ × E = λ ε E , λ = μω

2

,

(1a)

∇ · ε E =

0 (1b)

posedon,whichisa primitivecellwithlattice vectorsa,=1,2,3,ofa periodicstructure inR3 such asa photonic crystal(PC). Here in (1), E=E(x) isthe electric field,

ε

is theperiodic permittivity complextensor field, and

μ

isthe constantpermeabilityscalarfield.Mathematically,thisproblemarisesnaturallyfromthesource-freeMaxwellequationsby assumingthat thetimedependentelectricandmagneticfieldsaretime-harmonic withafactorofeιωt (

ι

=√

1).Inan anisotropicmedium,thepermittivity

ε

maytakeaHermitianform[27–29]

*

Correspondingauthors.

E-mailaddresses:chou@bgsu.edu(S.-H. Chou),min@ntnu.edu.tw(T.-M. Huang),txli@seu.edu.cn(T. Li),jiawei.am05g@g2.nctu.edu.tw(J.-W. Lin), wwlin@math.nctu.edu.tw(W.-W. Lin).

https://doi.org/10.1016/j.jcp.2019.02.029

0021-9991/©2019ElsevierInc.Allrightsreserved.

(2)

ε =

ε

11

ιε

12

ιε

13

ιε

12

ε

22

ιε

23

ιε

13

ιε

23

ε

33

.

(2)

Anisotropic PC material has many interesting and novel applications in practice, such as the hollow semiconductor nanorod [22], femtosecond laser pulses [38], photonic crystalfibers [2,6,37], among others. In 1993, it was shownthat the anisotropy ofthe material could split the degenerate band andnarrow the band gap ofa PC[41]. Laterin 1998, a largebandgapopeningbyusingananisotropicPCwas shownin[23,24].Thereafter,toexhibitlargebandgaptenability,a three-dimensional(3D)inverseopalPCstructureinfiltratedwithliquidcrystalswasproposedin[7].

Computational methods playan equallyimportantrole in the studyofthe anisotropic material.The spectral element method [30], the finite-element method (FEM) [3,4,10,11,35], the mixed finite element method [21,25,26], the finite- difference frequency-domain method(FDFD) [13,36], andtheplane wave expansion method[20] have been proposed to compute thebandstructureoftheanisotropicPC.Inthispaper,weareinterestedincreatingafiniteelementmethodthat resemblesthefinitedifferenceYee’sscheme[40] duetoitsrobustnessinsolvingtheMaxwell eigenvalueproblemsassoci- ated withisotropicmaterials. Yee’sschemeonlydiscretizes(1a) andleavesthedivergence-freecondition(1b).Thereason forthat isformerlythe exactsolutionof(1a) satisfies(1b). Indeed,thisstrategy workswell forisotropicmaterials. Thus, when itcomestothediscretizationof(1a)-(1b) orits manypossibleweak formulationsthroughfinitedifferenceorfinite element schemes, the traditionalwisdom is to usespatial discretizations that admit discrete analogueof the divergence freecondition.ThisclassofspatialdiscretizationsincludesYee’sscheme[14,16,40],theWhitneyform[5,39],thecovolume discretization[34],themimeticdiscretization[19] andtheedgeelement[32,33].Itshouldbenotedthatinallthesecases thepermittivity

ε

isascalarfield.Inthispaper,wewillfollowthisapproach,i.e.,wewilldiscretize(16a) insuchawaythat enablesustorigorouslyshowinTheorem5ofSec.5.2thatthediscretizedversion oftheweakdivergencefreecondition (16b) isautomaticallysatisfied,whichisbynomeansatrivialtask.Ontheotherhand,therearecertainlyotherapproaches, e.g., [4] thatkeep(16b). Theyhavethe advantageoftheavailabilityofageneralconvergencetheory of[3] foreigenvalue problemsposedongeneraldomains.However,forcuboiddomains ourapproachcan generatefasteigensolvers.Theavail- ability ofsuch solversis essential whenthesame largeMaxwell eigenvalue problemhas tobe solved alarge numberof timeswhenthematerialparametersintheconstitutiverelationsmustbevariedindesignproblems[17].

On a 3D PC,due to the divergence-free condition (1b), a large nullspace of the underlyingeigenvalue problem will be produced. The presenceof the huge nullspace is a numericallychallenging problem in solving the eigenvalueprob- lem.Moreover, howtoefficientlysolvetheassociatedlinearsystemineachstepoftheeigensolverisanotherchallenging problem.

Inthe3Dnon-anisotropiccases(isotropicorbi-isotropicmedium),wehavehadsuccesses[8,14] intacklingtheseobsta- clesthatwerepresentwhenusingYee’sscheme[40] inwhichEisassignedtotheedgecentersandthemagneticfieldHto thefacecenters.Afterthediscretizationphase,ageneralizedeigenvalueproblem(GEP)withalargenullspaceisproduced.

Itisratherremarkablethatanull-spacefreemethodwithFFT(fastFouriertransform)-basedmatrix-vectormultiplications hasbeenfound[8,14] toexplicitlydeflatethishugenullspacesothattheGEPistransformedintoanull-spacefreestandard eigenvalueproblem(NFSEP).ThecoefficientmatrixoftheNFSEPisHermitianpositivedefinite(HPD)andwell-conditioned.

Therefore,theassociatedlinearsystemineachiterationoftheinvertLanczosmethodcanbeefficientlysolvedbythecon- jugategradient(CG)methodwithoutanypreconditioner.InthedispersivePCwithisotropicmedium(i.e.,

ε

isapiecewise nonlinear function of λ), a Newton-typeiterative method[18] withthe null-space free methodis proposed to solve the associatednonlineareigenvalueproblem.

The successes of the null-space free method in isotropic and bi-isotropic PCs are partially due to the fact that the permittivity

ε

isapiecewiseconstantscalarfield,andthereisnoconflictintheplacementofdiscretepermittivityvariable.

Inotherwords,itmesheswellwiththestandarddiscretizationbyYee’sscheme.However,fortheanisotropicmaterial,there is aconflictinthe placementofdiscretetensor permittivityvariable.Howtomodify Yee’sschemeso thatthe null-space freemethodcanbeappliedtoatensorfield

ε

isoneoftheissuesaddressedinthispaper.

In an anisotropic medium,the permittivity

ε

isgiveninthe tensorform (2) where

ε

i j, for1≤i,j3, are piecewise constants or piecewisenonlinear functions. Moreover,in [27,28],the tensor

ε

isHPD. AFDTDmethod [36] for modeling electromagnetic scatteringis proposed todiscretizethe generalanisotropicobjects.The importantstructure andproperty of the tensor

ε

in (2) were not considered in this discretization.In this paper, we will exclusively consider the casein whichtheHermitianmatrixin(2) satisfiesthat

ε

i j arepiecewiseconstant,andproposeanewfiniteelementschemewhich preservestheHermitianandpositivedefiniteness (if

ε

has)inthediscretization.Themaincontributionsinthispaperare summarizedasfollows:

Our new finite element method can be interpreted asa modified finite difference Yee’s scheme. As a consequence, the discretizationofthedouble curloperator inourproposed methodisequivalent tothe corresponding operatorin Yee’s scheme so that the null-space free method[8,14] can be applied to solve the resultinggeneralized eigenvalue problem.Furthermore,awell-knownfeatureoftheclassicalfinitedifferenceYee’sschemeforisotropicmaterialsisthat thedivergencefreeconditionofthefieldisautomaticallysatisfiedbythefinitedifferencesolution.Inotherwords,one needs not todiscretize (1b) explicitly.We show inTheorem5 thatour methodpreservesthisfeatureforanisotropic materialsaswell.

(3)

Fortheright-handsideof(1a),ourmethodprovidesanHPD-preservingcoefficientmatrixBε,i.e.,if

ε

isHPD,sois . Furthermore,thematrixcanbefactorizedbyFFT-matrices,diagonalmatricesanda3×3 blockdiagonalmatrixwith asuitablepermutation.Thespecialfactorizationof resultsinminimaleffort ininverting whilestillkeepingthe correctphysicsintact(realfrequencies).

Basedon theabove importantfactorizationof ,the null-spacefree methodcanbe appliedto reduce theGEPinto a NFSEP with HPD coefficient matrix. The NFSEP can be solved by the invert Lanczos method and the CG method withoutpreconditioningcanbeusedtosolvethelinearsystemefficientlyateachiteration.Thecomputationalcostof thematrix-vector multiplicationin theCGmethodis almostequal tothat ofthe null-spacefree methodinisotropic PCs.

This paper is organized as follows. We introduce our proposed finite element method in Section 2. The equivalence betweenourmethodandYee’sschemeforthediscretizationofdouble-curloperatorisshowninSection3.Thediscretization of

ε

E isintroduced inSection 4. In Section 5, we show that the coefficient matrix corresponding to

ε

is HPD, andthe divergencefreeconditionisautomaticallysatisfiedfortheapproximateelectricfield.Finally,thenumericalefficiencyofthe developedschemesisstudiedinSection6.

2. AfiniteelementmethodforMaxwelleigenvalueproblem

Inthissection, wepropose a weakformulationfortheMaxwell eigenvalueproblem(1) anda Galerkinfiniteelement methodtosolveit.

2.1. Weakformulationofproblem(1)

Denoteby(f,g)thecomplexinnerproductofCN-valuedfunctionsinL2(),i.e.,

(

f

,

g

) =

N i=1

fi

(

x

)

gi

(

x

)

dx

=

g

(

x

)

f

(

x

)

dx

.

(3)

Here“∗denotestheconjugatetranspose.Let beaprimitivecellwithlattice vectorsa,=1,2,3.Itisknownthatthe electricfieldsatisfiesthequasi-periodiccondition

E(

x

+

a

) =

eι2πk·a

E(

x

), =

1

,

2

,

3

,

(4) forallx∈R3,wheretheBlochwavevectorkliesinthefirstBrillouinzoneB.

CorrespondingtoE,wecandefineaperiodicfunctionu,itsassociatedmodulatingamplitude,as

u

(

x

) =

eι2πk·x

E(

x

),

(5)

whichsatisfiestheperiodiccondition

u

(

x

+

a

) =

u

(

x

), =

1

,

2

,

3

.

(6)

ThusonecanalsostudytheMaxwelleigenvalueproblem(1) bytheequivalentsystemintermsofu:

k

× ∇

k

×

u

= λ ε

u

,

(7a)

k

· ε

u

=

0

,

(7b)

wheretheshiftedgradientoperator∇k:= ∇ +

ι

2

π

k.

Remark1.This u-system(7) has the advantageof havingFourier analysisat ourdisposal when analyzingthe existence, stability,andconvergenceissues,see[11,35].However,inthispaperwearemoreconcernedwithcreatingfasteigensolvers and the E-system (1) will be used. We will have occasions of interpreting some nice spectral-theory results from [35, Chapter4] backtotheE-system.

Weneedtointroducesomecomplex-valuedfunctionspaces.Let H

(

curl

,) := {

v

: → C

3

|

v

, ∇ ×

v

L2

()}

withthenorm

||

v

||

2H(curl,)

:= ||

v

||

2L2()

+ ||∇ ×

v

||

2L2()

,

andlet

(4)

Cper

() := { φ |

: φ : R

3

→ C , φ

C

( R

3

), φ (

x

+

a

) = φ (

x

), =

1

,

2

,

3

} ,

Cper

() := {

v

|

:

v

: R

3

→ C

3

,

v

C

(R

3

),

v

(

x

+

a

) =

v

(

x

), =

1

,

2

,

3

}.

Definetheperiodicfunctionspaces

Hper

(

curl

,) :=

the closure ofCper

()

inH

(

curl

, ),

(8a)

Hper1

() :=

the closure ofCper

()

inH1

(),

(8b)

andtheirassociatedquasi-periodicfunctionspaces

Hqper

(

curl

, ) := {

v

:

eι2πk·xv

Hper

(

curl

, )},

(8c)

Hqper1

() := {φ :

eι2πk·x

φ

H1per

()}.

(8d)

Note that inview of(5), (6) and the Fourierseries representation,functions inthe above two spaces satisfy the quasi- periodicconditions(4).

Theorem1.ForanyE,W∈C(R3)Hqper(curl,)andφC(R3)Hqper1 (),wehave

(∇ × ∇ × E,W) = (∇ × E, ∇ × W),

(9a)

(∇( ε E), φ) = ( ε E, ∇φ).

(9b)

Proof. SinceEandWaresmooth,Green’sformulaimplies

(∇ × ∇ × E,W) = (∇ × E, ∇ × W) +

ν × ∇ ×

E

· W

d A

,

(10)

where

ν

isthe outwardunit normalvector totheboundary. Forconvenience, wenamethe sixboundary surfacesofthe primitivecellas0a1,1a1,0a2,1a2,0a3 and1a3,where

sa1

= {

sa1

+

aa2

+

ba3

|

a

,

b

[0

,

1]

},

sa2

= {

sa2

+

aa3

+

ba1

|

a

,

b

[0

,

1]

},

sa3

= {

sa3

+

aa1

+

ba2

|

a

,

b

[0

,

1]

},

fors=0,1.Thenthesurfaceintegraltermin(10) canbedividedas

3

=1

⎜ ⎜

0a

ν

,0

× ∇ × E · W

d A

+

1a

ν

,1

× ∇ × E · W

d A

⎟ ⎟

where

ν

,0= −

ν

,1 are the outward unit normal vectors on 0a and 1a, respectively. In particular, from the quasi- periodicityofEandW,wehave

0a

ν

,0

× ∇ × E (

x

) · W (

x

)

d A

=

0a

ν

,0

× ∇ × E (

x

+

a

) · W (

x

+

a

)

d A

=

1a

ν

,1

× ∇ × E (

x

) · W (

x

)

d A

,

for=1,2,3.Therefore,theresultin(9a) isproved.

Toshow(9b),weobservethat

(∇ · ε E, φ) = ( ε E, −∇φ) +

ε E · ν φ

d A

.

(11)

Again,thesurfaceintegraltermin(11) canbedividedas

(5)

3

=1

⎜ ⎜

0a

ε E · ν

,0

φ

d A

+

1a

ε E · ν

,1

φ

d A

⎟ ⎟

.

Fromtheperiodicityof

ε

,andthequasi-periodicityofEandφ,wehave

0a

ε E (

x

) · ν

,0

φ (

x

)

d A

=

0a

ε (

x

+

a

) E (

x

+

a

) · ν

,0

φ (

x

+

a

)

d A

=

1a

ε (

x

) E (

x

) · (ν

,1

)φ (

x

)

d A

for=1,2,3.Theresultin(9b) isobtained. 2

Inview ofTheorem1,asimpledensityargumentsuggeststhatweconsiderthefollowingweakformulationofproblem (1):Findapair(λ,E)withλ∈CandE∈Hqper(curl,)suchthat

(∇ × E,∇ × W) = λ( ε E,W), ∀ W ∈

Hqper

(

curl

, ),

(12a)

( ε E,∇φ) =

0

,φ

Hqper

().

(12b) However, froma computationalelectromagnetics viewpoint,itis moreconvenienttowork withthefollowing twospaces whosedescriptionismoreaccessible:Forfunctionsu:R3→C3andφ:R3→C,wedefine

Hcurl

() = {

u

|

:

u

H

(

curl

, ),

u

(

x

+

a

) =

eι2πk·au

(

x

), =

1

,

2

,

3

},

(13) Hgrad

() = {φ|

: φ

H1

(), φ (

x

+

a

) =

eι2πk·a

φ (

x

), =

1

,

2

,

3

}.

(14) Remark2.Alternatively,the quasi-periodic condition in (13) can be viewed asa wayto extendthe functionsoutsideof ,whiletheregularityconditionuH(curl,),togetherwiththequasi-periodiccondition, impliesatangentialboundary (trace)conditionon:

uT

(

x

+

a

) =

eι2πk·auT

(

x

), =

1

,

2

,

3

,

(15)

whereuT=

ν

×uisthetangentialtraceofu.

Infact, Hgrad()=H1qper() andHcurl()=Hqper(curl,).It isnothard toseethatthefirst relationholds.The proof ofthesecondrelationand(15) usessimilarargumentsinprovingtwocharacterizationsofH0(curl)areequivalent(cf.[31, Theorem3.33] or[12,Theorem2.12]).Seealso[1,Lemma2.1].Theanalogyisnotsurprising, ifwe viewthedifferenceof (15) asazero-tracecondition.

Insummary,weshallconsidertheweakformulationofproblem(1):Findapair(λ,E)withλ∈CandE∈Hcurl()such that

(∇ × E,∇ × W) = λ( ε E,W), ∀ W ∈

Hcurl

(),

(16a)

( ε E,∇φ) =

0

,φ

Hgrad

(),

(16b) where

ε

:R3→C3×3 isatensorfieldofthegeneralform(notnecessarilyHermitian)

ε =

ε

11

ε

12

ε

13

ε

21

ε

22

ε

23

ε

31

ε

32

ε

33

.

(17)

Remark3.DuetotheexistenceofanexactdeRhamsequence(cf.[35,p.58])andRemark1,itimpliesthat

Hgrad

()

Hcurl

().

(18)

ThuswecansetW= ∇φin(16a) andseethat[9] whenλ=0,thedivergencefreeconditionisautomaticallysatisfied.Our discreteweakformulationbelowwillrespectthisproperty(seesubsection5.2):

Hhgrad

()

Hhcurl

().

(19)

(6)

Remark4.ItmaybecuriousthatwhythereisnoneedinintroducingaLagrangemultiplierintheaboveweakformulation.

See[35,Proposition4.20] forsuchacase.Usingthetechniquesin[35] via(5),wecanshowaresultsimilartotheProp.4.20:

Suppose that

ε

isHPD. Thenforeach kB,firstBrillouinzone,theeigenvalue problem(16) hasan increasing sequence {λj}j∈N ofnon-negativerealnumberstendingtoinfinity. Eacheigenvaluehasfinitemultiplicity andzeroisan eigenvalue ifandonlyifk=0.Thedetailswillbereportedelsewhere.Asaconsequence,zeroeigenvalueisnotonlynonphysical,but mathematicallyspuriousforthek=0 case,whenadiscreteweakformulationoftheMaxwelleigenvalueproblemproduces zeroeigenvalue.Anull-spacefreemethodwouldbecalledforinsuchacase.

2.2. Discretizationsofweakformulationsof(16)

Inthissubsection,weuseaGalerkinfiniteelementmethodbasedontheedgeelementstoapproximatetheexactfield Ein(16a).Tothisend,let Hhcurl()andHhgrad()be3N-dimensionallinearsubspacesofHcurl()andN-dimensionallinear subspaceofHgrad(),respectively(tobedefinedin(23) and(24),respectively).ThenastraightforwardGalerkinmethodfor (16a)-(16b) is:Findapair(λ,E)withλ∈CandEHcurlh ()suchthat

(∇ ×

E

,∇ ×

W

)

h

= λ( ε

E

,

W

)

h

,

W

Hhcurl

(),

(20a)

( ε

E

,φ)

h

=

0

,φ

Hhgrad

().

(20b)

Here(f,g)hisadiscreteinnerproducttobespecifiedlater.

Tosimplifythediscussion,weonlygivethedetailswhenisasimplecubic(SC)primitivecellwiththelatticetransla- tionvectorsa=axˆ,=1,2,3,wherexˆisthe-thunitvectorinR3.Alongtheway,wealsogive sufficientremarksfor theface-centeredcubic(FCC)latticesothatitcanbehandledsimilarly.Lethx,hy,andhzbetheequalgridspacingsalong thex,y,andzdirections,respectively.Gridpointsareindexedfrom0 toni(i=1,2,3)withn1=a/hx,n2=a/hy,n3=a/hz. Thusthenumberoftheedgesparalleltothex-, y- andz-axes,respectively,excludingthoseontheright,rear,andtopsur- faces,isjustN=n1n2n3.

From nowon,weusexm=mhx andxmˆ = ˆmhx,wheremˆ =m+12.Furthermore,form= −1,0,. . . ,n1,let ˆcmˆ(x)denote thecharacteristicfunctionwhosevalueisoneover[xm,xm+1]andzeroelsewhere,ˆli denotethegenericglobalhatfunction supportedover[xi1,xi+1],i.e.,ˆli(x)=δi,fori=1,. . . ,n11.Hereandhereafter,δidenotestheKroneckerdelta.Similar notationsareusedforthe yandzdirections.

Wenowdefinepiecewiseconstantfunctions

cˆi

(

x

) = ˆ

cˆi

(

x

),

cˆj

(

y

) = ˆ

cˆj

(

y

),

ckˆ

(

z

) = ˆ

ckˆ

(

z

),

(21a) fori=0,n11, j=0,n21,k=0,n31,and

c0ˆ

(

x

) = ˆ

c0ˆ

(

x

) +

eι2πk·a1c

ˆ

nˆ1

(

x

),

cnˆ11

(

x

) = ˆ

cnˆ11

(

x

) +

eι2πk·a1c

ˆ

-1

(

x

),

(21b) c0ˆ

(

y

) = ˆ

c0ˆ

(

y

) +

eι2πk·a2c

ˆ

nˆ2

(

y

),

cnˆ21

(

y

) = ˆ

cnˆ21

(

y

) +

eι2πk·a2c

ˆ

-1

(

y

),

(21c) c0ˆ

(

z

) = ˆ

c0ˆ

(

z

) +

eι2πk·a3c

ˆ

nˆ3

(

z

),

cnˆ31

(

z

) = ˆ

cnˆ31

(

z

) +

eι2πk·a3c

ˆ

-1

(

z

),

(21d) aswellaspiecewiselinearfunctions,

li

(

x

) = ˆ

li

(

x

),

lj

(

y

) = ˆ

lj

(

y

),

lk

(

z

) = ˆ

lk

(

z

),

(22a) fori,j,k=0,and

l0

(

x

) =

⎧ ⎪

⎪ ⎩

hx1

(

x

x1

),

ifx

∈ [

x0

,

x1

],

eι2πk·a1hx1

(

x

xn11

),

ifx

∈ [

xn11

,

xn1

],

0

,

otherwise

,

(22b)

l0

(

y

) =

⎧ ⎪

⎪ ⎩

hy1

(

y

y1

),

ify

∈ [

y0

,

y1

] ,

eι2πk·a2hy1

(

y

yn21

),

ify

∈ [

yn21

,

yn2

] ,

0

,

otherwise

,

(22c)

l0

(

z

) =

⎧ ⎪

⎪ ⎩

hz1

(

z

z1

),

ifz

∈ [

z0

,

z1

],

eι2πk·a3hz1

(

z

zn31

),

ifz

∈ [

zn31

,

zn3

],

0

,

otherwise

.

(22d)

Based on the piecewise constant andlinear functionsin (21) and (22), we now define bases forthe 3N-dimensional subspace Hcurlh ()andN-dimensionalsubspaceHhgrad()in(20),respectively,as

(7)

Hhcurl

() =

span

{ φ

i1,j,k

i

, φ

2r,s,t

j

, φ

,3m,nk

} ⊂

Hcurl

()

(23) and

Hhgrad

() =

span

i,j,k

} ⊂

Hgrad

(),

(24)

wherei,j,karethestandardunitvectorsinR3,and

φ

i1,j,k

(

x

,

y

,

z

) :=

cˆi

(

x

)

lj

(

y

)

lk

(

z

),

(25a)

φ

2r,s,t

(

x

,

y

,

z

) :=

lr

(

x

)

cˆs

(

y

)

lt

(

z

),

(25b)

φ

3,m,n

(

x

,

y

,

z

) :=

l

(

x

)

lm

(

y

)

cnˆ

(

z

),

(25c)

φ

i,j,k

(

x

,

y

,

z

) :=

li

(

x

)

lj

(

y

)

lk

(

z

)

(25d)

withthesup-indicesvaryinginthesetS describedas

S

= {(

i

,

j

,

k

) :

i

=

0

, . . . ,

n1

1

,

j

=

0

, . . . ,

n2

1

,

k

=

0

, . . . ,

n3

1

}.

(26)

The components of an approximate electricfield EHcurlh () are piecewise constant in one direction andpiecewise linearintheothertworemainingdirections,i.e.,

E1

(

x

,

y

,

z

) =

(i,j,k)∈S

E1

|

ˆi,j,kcˆi

(

x

)

lj

(

y

)

lk

(

z

)

(i,j,k)∈S

E1

|

ˆi,j,k

φ

i1,j,k

,

(27a) E2

(

x

,

y

,

z

) =

(i,j,k)∈S

E2

|

ij,kli

(

x

)

cˆj

(

y

)

lk

(

z

)

(i,j,k)∈S

E2

|

ij,k

φ

i2,j,k

,

(27b) E3

(

x

,

y

,

z

) =

(i,j,k)∈S

E3

|

i,jkli

(

x

)

lj

(

y

)

ckˆ

(

z

)

(i,j,k)∈S

E3

|

i,jk

φ

i3,j,k

.

(27c) Here in (27a), a subindex (ˆi,j,k) indicates that a quantity is located atthe midpoint ofthat edge. Bydirect evaluation, we seethat E1|ˆi,j,k=E1(xi+1

2,yj,zk).Similarinterpretations holdfor E2 and E3.The Ei’s arethefamiliaredge elements closelyrelated tothe finitedifference Yee’s scheme[9].In consistent withthe quasi-periodicconditions (15), it iseasily checkedthat

Left-Right

E2

|

n1j,k

=

eι2πk·a1E2

|

0j,k

,

j

=

0

:

n2

1

,

k

=

0

:

n3

1

,

E3

|

n

1,jk

=

eι2πk·a1E3

|

0,jk

,

j

=

0

:

n2

1

,

k

=

0

:

n3

1

,

(28a) Front-Rear

E1

|

ˆi,n2,k

=

eι2πk·a2E1

|

ˆi,0,k

,

i

=

0

:

n1

1

,

k

=

0

:

n3

1

,

E3

|

i,n2k

=

eι2πk·a2E3

|

i,0k

,

i

=

0

:

n1

1

,

k

=

0

:

n3

1

,

(28b) Top-Bottom

E1

|

ˆi,j,n3

=

eι2πk·a3E1

|

ˆi,j,0

,

i

=

0

:

n1

1

,

j

=

0

:

n2

1

,

E2

|

ij,n3

=

eι2πk·a3E2

|

ij,0

,

i

=

0

:

n1

1

,

j

=

0

:

n2

1

.

(28c)

Forthederivationofthegeneralizedeigenvalueproblemfor(20a),thevectorizedformofthediscreteelectricfieldE in (27) canbewrittenas

e

=

e1 e2 e3

(29) with

e1

=

vec

{

E1

|

ˆi,j,k

},

e2

=

vec

{

E2

|

ij,k

},

e3

=

vec

{

E3

|

i,j,kˆ

},

for(i,j,k)S.Here

vec

{

F

} :=

⎢ ⎢

⎢ ⎣

vec

(

F

(

0

:

n1

1

,

0

:

n2

1

,

0

))

vec

(

F

(

0

:

n1

1

,

0

:

n2

1

,

1

))

.. .

vec

(

F

(

0

:

n1

1

,

0

:

n2

1

,

n3

1

))

⎥ ⎥

⎥ ⎦

forgivenF∈Cn1×n2×n3.

(8)

IntermsofthebasisfunctionsofHcurlh (),weexpectthediscreteweakformulation(20a) tohaveamatrixform

Ae

= λ

Bεe

,

(30)

whereeisasin(29),Aandarematrixrepresentationsoftheleftandrighthandsidesof(20a),respectively.InSections3 and4,wewillusethetrapezoidalquadrature

(

f

(

x

),

g

(

x

)) =

xn

xm

f

(

x

)

g

(

x

)

dx

hx 2

f

(

xm

)

g

(

xm

) +

2

n1

i=m+1

f

(

xi

)

g

(

xi

) +

f

(

xn

)

g

(

xn

)

(

f

(

x

),

g

(

x

))

h (31)

to approximatethe discretizationin(20a) with Hhcurl()in (23) sothat thematrix A in (30) isidenticalto thatof Yee’s schemeuptoafactorhxhyhz.

3. Trapezoidalquadratureapproximationfor(∇×E,∇×W)

ForagivenEHhcurl(),from(20a) and(23) itsufficestoconsidertheexpressions

(∇ ×

E

,∇ × φ

1i,j,k

i

), (∇ ×

E

,∇ × φ

2i,j,k

j

), (∇ ×

E

, ∇ × φ

3i,j,kk

)

(32) with (i,j,k)S in(26) and φi,k,j, =1,2,3, in (25). In fact, the inner product (·,·) in(32) involves the evaluationof typicaltermslike(l,c),(c,l),(l,l)and(c,c).Fortechnicalderivation,insteadoftheexactintegrals(lr(x),li(x)),(ls(y),lj(y)) and(lt(z),lk(z))in(32),weusethetrapezoidalquadrature(31) toobtain

(

lr

(

x

),

li

(

x

))

h

= δ

rihx

, (

ls

(

y

),

lj

(

y

))

h

= δ

sjhy

, (

lt

(

z

),

lk

(

z

))

h

= δ

tkhz (33) fortheirapproximations.

Let

c-1

(

x

) =

eι2πk·a1cnˆ11

(

x

),

c-1

(

y

) =

eι2πk·a2cnˆ21

(

y

),

c-1

(

z

) =

eι2πk·a3cnˆ31

(

z

).

(34) Thenthefollowingrelationshold:

xli

(

x

) =

hx1

(

cˆi1

(

x

)

cˆi

(

x

)),

(35a)

ylj

(

y

) =

hy1

(

cˆj1

(

y

)

cˆj

(

y

)),

(35b)

zlk

(

z

) =

hz1

(

ckˆ1

(

z

)

ckˆ

(

z

)),

(35c)

and

y

φ

1i,j,k

=

hy1cˆi

(

cˆj1

cˆj

)

lk

,

z

φ

1i,j,k

=

hz1cˆilj

(

ckˆ1

ckˆ

),

(36a)

x

φ

2i,j,k

=

hx1

(

cˆi1

cˆi

)

cˆjlk

,

z

φ

2i,j,k

=

hz1licˆj

(

ckˆ1

ckˆ

),

(36b)

x

φ

3i,j,k

=

hx1

(

cˆi1

cˆi

)

ljckˆ

,

y

φ

3i,j,k

=

hy1li

(

cˆj1

cˆj

)

ckˆ

,

(36c) for(i,j,k)S.

Beforeprovingthefollowingtheoremconcerningacertainconsistencybetweenouredgeelementschemeandthefinite differenceYee’sscheme,wedenotethedifferencematrixwiththequasi-periodicconditionas

Kn,a

=

0 In1 eι2πk·a 0

In

∈ C

n×n

,

(37)

for=1,2,3.

Theorem2.ForanSClattice,thevectorizedformsoftheinnerproductsdescribedin(32)takeonthematrixrepresentation

⎢ ⎣

vec

{ ( ∇ ×

E

, ∇ × φ

1i,j,k

i

)

h

}

(i,j,k)∈S

vec

{(∇ ×

E

, ∇ × φ

2i,j,k

j

)

h

}

(i,j,k)∈S

vec

{(∇ ×

E

, ∇ × φ

3i,j,kk

)

h

}

(i,j,k)∈S

⎥ ⎦ = (

hxhyhz

)

CCe

,

(38)

Références

Documents relatifs

eigenvalue enclosures, Maxwell equation, spectral pollution, finite element

We give a computable, sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower

We also show the related but easier results that if G is a path, then for any matrix M e M(G) of corank 1, the null space kerM of M yields an embedding of G in the line; furthermore,

Further results in this direction can be found in the paper of Freitas and Henrot [14], where, dealing with the linear case, the authors solved the shape optimization problem for

Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity.. Annales

We consider a nonlocal eigenvalue problem which arises in the study of stability of point-condensation solutions in some reaction-diffusion systems... all eigenvalues

Thanks to the equations satisfied by the structure, we obtain estimates on the acceleration of the rigid motion which enable us to bound the terms on the interface appearing in

We solve this problem with RT 0 and BDM 1 mixed finite elements on triangular meshes, which are obtained by regular refinement with the initial mesh showed in Figure 8.. The same as